
HAL Id: hal-00843995
https://hal.science/hal-00843995v1

Submitted on 12 Jul 2013 (v1), last revised 1 Oct 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Memory Efficient Self-Stabilizing k-Independant
Dominating Set Construction

Colette Johnen

To cite this version:
Colette Johnen. Memory Efficient Self-Stabilizing k-Independant Dominating Set Construction. 2013.
�hal-00843995v1�

https://hal.science/hal-00843995v1
https://hal.archives-ouvertes.fr

Memory efficient Self-Stabilizing k-Independant

Dominating Set Construction⋆

Labri Technical Report RR-1473-13

Colette Johnen

Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France

Abstract. We propose a memory efficient self-stabilizing protocol build-
ing k-independant dominating sets. A k-independant dominating set is
a k-independant set and a k-dominating set. A set of nodes, I, is k-
independent if the distance between any pair of nodes in I is at least
k + 1. A set of nodes, D, is a k-dominating if every node is within dis-
tance k of a node of D.
Our algorithm, named SID, is silent; it converges under the unfair dis-
tributed scheduler (the weakest scheduling assumption). The built k-
independant dominating sets contain at most ⌊2n/k+2⌋ nodes, n being
the network size.
The protocol SID is memory efficient : it requires only 2log((k+1)n+1)
bits per node.
The correctness and the terminaison of the protocol SID is proven.

keywords distributed computing, fault tolerance, self-stabilization, k-
dominating set, k-independant set, k-independant dominating set

1 Introduction

The clustering of networks consists of partitioning network nodes into
non-overlapping groups called clusters. Each cluster has a single head,
called leader, that acts as local coordinator of the cluster, and eventually
a set of standard nodes. In 1-hop clusters, the standard nodes are neigh-
bor (at distance 1) of their leader. Clustering is found very attractive in
infrastructure-less networks, like ad-hoc networks, since it limits the re-
sponsibility of network management only to leaders, and it allows the use
of hierarchical routing. This is why numerous self-stabilizing 1-hop clus-
tering protocols were proposed in the literature [9,10,8,11,13,14,15,16,19,20].

Silent self-stabilizing protocols building k-hops clustering set are proposed
for k > 1. In k-hop clusters, the distance between a standard node and
its leader is at most k [1,2,3,7]. The sets of cluster heads built by these

⋆ This work was partially supported by the ANR project Displexity.

1

protocols are not k-independant. The protocol of [1] is designed for k =
2. Routing tables are maintained by the cluster heads to store routing
information to nodes both within and outside the cluster. The goal of the
protocol in [2] is to build bounded size clusters (each cluster has at most
Cluster Max nodes). bits per node. The protocol of [3] is designed for
weighted edges networks; it requires at least O(k.log(n)) bits per node.
The protocol of [7] requires at least 2(k + 1)log(n)

In [17,18], Larsson and Tsigas propose self-stabilizing (l,k)-clustering pro-
tocols under various assupmtions. These protocols ensure, if possible, that
each node has l cluster-heads at distance at most k.

Related Works. In [4], a silent self-stabilizing protocol extracting a min-
imal k-dominating set from any k-dominating set is proposed. A minimal
k-dominating set has no proper subset which also a k-dominating set.
The protocol requires at least O(k.log(n)) bits per node.

The paper [6] presents a silent self-stabilizing protocol building a small
k-dominating set : the obtained dominating set contains at most ⌈n/k +
1⌉. The protocol of [6] requires O(log(n) + k.log(n/k)) bits per node.
The protocol of [5] builds competitive k-dominating sets : the obtained
dominating set contains at most 1+⌊n−1/k+1⌋ nodes. The protocol of [5]
requires O(log(n)) bits per node. These both protocols use the hierachical
collateral composition of several silent self-stabilizing protocols whose a
leader election protocol and a spanning tree construction rooted to the
elected leader. So they requires more memory space than our protocol.

In [12], A fast silent self-stabilizing protocol building a k-independant
dominating set is proposed the protocol requires (k + 1)log(n + 1) bits
per node.

Contribution. In this paper, we consider the problem of computing a
k-independant dominating set in a self-stabilizing manner in case where
k > 1. A nodes set is k-independant dominating set (also called maximal
k-independant set) if and only if this set is a k-independant set and a k-
dominating set. A set of nodes, I is k-independent if the distance between
any pair of I’s nodes is at least k + 1. A set of nodes D is k-dominating
if every node is within distance k of a node of D.

The presented protocol, named SID, is simple : no used of the the hier-
achical collateral composition, no need of leader election process, neither
the building of spanning tree. The protocol SID converges under the
unfair distributed scheduler (the weakest scheduling assumption). The

2

algorithm SID is silent. The protocol SID is memory efficient : it re-
quires only 2log((k + 1)n+ 1) bits per node.

In section 2, we establish that any k-independant sets contain at most
⌊2n/k + 2⌋ nodes, n being the network size. So the protocol of [12] and
the protocol SID have the same upper bound on the size of built k
independent dominating sets : ⌊2n/k + 2⌋ nodes.

Paper outline. The rest of the paper is organised as follows. In section 2,
communication and computation models are defined. The protocol SID
is presented in section 3. In the section 4, the correctness of the SID
protocol is proven. The terminaison of the SID protocol is established in
the section 5.

2 Model and Concepts

A distributed system S is an undirected graph G = (V,E) where vertex
set V is the set of nodes and edge set E is the set of communication
links. A link (u, v) ∈ E if and only if u and v can directly commu-
nicate (links are bidirectional); so, u and v are neighbors. We note by
Nv the set of v’s neighbors: Nv = {u ∈ V | (u, v) ∈ E}. The distance
between the nodes u and v is denoted dist(u, v). k-neigborhood(v) =
{u ∈ V | dist(u, v) ∈ [1, k]}.
Furthermore, at every node v in the network is assigned an identifier,
denoted idv. Two distinct nodes have different identifier. It is possible to
order the identifiant values. The symbol ⊥ denotes a value smaller than
any identifiant value in the network.

Each node v maintains a set of shared variables such that v can read
its own variables and those of its neighbors, but it can modify only its
variables. The state of a node is defined by the values of its local vari-
ables. The union of states of all nodes determines the configuration of the
system. Let var be a shared variable, var(v)c is the value of var for the
node u in the configuration c. The program of each node is a set of rules.
Each rule has the form: Rulei :< Guardi >−→< Actioni >. The guard
of a v’s rule is a boolean expression involving the state of the node v,
and those of its neighbors. The action of a v’s rule updates v’s state. A
rule can be executed only if it is enabled, i.e., its guard evaluates to true.
A node is said to be enabled if at least one of its rules is enabled. In a
terminal configuration, no node is enabled.

During a computation step ci → ci+1, one or several enabled nodes per-
form an enabled action and the system reaches the configuration ci+1 from

3

ci. A computation e is a sequence of configurations e = c0, c1, ..., ci, ...,
where ci+1 is reached from ci by one computation step: ∀i > 0, ci → ci+1.
We say that a computation e is maximal if it is infinite, or if it reaches
a terminal configuration. We note by C the set of all possible configura-
tions, and by E the set of all maximal computations. The set of maximal
computations starting from a particular configuration c ∈ C is denoted
Ec. EA denotes the set of all maximal computations where the initial con-
figuration belongs to the set of configurations A ⊂ C.

Definition 1 (Attractor). Let B1 and B2 be subsets of C. B2 is an
attractor from B1, if and only if the following conditions hold:

• Convergence: ∀c ∈ B1, If (Ec = ∅) then c ∈ B2

∀e ∈ EB1
(e = c1, c2, ...), ∃i > 1, ci ∈ B2;

• Closure: ∀e ∈ EB2
(e = c1, ...), ∀i > 1 : ci ∈ B2.

Definition 2 (Self-stabilization). A distributed system S is self-stabili-
zing if and only if there exists a non-empty set L ⊆ C, called set of legit-
imate configurations, such that the following conditions hold:

• L is an attractor from C;
• Configurations of L match the specification problem.

A self-stabilizing protocol is silent if all maximal computations are finite.

Stabilization time. We use the round notion to measure the time com-
plexity. The first round of a computation e = c1, ..., cj , ... is the minimal
prefix e1 = c1, ..., cj , such that every enabled node in c1 either executes
a rule or it is neutralized during a computation step of e1. A node v is
neutralized during a computation step cs ci → ci+1, if v is enabled in ci
and disabled in ci+1, but it did not execute any action during cs.
Let e2 be the suffix of e such that e = e1e2. The second round of e is the
first round of e2, and so on.

The stabilization time is the number of disjoint rounds of a computation
reaching a legitimate configuration from any initial one.

Lemma 1. The size of a k-independant set is at most max(⌊2n/k +
2⌋, 1).

Proof. Let I be a k-independant set such that |I| > 1. Let v be a node
of I. We denote by closer(v) the set of nodes closer to v than any other
node of I.

4

Notice that
⋃

v∈I closer(v) ⊂ V and closer(v)∩closer(u) = ∅, ∀(u, v) ∈
I2. Let u be the closest node of v that belongs to I. The first ⌊k + 2/2⌋
nodes in the path from v to u are closer to v than any other nodes of
I. So, closer(v) contains at least ⌊k + 2/2⌋ nodes. We conclude that
|I| ≤ ⌊2n/k + 2⌋. �

The protocol SID build k-independant sets. So, the obtained k-independant
dominating set contains at most ⌊2n/k + 2⌋ nodes.

3 The protocol SID

In the following subsection, we gives the notation used by the protocol
SID.

3.1 k-augmentedID type

Definition 3. k-augmentedID type An k-augmentedID value, a, is an
uplet (d, x) such that d is integer with 0 ≤ d ≤ k, and x is a node
identifiant. Let a = (d, x) be k-augmentedID value. We note a.dist = d
and a.id = x
Let v be a node of V , id+v it the k-augmentedID value associated to v :
(0, idv).

Definition 4. Two total order relations on k-augmentedID ∪ ⊥

– dom is defined as follow: dom(a, b) = a if
b =⊥, a.id < b.id or a.id = b.id ∧ a.dist < b.dist

– min is defined as follow: min(a, b) = a if
b =⊥, a.dist < b.dist or a.dist = b.dist ∧ a.id < b.id

The k-augmented value a1 dominates the k-augmented value a2 iff dom(a1,
a2) = a1. The k-augmented value a1 is larger than the k-augmented value
a2 iff min(a1, a2) = a2.

Definition 5. The operation +1 on k-augmentedID ∪ ⊥ is defined as
follow : a+1 = a if a =⊥ or if a.dist = k otherwise a+1 = (a.dist+1, a.id)

3.2 Code of the protocol SID

A node v is said to be a head if firstHead(v) = id+v ; otherwise it is
an ordinary node. The heads set built by the protocol SID (defined in
protocol 1) is a k-independant dominating set.

5

Protocol 1 : the Protocol SID on the node v

Shared variables

• firstHead(v) ∈ k-augmentedID

• secondHead(v) ∈ k-augmentedID ∪ ⊥

Internal variables

• k-augmentedIdSet(v) = {a+ 1 ∈ k -augmentedID |
a = firstHead(u) ∨ a = secondHead(u) with u ∈ Nv ∧ a.dist < k ∧ a.id 6= idv}

• SecondAugmentedIdSet(v) = {a ∈ augmentedIdSet |a.id 6= firstHead(v).id}

Macro

• headUpdate(v) : firstHead(v) := id+
v
; secondHead(v) :=⊥;

• ordinaryUpdate(v) :
firstHead(v) := min(augmentedIdSet(v));
secondHead(v) := min(SecondAugmentedIdSet(v) ∪ {⊥});

Predicates

• Head(v) ≡ firstHead(v) = id+
v

• toResign(v) ≡ id+
v
6= dom(augmentedIdSet(v) ∪

{

id+
v

}

)

• toElect(v) ≡ augmentedIdSet(v) = ∅

• headToUpdate(v) ≡ secondHead(v) 6=⊥

• ordinaryToUpdate(v) ≡
firstHead(v) 6= min(augmentedIdSet(v)) ∨
secondHead(v) 6= min(SecondAugmentedIdSet(v) ∪ {⊥})

Rules

RE(v) : ¬Head(v)v ∧ toElect(v) −→ headUpdate(v);

RU(v) : ¬Head(v) ∧ ¬toElect(v) ∧ ordinaryToUpdate(v) −→ ordinaryUpdate(v);

RR(v) : Head(v) ∧ toResign(v) −→ ordinaryUpdate(v);

RC(v) : Head(v) ∧ ¬toResign(v) ∧ headToUpdate(v) −→ headUpdate(v);

6

The variable firstHead(v) contains the identifiant of the closest head to
v (with its distance to v).

The variable secondHead(v) contains the identifiant of the second closest
head to v (with its distance to v) inside its k-neighborhood. If a node
v does not have two heads in its k-neighborhood then secondHead(v) is
set to ⊥. The execution of the rules RU or the rules RC updates the two
variables firstHead(v), and secondHead(v) without changing the status
of v (i.e. v stays ordinary or head).

The variable augmentedIdSet(v) contains some heads in the k-neighborhood
of v. (i.e. (d, idu) ∈ augmentedIdSet(v) indicates that u is a head at dis-
tance d of v). If the k’s neighborhood of v does not contain any head
then augmentedIdSet(v) is empty. Notice that in this case, toElect(v)
is verified. So, if v is an ordinary node then v will become a head (the
rule RE is enabled). Therefore, the heads set is a k-dominating set, in a
terminal configuration.

If toResign(v) is verified then v has in its k-neighborhood a head u
having a smaller identifiant than v’s identifiant (i.e. idv > idu). In this
case, if v is a head, it is enabled. So, the set of heads is a k-independant
set, in any terminal configuration.

The proof of the protocol SID has two parts.

– In the section 4, we prove that a terminal configuration of SID pro-
tocol is legitimate : the set of heads is a k-independent dominating
set.

– In the section 5, we prove that all maximal computations under any
unfair distributed scheduler are finite by reductio ad absurdam argu-
ments.

4 Correctness of the protocol SID

In this section, we prove that all terminal configuration of SID protocol
are legitimate : the set of heads is a k-independent dominating set.

Definition 6. The property OrdinaryPr(i) defined for all i ∈ [1, k] has
two parts :

– for all ordinary node v, firstHead(v) = (i, idu) if and only if u is the
closest head to v and i is the distance between u and v.

7

– for all node v, secondHead(v) = (i, idu) if and only if u is the second
closest head to v and i is the distance between u and v.

Observation 1 In a terminal configuration,

– An ordinary node v does not verify OrdinaryToUpdate(v);
– A head v does not verify HeadToUpdate(v);
– if v is an ordinary node then firstHead(v).dist > 0 ;
– if secondHead(v) 6=⊥ then secondHead(v).dist > 0 ;
– if secondHead(v) 6=⊥ then secondHead(v).dist ≥ firstHead(v).dist.

Lemma 2. In a terminal configuration of protocol SID, the property
OrdinaryPr(1) is verified.

Proof.
Let v be an ordinary node, in a terminal configuration of protocol SID.
(1, x) ∈ augmentedIdSet(v) if and only if v has a neighbor u such that
firstHead(u) = (0, x) in c. According to observation 1, u is a head; so
x = idu.
Notice that ∀a ∈ augmentedIdSet(v), we have a.dist > 0, in c.

As firstHead(v) = min(augmentedIdSet(v)), if v has a head at distance
1 then firstHead(v) = (1, idu) with u being the head in v’s neighborhood
having the smallest identifiant. otherwise firstHead(v).dist 6= 1.

According to the predicate OrdinaryToUpdate(v), if v has several heads
at distance 1 then secondHead(v) = (1, idu) with u being the head in v’s
neighborhood having the second smallest identifiant.
Otherwise, secondHead(v).dist is larger than 1. �

Lemma 3. Let i be a positive integer smaller than k. In a terminal con-
figuration of protocol SID, if the properties OrdinaryPr(j) are verified
for all j ∈ [1, i] then the property OrdinaryPr(i+ 1) is verified.

Proof. Let us assume that the properties OrdinaryPr(j) are verified for
all j ∈ [1, i] in any terminal configuration of protocol SID. In a terminal
configuration c, (j, x) ∈ augmentedIdSet(v) iff v has a neighbor u such
that firstHead(u) = (j − 1, x), or secondHead(u) = (j − 1, x). If j = 1
then u is a head in c, according to Observation 1. If 1 < j ≤ i + 1 then
x is the identifiant of a head in c at distance j − 1 of u, according to the
properties OrdinaryPr(j−1). So x is the identifiant of a head at distance
at most j of v, in c.

8

Let v′ be the closest head to v and d′ the distance from v′ to v in the
terminal configuration c. Assume that 0 < d′ ≤ i + 1. in c, we have the
two following properties.

– if (l, id) ∈ augmentedIdSet(v) then l ≥ d′; and
– if (d′, id) ∈ augmentedIdSet(v) then id ≥ idv′ . In c, v has a neighbor
u at distance d′ − 1 to v′. In c, the node v′ is the closest head of u; so
firstHead(u) = (d′ − 1, idv′).

We conclude that firstHead(v) = (d′, idv′), in c.

Assume that the network has several heads. Let v” be the second closest
head to v and d” the distance from v” to v, in a terminal configuration
c. v has a neighbor u at distance d”− 1 to v” in c. (we have d” > 0). v”
is the first or second closest head to u, in c. Assume that d” ≤ i+ 1. Ac-
cording to the properties OrdinaryPr(i), firstHead(u) = (d”−1, idv”)∨
secondHead(u) = (d”− 1, idv”), in c. So (d”, idv”) ∈ augmentedIdSet(v),
in c. In c, we have the two following properties.

– if (l, id) ∈ augmentedIdSet(v) then l ≥ d” or (l, id) = firstHead(v).
– if (d”, id) ∈ augmentedIdSet(v) then id ≥ idv” or id = firstHead(v).id.

We conclude that secondHead(v) = (d”, idv”). �

The following corollary is a direct result of lemmas 2 and 3. It establishes
that the set of heads is a k-dominating set.

Corollary 1. Let v be a ordinary node, in a terminal configuration of
protocol SID, named c. firstHead(v).id is the closest head to v; their
distance is firstHead(v).dist ≤ k. If secondHead(v) =⊥ then v has a
single head in its k-neigborhood otherwise secondHead(v).id is the second
closest head to v; their distance is secondHead(v).dist.

The following theorem establishes that the set of heads is a k-independant
set.

Theorem 1. Let v be a head, in a terminal configuration of protocol
SID, named c. v has not head in its k-neigborhood.

Proof. We will prove that if a head has another head in its k-neigborhood
then the configuration c is not terminal.

Let wrongHeadSet the set of heads having one or several heads in their
k-neigborhood. Assume that wrongHeadSet is not empty. We denoted by

9

v1 the node of wrongHeadSet having the largest identifiant. We denoted
v2, the closest head to v1 and d the distance between v1 and v2. We have
0 < d ≤ k. The node v1 has a neighbor u at distance d−1 of v2. The node
v2 is the first or the second closest head to u. According to corollary 1, we
have (d, idv2) ∈ augmentedIdSet(v1). v1 is enabled because v1 satisfied
the predicate toResign(v1). �

5 Termination of the protocol SID

In this section, we prove that all maximal computations of protocol SID
under any unfair distributed scheduler are finite by reductio ad absurdam
arguments.

Let e be a maximal computation starting from a configuration, named
c0. In a configuration c reached by e, for all node v, firstHead(v)c.id
is either the identifiant of an node or this value appears in the ini-
tial configuration (i.e. there is a node u, such that firstHead(v)c.id =
firstHead(u)c0.id ∨ firstHead(v)c.id = secondHead(u)c0.id). So, the
value taken by a variable firstHead in e belongs to a bounded set. Sim-
ilary we prove also that the value taken by a variable secondHead in e
belongs to a bounded set.

5.1 RR and RE rules

Along any computation, a node performs at most one time the rule RC.

Assume that a or several nodes perform infinitely often the action RE or
the action RR. Between two consecutive actions RE by a node u, this
node has performed on time the action RR. So a node u that infinitely of-
ten perform the action RE or the action RR changes its status infinitely
often. We name u+ the node the smallest identifiant among nodes that
changes their status infinitely often. e has a suffix e1 where only nodes
having a identifiant larger than idu+ changes their status (i.e. to perform
the action RE or the action RR).

As the set of value taken by firstHead(u+) is bounded; along e1, in-
finitely often after the action RR(u+), firstHead(u+) has the same
value, denoted (l + 1, id). Notice that id < idu+ and 0 < l < k. So u+

has a neighbor ul such that, infinitely often before the action RR(u+),
ul verfies firstHead(ul) = (l, id) or secondHead(ul) = (l, id).

10

At time, where u+ becomes head, we have augmentedIdSet(u+) = ∅. So,
the values of ul variables are infinitely often larger than (l, id) : So ul
gives infinitely often to one of its variables the value (l, id), but also gives
a larger value to the same variable.

Assume that l > 0. At time where ul gives the value (l, id) to one of its
variable : ul has a neigbor ul−1, having the value (l−1, id). At time where
ul gives a larger value than (l, id) to the same variable : ul−1 has a larger
value than (l − 1, id). We conclude that there is a series of l + 1 nodes
: ul, ul−1, ..u0 such that ui has infinitely often has the value (i, id) and
infinitely often does not have this value along e1.

Along e1, u0 performs infinitely often the action RR and the action RE.
We have id = idu0

< idu+ : there is a contradiction.

So e has a suffix, named e2, in which the only rule performed is RU.

5.2 RU rule

Assume that a node or several nodes changing infinitely often their value
firstHead or their value secondHead along e2. We named min+ the
smallest value infinitely often allocates to the variable firstHead or to
the variable secondHead of one of these nodes. Let e3 be the suffix of
e2 in which no variable firstHead and no variable secondHead gets a
value smaller than min+. Along e3, infinitely often, a node, named u+,
performs RU action to set the value min+ to its variable firstHead or
its variable secondHead; and infinitely often, u+ performs RU action to
set to the same variable a value larger than min+.

Let c → c′ be a computation step of e3 where u+ performs RU action to
set a value larger than min+ to its variable firstHead or to its variable
secondHead. In c, min+ is smaller than min(augmentedIdSet(u+)) or
min+ is smaller than min(SecondAugmentedIdSet(u+)) . This property
stays verified along e3 : u+ never sets the value min+ to its variable
firstHead (resp. to its variable secondHead). There is a contradiction.

We have established that e2 has a suffix e4 where no rule is executed. A
terminal configuration is reached.

11

6 Conclusion

A simple and silent self-stabilizing protocols building k-independant dom-
inating sets is presented. The obtained k-independant dominating set con-
tains at most ⌊2n/k+ 2⌋ nodes. The protocol converges under the unfair
distributed scheduler (the weakest scheduling assumption). The protocol
is memory efficient : it requires only 2log(n+ 1)(k + 1)) bits per node.

The computation of the convergence time of the protocol SID is opened
question.

References

1. D. Bein, A. K. Datta, C. R. Jagganagari, and V. Villain. A self-stabilizing link-
cluster algorithm in mobile ad hoc networks. In International Symposium on Par-
allel Architectures, Algorithms and Networks (ISPAN’05), pages 436–441, 2005.

2. A. Bui, S. Clavière, A. K. Datta, L. L. Larmore, and D. Sohier. Self-stabilizing
hierarchical construction of bounded size clusters. In 18th International Colloquium
Structural Information and Communication Complexity (SIROCCO’11), Springer
LNCS 6796, pages 54–65, 2011.

3. E. Caron, A. K. Datta, B. Depardon, and L. L. Larmore. self-stabilizing k-
clustering algorithm for weighted graphs. Journal of Parallel and Distributed Com-
puting, 70:1159–1173, 2010.

4. A. Datta, S. Devismes, and L. Larmore. A self-stabilizing o(n)-round k-clustering
algorithm. In 28th IEEE Symposium on Reliable Distributed Systems (SRDS’09),
pages 147–155, 2009.

5. A. K. Datta, L. L. Larmore, S. Devismes, K. Heurtefeux, and Y. Rivierre. Com-
petitive self-stabilizing k-clustering. In IEEE 32th International Conference on
Distributed Computing (ICDCS’12), pages 476–485, 2012.

6. A. K. Datta, L. L. Larmore, S. Devismes, K. Heurtefeux, and Y. Rivierre. Self-
stabilizing small k-dominating sets. International Journal of Networking and Com-
puting, 3(1):116–136, 2013.

7. A. K. Datta, L. L. Larmore, and P. Vemula. A self-stabilizing o(k)-time k-clustering
algorithm. The Computer Journal, 53(3):342–350, 2010.

8. M. Demirbas, A. Arora, V. Mittal, and V. Kulathumani. A fault-local self-
stabilizing clustering service for wireless ad hoc networks. IEEE Trans. Parallel
Distrib. Syst., 17(9):912–922, 2006.

9. S. Dolev and N. Tzachar. Empire of colonies self-stabilizing and self-organizing
distributed algorithms. In the 10th International Conference On Principles Of
Distributed Systems (OPODIS’06), Springer LNCS 4305, pages 230–243, 2006.

10. V. Drabkin, R. Friedman, and M. Gradinariu. Self-stabilizing wireless connected
overlays. In Conference On Principles Of Distributed Systems (OPODIS’06),
Springer LNCS 4305, pages 425–439, 2006.

11. W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Self-stabilizing
protocols for maximal matching and maximal independent sets for ad hoc net-
works. In the 5th IPDPS Workshop on Advances in Parallel and Distributed Com-
putational Models (WAPDCM’03), 2003.

12

12. C. Johnen. Fast self-stabilizing k-independant dominating set construction. Tech-
nical Report RR-1472-13, Univ. Bordeaux, LaBRI, UMR 3800, F-33400 Talence,
France, June 2013.

13. C. Johnen and F. Mekhaldi. Robust self-stabilizing construction of bounded
size weight-based clusters. In the 16th International Euro-Par Conference (Euro-
Par’10), Springer LNCS 6271, pages 535–546, 2010.

14. C. Johnen and L. H. Nguyen. Self-stabilizing construction of bounded size clusters.
In the IEEE 8th International Symposium on Parallel and Distributed Processing
and Applications (ISPA’08), pages 43–50, 2008.

15. C. Johnen and L. H. Nguyen. Robust self-stabilizing weight-based clustering algo-
rithm. Theoretical Computer Science, 410(6-7):581–594, 2009.

16. S. Kamei and H. Kakugawa. A self-stabilizing approximation for the minimum
connected dominating set with safe convergence. In the 12th Conference On Prin-
ciples Of Distributed Systems (OPODIS’08), Springer, LNCS 5401, pages 496–511,
2008.

17. A. Larsson and P. Tsigas. A self-stabilizing (k,r)-clustering algorithm with mul-
tiple paths for wireless ad-hoc networks. In IEEE 31th International Conference
on Distributed Computing Systems, (ICDCS’11), pages 353–362. IEEE Computer
Society, 2011.

18. A. Larsson and P. Tsigas. Self-stabilizing (k,r)-clustering in clock rate-limited
systems. In 19th International Colloquium Structural Information and Communi-
cation Complexity, (SIROCCO’12), Springer, LNCS 7355, pages 219–230, 2012.

19. N. Mitton, E. Fleury, I. Guérin-Lassous, and S. Tixeuil. Self-stabilization in self-
organized multihop wireless networks. In International Conference on Distributed
Computing Systems Workshops (WWAN’05), pages 909–915, 2005.

20. Z. Xu, S. T. Hedetniemi, W. Goddard, and P. K. Srimani. A synchronous self-
stabilizing minimal domination protocol in an arbitrary network graph. In Pro-
ceedings of the 5th International Workshop on Distributed Computing (IWDC’03),
Springer LNCS 2918, pages 26–32, 2003.

13

	Memory efficient Self-Stabilizing k-Independant Dominating Set ConstructionThis work was partially supported by the ANR project Displexity. Labri Technical Report RR-1473-13
	Introduction
	Model and Concepts
	The protocol SID
	k-augmentedID type
	Code of the protocol SID

	Correctness of the protocol SID
	Termination of the protocol SID
	RR and RE rules
	RU rule

	Conclusion

