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Abstract

We propose a memory efficient self-stabilizing protocol building k-independent dom-
inating sets. A k-independent dominating set is a k-independent set and a k-
dominating set. A set of nodes, I, is k-independent if the distance between any
pair of nodes in I is at least k + 1. A set of nodes, D, is a k-dominating if every
node is within distance k of a node of D.
Our algorithm, named SID, is silent; it converges under the unfair distributed
scheduler (the weakest scheduling assumption).
We established that any k-independent sets contains at most ⌊(2n)/(k + 2)⌋ nodes,
n being the network size.
The protocol SID is memory efficient : it requires only 2log((k + 1)n+ 1) + 1 bits
per node.
The correctness and the termination of the protocol SID is proven.
The computation of the convergence time of the protocol SID is opened question.

keywords distributed computing, fault tolerance, self-stabilization, k-dominating
set, k-independent set, k-independent dominating set, memory efficient

1 Introduction

The clustering of networks consists of partitioning network nodes into non-overlapping
groups called clusters. Each cluster has a single head, called leader, that acts as local
coordinator of the cluster, and eventually a set of standard nodes. In 1-hop clusters,
the standard nodes are neighbor (at distance 1) of their leader. Clustering is found
very attractive in infrastructure-less networks, like ad-hoc networks, since it limits the
responsibility of network management only to leaders, and it allows the use of hierarchical
routing. This is why numerous self-stabilizing 1-hop clustering protocols were proposed
in the literature [9, 10, 8, 11, 13, 14, 15, 16, 19, 20].

∗This work was partially supported by the ANR project Displexity.
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Silent self-stabilizing protocols building k-hops clustering set are proposed for k > 1.
In k-hop clusters, the distance between a standard node and its leader is at most k
[1, 2, 3, 7]. The sets of cluster heads built by these protocols are not k-independent.
The protocol of [1] is designed for k = 2. Routing tables are maintained by the cluster
heads to store routing information to nodes both within and outside the cluster. The
goal of the protocol in [2] is to build bounded size clusters (each cluster has at most
Cluster Max nodes). bits per node. The protocol of [3] is designed for weighted edges
networks; it requires at least O(k.log(n)) bits per node. The protocol of [7] requires at
least 2(k + 1)log(n)

In [17, 18], Larsson and Tsigas propose self-stabilizing (l,k)-clustering protocols under
various assupmtions. These protocols ensure, if possible, that each node has l cluster-
heads at distance at most k.

Related Works. In [4], a silent self-stabilizing protocol extracting a minimal k-domi-
nating set from any k-dominating set is proposed. A minimal k-dominating set has no
proper subset which also a k-dominating set. The protocol requires at least O(k.log(n))
bits per node.

The paper [6] presents a silent self-stabilizing protocol building a small k-dominating
set : the obtained dominating set contains at most ⌈n/(k + 1)⌉ nodes. The protocol of
[6] requires O(log(n)+ k.log(n/k)) bits per node. The protocol of [5] builds competitive
k-dominating sets : the obtained dominating set contains at most 1 + ⌊(n− 1)/(k + 1)⌋
nodes. The protocol of [5] requires O(log(2k.2(∆ + 1).2n.D)) bits per node, where D
is the network diameter, and ∆ is a bound on node degree. These both protocols use
the hierachical collateral composition of several silent self-stabilizing protocols whose a
leader election protocol and a spanning tree construction rooted to the elected leader.
So they require more memory space than our protocol.

In [12], a fast silent self-stabilizing protocol building a k-independent dominating set
is proposed the protocol converges in 4n + k rounds and it requires (k + 1)log(n + 1)
bits per node. The computation of the convergence time of the protocol SID is opened
question.

Contribution. In this paper, we consider the problem of computing a k-independent
dominating set in a self-stabilizing manner in case where k > 1. A nodes set is k-
independent dominating set (also called maximal k-independent set) if and only if this
set is a k-independent set and a k-dominating set. A set of nodes, I is k-independent
if the distance between any pair of I’s nodes is at least k + 1. A set of nodes D is
k-dominating if every node is within distance k of a node of D.

The presented protocol, named SID, is simple : no use of the the hierachical collat-
eral composition, no need of leader election process, neither the building of spanning
tree. The protocol SID converges under the unfair distributed scheduler (the weakest
scheduling assumption). The algorithm SID is silent. The protocol SID is memory
efficient : it requires only 2log((k + 1)n+ 1) + 1 bits per node.
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In section 2, we establish that any k-independent sets contain at most ⌊(2n)/(k + 2)⌋
nodes, n being the network size. So the protocol of [12] and the protocol SID have the
same upper bound on the size of built k independent dominating sets : ⌊(2n)/(k + 2)⌋
nodes.

Paper outline. The rest of the paper is organised as follows. In section 2, communi-
cation and computation models are defined. The protocol SID is presented in section
3. In the section 4, the correctness of the SID protocol is proven. The termination of
the SID protocol is established in the section 5.

2 Model and Concepts

A distributed system S is an undirected graph G = (V,E) where vertex set V is the
set of nodes and edge set E is the set of communication links. A link (u, v) ∈ E if
and only if u and v can directly communicate (links are bidirectional); so, u and v
are neighbors. We denote by Nv the set of v’s neighbors: Nv = {u ∈ V | (u, v) ∈ E}.
The distance between the nodes u and v is denoted dist(u, v). k-neigborhood(v) =
{u ∈ V | dist(u, v) ∈ [1, k]}.

Definition 1 (k-independent dominating set)
Let D be a subset of V ; D is a k-dominating set if and only if ∀v ∈ V/D we have
k-neigborhood(v) ∩D 6= ∅.
Let I be a subset of V ; I is a k-independent set if and only if ∀u ∈ I we have
k-neigborhood(u) ∩ I = ∅.
A subset of V is a distance-k independent dominating set if this subset is a distance-k
dominating set and a distance-k independent set.

Lemma 1 The size of a k-independent set is at most max(⌊(2n)/(k + 2)⌋, 1).

Proof 1 Let I be a k-independent set such that |I| > 1. Let v be a node of I. We denote
by closer(v) the set of nodes closer to v than any other node of I.
Notice that

⋃
w∈I closer(w) ⊂ V and closer(v) ∩ closer(u) = ∅, ∀(u, v) ∈ I2. Let

u be the closest node to v that belongs to I. Let x be node on the path from v to
u such that 0 ≤ dist(v, x) ≤ ⌊k/2⌋. Let w be a node of I other than v. We have
dist(w, x) > k − dist(v, x) ≥ ⌊k/2⌋ because k < dist(w, v) ≤ dist(v, x) + dist(x,w). So,
closer(v) contains the first ⌊k/2⌋+ 1 nodes in the path from v to u. We conclude that
|I| ≤ ⌊(2n)/(k + 2)⌋. �

The protocol SID builds k-independent sets. So, the obtained k-independent dominat-
ing set contains at most ⌊(2n)/(k + 2)⌋ nodes.
Furthermore, at every node v in the network is assigned an identifier, denoted by idv.
Two distinct nodes have different identifier. It is possible to order the identifier values.
The symbol ⊥ denotes a value smaller than any identifier value in the network.
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Each node v maintains a set of shared variables such that v can read its own variables
and those of its neighbors, but it can modify only its variables. The state of a node is
defined by the values of its local variables. The cartesian product of states of all nodes
determines the configuration of the system. The program of each node is a set of rules.
Each rule has the form: Rulei :< Guardi >−→< Actioni >. The guard of a v’s rule is
a boolean expression involving the state of the node v, and those of its neighbors. The
action of a v’s rule updates v’s state. A rule can be executed only if it is enabled, i.e.,
its guard evaluates to true. A node is said to be enabled if at least one of its rules is
enabled. In a terminal configuration, no node is enabled.

During a computation step ci → ci+1, one or several enabled nodes perform an enabled
action and the system reaches the configuration ci+1 from ci. A computation e is a
sequence of configurations e = c0, c1, ..., ci, ..., where ci+1 is reached from ci by one
computation step: ∀i > 0, ci → ci+1. We say that a computation e is maximal if it is
infinite, or if it reaches a terminal configuration. We note by C the set of all possible
configurations, and by E the set of all maximal computations. The set of maximal
computations starting from a particular configuration c ∈ C is denoted Ec. EA denotes
the set of all maximal computations where the initial configuration belongs to the set of
configurations A ⊂ C.

Definition 2 (Attractor) Let B1 and B2 be subsets of C. B2 is an attractor from B1,
if and only if the following conditions hold:

• Convergence: ∀c ∈ B1, If (Ec = ∅) then c ∈ B2 otherwise
∀e ∈ EB1

(e = c1, c2, ...), ∃i > 1, ci ∈ B2;
• Closure: ∀e ∈ EB2

(e = c1, ...), ∀i > 1 : ci ∈ B2.

Definition 3 (Self-stabilization) A distributed system S is self-stabilizing for the spec-
ification SP (a predicate on configurations) if and only if there exists a non-empty
set L ⊆ C, called set of legitimate configurations, such that the following conditions
hold:

• L is an attractor from C;
• Configurations of L satisfied SP.

A self-stabilizing protocol is silent if all maximal computations are finite.

Stabilization time. We use the round notion to measure the time complexity. The first
round of a computation e = c1, ..., cj , ... is the minimal prefix e1 = c1, ..., cj , such that
every enabled node in c1 either executes a rule or it is neutralized during a computation
step of e1. A node v is neutralized during a computation step cs ci → ci+1, if v is enabled
in ci and disabled in ci+1, but it did not execute any action during cs.
Let e2 be the suffix of e such that e = e1e2. The second round of e is the first round of
e2, and so on.

The stabilization time is the number of rounds of a computation reaching a legitimate
configuration from any initial one.
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3 The protocol SID

In the following subsection, we gives the notation used by the protocol SID.

3.1 k-augmentedID type

Definition 4 k-augmentedID type An k-augmentedID value, a, is ⊥ or an n-tuple
(d, x) such that d is integer with 0 ≤ d ≤ k, and x is a node identifier. Let a = (d, x) be
k-augmentedID value. We use the following notation a.dist = d and a.id = x.
Let v be a node of V , id+v is the following k-augmentedID value: (0, idv).

Definition 5 The total order relation dom on k-augmentedID

• dom(a, b) = a if b =⊥, a.id < b.id or a.id = b.id ∧ a.dist < b.dist, otherwise
dom(a, b) = b.

• The k-augmented value a1 dominates the k-augmented value a2 if and only if
dom(a1, a2) = a1.

• Let X be a finite set of k-augmentedID values. dom(X) is the k-augmentedID value
belonging to X such that any value of X is dominated by dom(X) (i.e. ∀y ∈ X we
have dom(dom(X), y) = dom(X)).

Definition 6 The total order relation min on k-augmentedID

• min(a, b) = a if b =⊥, a.dist < b.dist or a.dist = b.dist ∧ a.id < b.id otherwise
min(a, b) = b.

• The k-augmented value a1 is larger than the k-augmented value a2 if and only if
min(a1, a2) = a2.

• Let X be a finite set of k-augmentedID values. min(X) is the k-augmentedID value
belonging to X such that any value of X is larger than min(X) (i.e. ∀y ∈ X we
have min(min(X), y) = min(X)).

The node u1 is closer to the node v than the node u2 iff dist(u1, v)) < dist(u2, v) or
idu1 < idu2. We have min((dist(u1, v), idu1), (dist(u2, v), idu)) = (dist(u1, v); idu1).

Definition 7 The operation +1 on k-augmentedID is defined as follow : a + 1 = a
if a =⊥ or if a.dist = k otherwise a+ 1 = (a.dist+ 1, a.id)
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Protocol 1 : Variables, Predicates and Rules of the Protocol SID on the node v

Shared variables

• firstHead(v) and secondHead(v). They take value in k-augmentedID

Internal variable

• beReal a boolean variables used by some macros.

Notation

• firstAugmentedIdSet(v) = {a+ 1 ∈ k -augmentedID |
a = firstHead(u) ∨ a = secondHead(u) with u ∈ Nv ∧ a.dist < k ∧ a.id 6= idv}

• secondAugmentedIdSet(v) = {a ∈ firstAugmentedIdSet |a.id 6= firstHead(v).id}

Macros

• isDefended(v) returns true iff firstAugmentedIdSet(v) 6= ∅.

• isDominated(v) returns true iff id+v 6= dom(firstAugmentedIdSet(v) ∪ id+v ).

• correctFirstHead(v) returns true iff
firstHead(v) == min(firstAugmentedIdSet(v)).

• computingFirstHead(v) returns the value of min(firstAugmentedIdSet(v)).

• correctSecondHead(v) returns true iff
secondHead(v) == min(secondAugmentedIdSet(v)∪ ⊥).

• computingsSecondHead(v) returns the value ofmin(secondAugmentedIdSet(v)∪ ⊥).

Predicates

• Head(v) ≡ firstHead(v) == (0, idv)

• toResign(v) ≡ isDominated(v)

• toElect(v) ≡ ¬isDefended(v)

• headToUpdate(v) ≡ firstHead(v) 6= (0, idv) ∨ secondHead(v) 6=⊥

• ordinaryToUpdate(v) ≡ ¬correctFirstHead(v) ∨ ¬correctSecondHead(v)

Rules

RE(v) : ¬Head(v) ∧ toElect(v) −→ firstHead(v) := (0, idv); secondHead(v) :=⊥;

RU(v) : ¬Head(v) ∧ ¬toElect(v) ∧ ordinaryToUpdate(v) −→
computingFirstHead(v); computingSecondHead(v);

RR(v) : Head(v) ∧ toResign(v) −→
computingFirstHead(v); computingSecondHead(v);

RC(v) : Head(v) ∧ ¬toResign(v) ∧ headToUpdate(v) −→
firstHead(v) := (0, idv); secondHead(v) :=⊥;

6



3.2 Code of the protocol SID

A node v is said to be a head if firstHead(v) = id+v ; otherwise it is an ordinary node.
The heads set built by the protocol SID (defined in protocol 1) is a k-independent
dominating set. The codes of the macros are defined in the protocols 2 to 7.

In the figure 1 is presented a terminal configuration having three heads. On the same
network is presented another terminal configuration having a single head, in the figure 2.

The variable firstHead(v) contains the identifier of the closest head to v (with its dis-
tance to v).

The variable secondHead(v) contains the identifier of the second closest head to v (with
its distance to v) inside its k-neighborhood. If a node v does not have two heads in
its k-neighborhood then secondHead(v) is set to ⊥. The execution of the rules RU
or the rules RC updates the two variables firstHead(v), and secondHead(v) without
changing the status of v (i.e. v stays ordinary or head).
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the color of its closest head.

Figure 1: A terminal configuration of SID

The macro isDefended(v) (defined in protocol 2) returns true if
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Figure 2: Another terminal configuration of SID

the set firstAugmentedIdSet(v) is not empty otherwise the macro returns false.

Protocol 2 : macro isDefended(v)

for u ∈ Nv do
if firstHead(u).dist < k ∧ firstHead(u).id 6= idv then return true;
if secondHead(u).dist < k ∧ secondHead(u).id 6= idv then return true;

done; return false;

The macro isDominated(v) (defined in protocol 3) returns true if a value x of
firstAugmentedIdSet(v) dominates the value id+v ; otherwise the macro returns false.

The macro correctFirstHead(v) (defined in protocol 4) returns true if the value of
firstHead(v) is min(firstAugmentedIdSet(v)); otherwise the macro returns false. No-
tice that if the set firstAugmentedIdSet(v)) is empty the macro returns false;

The macro computingFirstHead(v) (defined in protocol 5) returns
min(firstAugmentedIdSet(v)) if the set firstAugmentedIdSet(v) is not empty; oth-
erwise the macro returns ⊥.

The macro correctsecondHead(v) (defined in protocol 6) returns true if the value of
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Protocol 3 : macro isDominated(v)

for u ∈ Nv do
if firstHead(u).dist < k ∧ firstHead(u).id < idv then return true;
if secondHead(u).dist < k ∧ secondHead(u).id < idv then return true;

done; return false;

Protocol 4 : Macro correctFirstHead(v)

beReal := false;
for u ∈ Nv do

if firstHead(u).id 6= idv ∧ firstHead(u).dist < k then
if firstHead(v) 6= min(firstHead(v), firstHead(u) + 1) then return false;
if firstHead(v) = (firstHead(u) + 1) then beReal := true;

if secondHead(u) 6=⊥ ∧ secondHead(u).id 6= id.v ∧ secondHead(u).dist < k then
if firstHead(v) 6= min(firstHead(v), secondHead(u) + 1) then return false;
if firstHead(v) = (secondHead(u) + 1) then beReal := true;

done; return beReal;

secondHead(v) ismin(firstAugmentedIdSet(v)∪⊥); otherwise the macro returns false.

The macro computingSecondHead(v) (defined in protocol 7) returns
min(secondAugmentedIdSet(v)) if the set secondAugmentedIdSet(v) is not empty; oth-
erwise the macro returns ⊥.

Once the system is stabilized, the set firstAugmentedIdSet(v)) contains some heads
in k-neighborhood of v. More precisely, this set contains the closest and second closest
head to v if there are in the k-neighborhood of v. If the k’s neighborhood of a node
v does not contain any head then the set firstAugmentedIdSet(v)) is empty. So the
predicate isDefended(v) is not verified. If v is an ordinary node then v is enabled (the
rule RE or the rule RU is enabled). Therefore, the heads set is a k-dominating set, in
a terminal configuration.

If toResign(v) is verified then v has in its k-neighborhood a head u having a smaller
identifier than v’s identifier (i.e. idv > idu). In this case, if v is a head, it is enabled.
So, the set of heads is a k-independent set, in any terminal configuration.

The proof of the protocol SID has two parts.

• In the section 4, we prove that a terminal configuration of SID protocol is legiti-
mate : the set of heads is a k-independent dominating set.

• In the section 5, we prove that all maximal computations under any unfair dis-
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Protocol 5 : Macro computingFirstHead(v)

firstHead(v) :=⊥;
for u ∈ Nv do

if firstHead(u).id 6= idv ∧ firstHead(u).dist < k then
firstHead(v) := min(firstHead(v), firstHead(u) + 1);

if secondHead(u) 6=⊥ ∧ secondHead(u).id 6= id.v ∧ secondHead(u).dist < k then
firstHead(v) := min(firstHead(v), secondHead(u) + 1);

done;

Protocol 6 : Macro correctSecondHead(v)

beReal := false;
for u ∈ Nv do

if firstHead(u).id 6= idv ∧ firstHead(u).id 6= firstHead(v).id ∧
firstHead(u).dist < k then

if secondHead(v) 6= (min(secondHead(v), firstHead(u)+1) then return false;
if secondHead(v) = firstHead(u) + 1 then beReal = true;

if secondHead(u) 6=⊥ ∧ secondHead(u).id 6= idv ∧
secondHead(u).id 6= firstHead(v).id ∧ secondHead(u).dist < k then

if secondHead(v) 6= min(secondHead(v), secondHead(u) + 1) then return
false;

if secondHead(v) = secondHead(u) + 1 then beReal = true;
done;
if ¬beReal and (secondHead(v) 6=⊥) then return false;
return true;

Protocol 7 : Macro computingSecondHead(v)

secondHead(v) :=⊥;
for u ∈ Nv do

if firstHead(u).id 6= idv ∧ firstHead(u).id 6= firstHead(v).id ∧
firstHead(u).dist < k then

secondHead(v) := (min(secondHead(v), firstHead(u) + 1);
if secondHead(u) 6=⊥ ∧ secondHead(u).id 6= idv ∧

secondHead(u).id 6= firstHead(v).id ∧ secondHead(u).dist < k then
secondHead(v) := min(secondHead(v), secondHead(u) + 1);

done;
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tributed scheduler are finite by reductio ad absurdam arguments.

4 Correctness of the protocol SID

In this section, we prove that all terminal configuration of SID protocol are legitimate:
the set of heads is a k-independent dominating set.

Definition 8 The property OrdinaryPr(i) defined for all i ∈ [1, k] is verifierd if the two
following statements are satisfied:

• OrdinaryPrFirst(i): for all ordinary node v, firstHead(v) = (i, idu) if and only
if u is the closest head to v and i is the distance between u and v.

• OrdinaryPrSecond(i): for all node v, secondHead(v) = (i, idw) if and only if w is
the second closest head to v and i is the distance between w and v.

Observation 1 In a terminal configuration,

1. An ordinary node v does not verify OrdinaryToUpdate(v);
so firstHead(v) = min(firstAugmentedIdSet(v)) and
secondHead(v) = min(secondtAugmentedIdSet(v)∪ ⊥).

2. A head u does not verify HeadToUpdate(u);

3. Let w be a node (head or ordinary), firstHead(w) 6=⊥;

4. if v is an ordinary node then firstHead(v).dist > 0 ;

5. if secondHead(v) 6=⊥ then secondHead(v).dist > 0 ;

6. if secondHead(v) 6=⊥ then secondHead(v).dist ≥ firstHead(v).dist because
secondAugmentedIdSet(v) ⊂ firstAugmentedIdSet(v).

Lemma 2 In a terminal configuration of protocol SID, the property OrdinaryPr(1) is
verified.

Proof 2
Let v be an ordinary node, in a terminal configuration of protocol SID, named c.
Assume that (1, x) ∈ firstAugmentedIdSet(v). So v has a neighbor u such that
firstHead(u) = (0, x) or secondHead(u) = (0, x).
According to observation 1.4 secondHead(u).dist > 0 or secondHead(u) =⊥. So v has
a neighbor u such that firstHead(u) = (0, x). According to observation 1.3 u is a head;
so x = idu.
Notice that ∀a ∈ firstAugmentedIdSet(v), we have a.dist > 0, in c.

Proof of OrdinaryPrFirst(1). If v has a head at distance 1 then v has a neighbor u
such that firstHead(u) = (0, idu). So, We have firstHead(v) = (1, idu) with u being
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the head in v’s neighborhood having the smallest identifier.
If v has not a head at distance 1 then for any u neighbor, we have firstHead(u).dist > 0.
and secondHead(u).dist > 0 or secondHead(u) =⊥ (according to observation 1.4). In
this case, firstHead(v).dist > 1.

Proof of OrdinaryPrSecond(1). If v has several heads at distance 1 then v has a neighbor
w such that firstHead(w) = (0, idw) with idw 6= firstHead(v).id. So, secondHead(v) =
(1, idw) with w being the head in v’s neighborhood having the second smallest identifier.
If v has at most one head at distance 1 then v has not a neighbor w such that firstHead(w) =
(0, idw) with idw 6= firstHead(v).id. In this case, secondHead(v).dist is larger than 1
or secondHead(v) =⊥. �

Lemma 3 Let i be a positive integer smaller than k. In a terminal configuration of
protocol SID, if the properties OrdinaryPr(j) are verified for all j ∈ [1, i] then the
property OrdinaryPr(i+ 1) is verified.

Proof 3 Let us assume that the properties OrdinaryPr(j) are verified for all j ∈ [1, i]
in any terminal configuration of protocol SID.
In a terminal configuration c, (j, x) ∈ augmentedIdSet(v) iff v has a neighbor u such
that firstHead(u) = (j−1, x), or secondHead(u) = (j−1, x). If j = 1 then u is a head
in c, according to Observation 1. If 1 < j ≤ i+ 1 then x is the identifier of a head in c
at distance j−1 of u, according to the property OrdinaryPr(j−1). So x is the identifier
of a head at distance at most j of v, in c.

Proof of OrdinaryPrFirst(i+1). Let v′ be the closest head to v and d′ the distance
from v′ to v in the terminal configuration c. Assume that 0 < d′ ≤ i + 1. v has
a neighbor u at distance d′ − 1 to v′. In c, the node v′ is the closest head of u; so
firstHead(u) = (d′−1, idv′), according to the properties OrdinaryPr(d′−1). According
to the properties OrdinaryPr(j) forall j ∈ [1, i], in c, we have the following properties,

• if (l, id) ∈ firstAugmentedIdSet(v) then l ≥ d′; and
• if (d′, id) ∈ firstAugmentedIdSet(v) then id ≥ idv′. In c,

We conclude that firstHead(v) = (d′, idv′), in c.

Proof of OrdinaryPrSecond(i+1). Assume that the network has several heads. Let v” be
the second closest head to v and d” the distance from v” to v, in a terminal configuration
c. v has a neighbor u at distance d” − 1 to v” in c. (we have d” > 0). v” is the first
or second closest head to u, in c. Assume that d” ≤ i + 1. According to the property
OrdinaryPr(d”− 1), firstHead(u) = (d”− 1, idv”)∨ secondHead(u) = (d”− 1, idv”), in
c. According to the properties OrdinaryPr(j) forall j ∈ [1, i), in c, we have the following
properties,

• if (l, id) ∈ secondAugmentedIdSet(v) then l ≥ d”;
• if (d”, id) ∈ secondAugmentedIdSet(v) then id ≥ idv”.
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We conclude that secondHead(v) = (d”, idv”). �

The following corollary is a direct result of lemmas 2 and 3. It establishes that the set
of heads is a k-dominating set.

Corollary 1 Let v be a ordinary node, in a terminal configuration of protocol SID.
firstHead(v).id is the closest head to v; their distance is firstHead(v).dist ≤ k. If
secondHead(v) =⊥ then v has a single head in its k-neigborhood; otherwise
secondHead(v).id is the second closest head to v; their distance is secondHead(v).dist.

The following theorem establishes that the set of heads is a k-independent set.

Theorem 1 Let v be a head, in a terminal configuration of protocol SID, named c. v
has not head in its k-neigborhood.

Proof 4 We will prove that if a head has another head in its k-neigborhood then the
configuration c is not terminal.

Let wrongHeadSet the set of heads having one or several heads in their k-neigborhood.
Assume that wrongHeadSet is not empty. We denoted by v1 the node of wrongHeadSet
having the largest identifier. We denote by v2, the closest head to v1 and by d the dis-
tance between v1 and v2. We have 0 < d ≤ k and idv2 < idv1.

The node v1 has a neighbor u at distance d−1 of v2. The node v2 is the first or the second
closest head to u. According to corollary 1, (d−1, idv2) = firstHead(u) or (d−1, idv2) =
secondHead(u). v1 is enabled because v1 satisfied the predicate toResign(v1). �

5 Termination of the protocol SID

In this section, we prove that all maximal computations of protocol SID under any
unfair distributed scheduler are finite by reductio ad absurdam arguments.

Let e be a maximal computation starting from a configuration, named c0. In a con-
figuration c reached by e, for all node v, firstHead(v)c.id is either the identifier of an
node or this value appears in the initial configuration (i.e. there is a node u, such that
firstHead(v)c.id = firstHead(u)c0.id ∨ firstHead(v)c.id = secondHead(u)c0.id). So,
the value taken by a variable firstHead in e belongs to a bounded set. Similary we
prove also that the value taken by a variable secondHead in e belongs to a bounded set.

5.1 RR and RE rules

Along any computation, a node performs at most one time the rule RC.

Assume that a or several nodes perform infinitely often the action RE or the action RR.
Between two consecutive actions RE by a node u, this node has performed on time the
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action RR. So a node u that infinitely often perform the action RE or the action RR
changes its status infinitely often. We name u+ the node the smallest identifier among
nodes that changes their status infinitely often. e has a suffix e1 where only nodes having
a identifier larger than idu+ changes their status (i.e. to perform the action RE or the
action RR).

As the set of value taken by firstHead(u+) is bounded; along e1, infinitely often after
the action RR(u+), firstHead(u+) has the same value, denoted (l+1, id). Notice that
id < idu+ and 0 < l < k. So u+ has a neighbor ul such that, infinitely often before the
action RR(u+), ul verfies firstHead(ul) = (l, id) or secondHead(ul) = (l, id).
At time, where u+ becomes head, we have firstAugmentedIdSet(u+) = ∅. So, the
values of ul variables are infinitely often larger than (l, id) : So ul gives infinitely often
to one of its variables the value (l, id), but also gives a larger value to the same variable.

Assume that l > 0. At time where ul gives the value (l, id) to one of its variable : ul
has a neigbor ul−1, having the value (l − 1, id). At time where ul gives a larger value
than (l, id) to the same variable : ul−1 has a larger value than (l − 1, id). We conclude
that there is a series of l + 1 nodes : ul, ul−1, ..u0 such that ui has infinitely often has
the value (i, id) and infinitely often does not have this value along e1.

Along e1, u0 performs infinitely often the action RR and the action RE. We have
id = idu0

< idu+ : there is a contradiction.
So e has a suffix, named e2, in which the only rule performed is RU.

5.2 RU rule

Assume that a node or several nodes changing infinitely often their value firstHead or
their value secondHead along e2. We named min+ the smallest value infinitely often
allocates to the variable firstHead or to the variable secondHead of one of these nodes.
Let e3 be the suffix of e2 in which no variable firstHead and no variable secondHead

gets a value smaller than min+. Along e3, infinitely often, a node, named u+, performs
RU action to set the value min+ to its variable firstHead or its variable secondHead;
and infinitely often, u+ performs RU action to set to the same variable a value larger
than min+.

Let c → c′ be a computation step of e3 where u+ performs RU action to set a value
larger than min+ to its variable firstHead or to its variable secondHead. In c, min+

is smaller than min(firstAugmentedIdSet(u+)) or min+ is smaller than
min(secondAugmentedIdSet(u+)) . This property stays verified along e3 : u+ never
sets the value min+ to its variable firstHead (resp. to its variable secondHead). There
is a contradiction.

We have established that e2 has a suffix e4 where no rule is executed. A terminal
configuration is reached.
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6 Conclusion

A simple and silent self-stabilizing protocols building k-independent dominating sets is
presented. The obtained k-independent dominating set contains at most ⌊(2n)/(k +
2)⌋ nodes. The protocol converges under the unfair distributed scheduler (the weakest
scheduling assumption). The protocol is memory efficient : it requires only 2log((k +
1)n+ 1) + 1 bits per node.

The computation of the convergence time of the protocol SID is opened question.
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