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Abstract

For timed event graphs, linear models were obtained using

Max-Algebra. This paper presents a method to control such

systems. After describing the optimal solution of a model

tracking problem, we propose a feedback control structure in

order to take into account a possible modeling error. We

present its construction, its main properties and an algorithm

for its practical implementation. An illustrative example is

provided.

1 Introduction

This paper deals with the control of Discrete Event Systems

(DES) which can be modeled by Timed Event Graphs

(TEG). A theory using a new Algebra often called Max-

Algebra has been developed for this particular class of Petri

nets, and offers strong analogies with the conventional linear

system theory. In particular, concepts of state representation,

transfer relation, correlation and autocorrelation have been

introduced ([1], [5], [7]).

An optimal solution has been defined in order to control the

system when its model is exact, more precisely the system

input is fired at the latest date such that the firing dates of

the system (model) output occur at the latest dates before the

desired ones. To keep good accuracy in spite of a difference

often present in practice between the system and its model,

we propose to improve the previous control solution by using

the concept of modified control. By observation of the system

output behavior, we modify the optimal model control in

order to be as close as possible to the optimal system control.

In theory we need to have all the system outputs behavior to

compute this control law. In practice we will estimate the

future (unavailable) system outputs behavior.

The paper is organized as follows: firstly, we briefly present

in sections 2, 3 and 4 some elements of Max-Algebra,

Residuation theory, state representation and transfer relation

respectively. We recall optimal model control in section 5,

and we present the modified control method and its practical

application in sections 6 and 7 respectively. We conclude by

a short example in section 8.

2 Max-Algebra

Definition 1: A dioid is a set endowed with two internal

operations denoted ⊕  (addition) and ⊗  (multiplication),

both associative and both having neutral elements denoted ε
and e respectively, such that: ⊕ is commutative and

idempotent ( a a a⊕ = ), ⊗ is distributive with respect to ⊕,

and ε is absorbing for ⊗ ( a a⊗ = ⊗ =ε ε ε ).

If ⊗ is commutative, the dioid is said to be commutative.

Definition 2: A dioid is an ordered set with the natural order

relation:

a b a a bf ⇔ = ⊕
( a b⊕ is the least upper bound of a and b).

Definition 3: A dioid is complete if sums of infinite numbers

of terms are always defined, and if multiplication distributes

over infinite sums too. The sum of all elements of a dioid is

denoted T (for �top�).

In a complete dioid, the greatest lower bound always exists

for an arbitrary (possible infinite) set S. For example if

{ }S a b= ,  this bound denoted a b∧  is equal to 
x a
x b

x
p

p

⊕ .

Example: The set { }Ζ ∪ −∞ +∞, with max as ⊕  and usual

addition as ⊗  is a complete commutative dioid denoted

Ζ max  with ε = −∞ , T = +∞  and e = 0 .

3 Residuation theory

Definition 4: A mapping f D C: → , where D and C are

ordered sets, is residuated if for all y C∈ , the set

( ){ }x D f x y∈ p  admits a least upper bound. Let us denote

this (unique) greatest �subsolution� ( )f y
#

. By definition we
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have ( )[ ]f f y y
#

p  (see [1, chapter 4], [2], [7] for a detailed

presentation of this theory).

Example: The mapping f D
x

C
a x

: →
→ ⊗

, where D and C are

complete dioids, is residuated and the residuated mapping

f C D#: →  will be denoted y a y→ \ . Let us present some

properties of this mapping used in the following (see [1,

chapter 4] for proofs):

• y a y→ \ is isotone          (1)

 (h is isotone if ( ) ( )∀ ⇒a b a b h a h b, p p )

• ( ) ( )ab c b a c\ \ \=          (2)

• If C D=  then ∀ ∈a D , ( )a a a a⊗ =\          (3)

• If D is a complete dioid, then D mm , ∈Ν , is a

complete dioid too, and f D
x

D
a x

m: →
→ ⊗

 ,

( )a a a Dm

t m= ∈1K  is residuated. In particular,

∀ ∈y Dm , ( )a y a y
i

m

i i\ \=
=
∧

1

 is a �scalar�( )∈D .

         (4)

4 State representation and transfer relation

A TEG is a class of Petri nets in which each place has

exactly one upstream and one downstream transition. Let us

consider the dynamic behavior of a TEG: in the �dater�

representation, this one is described by linear equations

under the standard form:

( ) ( ) ( )
( ) ( )

x k A x k B u k

y k C x k

+ = ⊗ ⊕ ⊗

= ⊗







1

where u, y and x are the dater vectors of source, sink and

internal transitions respectively. ( )x ki  denotes the date

when the transition xi  incurs its firing numbered k (all

calculations are to be understood in the dioid Ζ max ).

In the next we only consider S.I.S.O. case, nevertheless all

the presented results can easily be extended to M.I.M.O.

case.

Using the analogue of the z-transform for daters, based on

the 'backward shift' operator γ  in the event domain

(formally ( ) ( )γ u k u k= −1 ) , an input-output representation

is obtained in the dioid [ ][ ]Ζ max γ  of formal power series in

γ  with positive and negative exponents and coefficients in

Ζ max  ([1, chapter 5], [8]).

Let us denote: ( )Y y k
k

k=
∈

⊕
Ζ

γ , ( )X x k
k

k=
∈

⊕
Ζ

γ and

( )U u k
k

k=
∈

⊕
Ζ

γ  the power series associated to the

daters ( ){ }y k
k ∈Ζ

, ( ){ }x k
k ∈Ζ

, and ( ){ }u k
k ∈Ζ

respectively, the previous linear equations can be written in

this dioid by:

X A X B U

Y C X

= ⊗ ⊕ ⊗
= ⊗





         (5)

which also can be expressed as the following input-output

relation Y M U= ⊗ , where M CA B= *  is the model

( A A
n

n* =
∈
⊕

Ν
).

5 Optimal model control

Given a sequence ( ){ }z k
k ∈Ζ

 of desired outputs (also called

reference input) in Ζ max , the optimal control of the previous

model M is the latest controls sequence ( ){ }u k
k ∈Ζ

such that

the model outputs sequence ( ){ }y k
k ∈Ζ

is matched as closely

as possible before the desired outputs sequence. This can be

formally written in [ ][ ]Ζ max γ  by:

given Z, find the maximum U such that

Y M U Z= ⊗ p .

The solution to solve this optimal tracking problem exists

and is given by an open loop control structure. It is a direct

application of Residuation theory and noted

{ }
~

\U M Z U
U M U Z

= =
⊗

⊕
p

(consider the transfer mapping X M X→ ⊗ ).

Remark: the sequence ( ){ }z k
k ∈Ζ

is such that

( )z k k k f= + ∞ ∀ ≥ ∈, Ν . This condition means that the

desired outputs sequence ( ){ }z k
k ∈Ζ

 is given up to the finite

event number k f .

It can be proved (see [1, chapter 5 §6] and [6] ) that the

optimal model control 
~

U  is the greatest solution of the

following system (remindful of the co-system in conventional

optimal control theory):

( ) ( )E A E C Z

U B E

=

=







∧\ \

\
         (6)
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This  is equivalent to say that the vector E (called co-state)

must be selected as the greatest solution of (6). This solution

is ( )E CA Z= * \  (see [1, Lemma 5.33] for proof). ( )e ki

indicates the latest date when the internal transition xi

should do its firing numbered k in order not to delay future

outputs beyond the deadline provided by Z.

6 Modified control

Let us note G the transfer relation of the system, and apply

the previous open loop control 
~

\U M Z= to the system G

(see fig. 1).

M \. G
Z U = M\Z G(M\Z)

reference 
input

control
input

system
output

fig 1: Optimal model control applied to the system.

Such a control cannot take into account mismatch between

the system and its model. A closed loop control structure

inspired by the Internal Model Control usually used in the

conventional control theory is proposed in [3, 4]. In the

continuity of this approach, we propose another closed loop

control structure consisting in applying an open loop control

which is modified by using system output behavior. Indeed,

the model is initially supposed exact (G = M) hence we apply

the optimal control 
~

\U M Z= . Then we modify this control

by using system outputs in order to be as close as possible to

the optimal system control.

6.1. Construction

Let us note Y G UG = ⊗ ~
, then the greatest

modification ∆ ~
U such that Y U ZG ⊗ ∆ ~

p  is given by

Residuation theory and is equal to ∆ ~
\U Y ZG=  (consider

the transfer mapping: X Y XG→ ⊗ ).

Hence we have:

( )Y U G U UG ⊗ = ⊗ ⊗∆ ∆~ ~ ~

  ( )= ⊗ ⊗G U U Z
~ ~∆ p  by associativity of ⊗

which yields the modified control:

( ) ( )U U U M Z Y Zm G= ⊗ = ⊗~ ~
\ \∆

Remark: ( )Y Z UG \
~= ∆ can be interpreted as a correlation

measure of YG  and Z.

More precisely, in the S.I.S.O. case, YG  and Z are scalars

( [ ][ ]∈Ζ max γ ) and Y ZG \ is called the correlation of YG  with

Z (see [1,chapter 6 §6] and [9] for a detailed presentation).

In the M.I.M.O. case, YG  and Z are vectors ( [ ][ ]∈Ζ
n

max γ )

and by (4), we have ( )Y Z y zG

i

n

G ii
\ \=

=
∧

1

.

6.2. Properties

Property 1: ∆ ~ ~
\U U U opt=  where U G Zopt = \  is the

optimal system control.

Proof: By this statement we mean that ∆ ~
U is equal to the

correlation measure between the optimal system control

( )U G Zopt = \  and the optimal model control ( )~
\U M Z= .

( )
( )

∆ ~
\

~
\

~
\ \

~
\

U Y Z G U Z

U G Z

U U

G

opt

= = ⊗

= by (2)

=

In the next property we state that in case of perfect modeling,

the modified control U m  is equal to the optimal system

(model) control.

Property 2: If G M=  then U Um opt= .

Proof: Since G M= , 
~

U U opt= .

( )
( )

U U U

U U U

U U U

U

m

opt

opt opt opt

opt

= ⊗

= ⊗

⊗

=

~ ~

~ ~
\

\

∆

by property 1

=

                         by (3)

Property 3: U m  is the (unique) greatest control of the form
~

U ⊗ α  less than or equal to the optimal system control

U G Zopt = \ .

Proof: The greatest solution of the inequality 
~

U U opt⊗ α p

is α = ~
\U U opt

  = ∆ ~
U by property 1

The uniqueness is straightforward as the greatest solution of

an inequation.

Property 4: control U m  is the solution of the following

recurrent equation (due to the feedback control structure

used):

( )[ ]
U U

U U G U Z nn n n

1

1 1

=

= ⊗ ⊗ ≥





 +

~

\
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and this sequence converges on U n
m

for  = 2 .

Proof:

( ) ( )U U Y Z U U U UG opt m2 = ⊗ = ⊗ =~
\

~ ~
\

( )[ ]U U G U Z3 2 2= ⊗ ⊗ \

( )= ⊗U U U opt2 2 \ by property 1

( )[ ] ( )[ ][ ]= ⊗ ⊗ ⊗~ ~
\

~ ~
\ \U U U U U U Uopt opt opt

( )[ ] ( ) ( )[ ]= ⊗ ⊗~ ~
\

~
\ \

~
\U U U U U U Uopt opt opt by  (2)

( ) ( ) ( )[ ]{ }= ⊗ ⊗

⊗

~ ~
\

~
\ \

~
\U U U U U U Uopt opt opt

                                      by associativity of 

( )= ⊗~ ~
\U U U opt           by  (3)

= U m

Let us note that if U m  was applied to the system input

(instead of 
~

\U M Z= ) then the corresponding modified

control would be again U m .

Property 5: ∆ ~
U  is the greatest solution of the inequation

X EG G⊗ α p , where X G  and E G  are the state vector and

the co-state vector of system G respectively.

Hence considering the system outputs or its internal states is

equivalent to search the optimal correction.

Proof:

Let us note A B CG G G,   and  the matrices associated to the

system state representation, we have  G C A BG G G= * ,

X A B UG G G= * and ( )E C A ZG G G= * \ .

The greatest solution of X EG G⊗ α p  is equal to

( ) ( )[ ]X E A B U C A ZG G G G G G\
~

\ \* *=

( )= C A A B U ZG G G G
* * ~

\ by  (2)

( ) ( )= ⊗ =

= ⊗

=

C A B U Z A A A

G U Z

U

G G G G G G
* * * *~

\

(
~

) \
~

since 

∆

7 Application

The computation of U m  implies to have G U⊗ ~
, i.e., all the

system outputs sequence YG , which is not realistic. In

practice, we compute control U c  (an estimation of U m ) at

the instant t by using the observed system output sequence

( ) ( ){ }y k y k t kG G < ∈; Ζ completed by an estimation of the

future system outputs (see [10]). Before presenting the

computing algorithm of this control U c , let us introduce the

following notations:

Let ( ){ }v k
k ∈Ζ

 be a dater, ( )V v k
k

k=
∈

⊕
Ζ

γ  its associated

formal series and K ∈Ζ , we define: ( ) ( )V v k
K

k K

k

→
=

≤
⊕ γ

and ( ) ( )V v k
K

k K

k

→
>

= ⊕ γ

Algorithm:

step 1:

U M Z U1 = =\
~

(the optimal model control 
~

U  is initially applied: the model

is supposed to be exact, i.e., G M= ).

step n+1: ( )n ≥ 1

1. Let Kn  an event sample and tn  the date of the  firing

numbered Kn  of G U n⊗ .

We compute:

( ) ( ) ( ) ( )
GU GU GUn n K n

Kn
n

$ ~= ⊕→ →

where ( ) ( )GU n Kn→
 is the observed system output until tn

and ( ) ( )
GUn

Kn

~
→

is an estimation of ( ) ( )GU n Kn → .

2. Then the modified control is:

$ \$U U GU Zn n n+ = ⊗ 



1

3. Let ( ){ }′ = ∈ <K Sup k u k tn n nΖ .

As the set of controls ( ){ }u k k Kn n, '≤  has been applied

to the system input until instant tn , this leads to consider the

control:

( ) ( ) ( ) ( )
U U Un n K n

Kn n
+ → ′ + ′ →

= ⊕1 1
$

This control will be applied to the system input until tn+1

which is the time of the next control computation (U n+2 ). In

other words, we have:

U Uc K n Kn n( ) ( )' '→ + →+ +
=

1 1
1 .

8 Example

We consider the manufacturing system described by TEG of

fig. 2 modeling a machine producing 4 parts by 4 time units.

The corresponding model is described by TEG of fig. 3. Let

us note that the system and its model are different except for

the production rate.
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The reference input is defined by :

( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )

z k k

z k z k k z

z k z k k

z k z k k

z k T k

= = − ∞ <

= − + = =

= − + =

= − + =

= = + ∞ >

ε for 

for with 

for 

for 

for 

(end of the desired production).

0

1 1 1 2 3 0 0

1 2 4 8

1 1 9 10

10

;

, , , ;

, , ;

, ;

L

Figure 4 represents the trajectories of the modified control

U m , the optimal system control U opt  and control U c

computed by the previous algorithm. Figure 5 represents the

corresponding outputs trajectories.

4

u y

0

1

2

G

fig. 2. TEG of system G

4

u y

2

1

3
M

fig. 3. TEG of  model M

In this particular example U m  is equal to U opt  (see fig. 4).

Initially (step 1 of the algorithm), the optimal model control

is applied until instant t1 1= , the date of the firing

numbered K1  of G U⊗ 1 . K1 3=  (see fig. 5).

Then, at each observed output (i.e., K Kn n+ = +1 1) a new

control trajectory U n  is computed.

We see that beyond time t1 , the trajectories associated to the

computed control U c  and the modified control U m  are

identical.

-4 -2 0 2 4 6 8 10 12

-5

0

5

10

15

20

  e v e n t

 t i m e

o   u m
_  u opt
x   u c

fig. 4. Controls behavior

-2 0 2 4 6 8 10 12

-5

0

5

10

15

20

 e v e n t

 t i m e

o   G U m

_  G U opt

x    G U c

fig. 5. Outputs behavior
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Conclusion

The proposed feedback control is applied to DES modeled in

Max-Algebra.

This control allows taking into account mismatch between

the system and its model. Its principle is to modify the

optimal model control to be as close as possible to the

optimal system control (see property 3). Without modeling

error this control remains equal to the optimal model control.

These optimisation problems where the �inversion� notion is

underlying, essentially use the Residuation theory.

The use of the system output to compute the control law

necessarily raises estimation problem of system outputs

behavior which is not addressed in this paper.
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