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Abstract

We propose to modelise the time behaviour of SISO discrete-

event systems linear in Max-algebra. The method is inspired

from the conventional linear system theory: from the impulse

response, the model is obtained by using a decomposition of

the system into a sum of first order sub-systems. From an

ARMA form, we compute the parameters of the model by

using both results of residuation theory to minimise an error

criterion and decomposition of periodic series.

1. Introduction

In performance evaluation systems [1], [5] or in control

system setting [2], [4], we need a mathematical model to

characterise systems properties.

We are interested in modelling SISO discrete-event systems

(DES) whose behaviours can be described by timed-event

graphs (TEG) [1] (a sub-class of Petri nets which can

represent synchronisation constraints). It is well known that

a TEG can be linearly described in Max-algebra which

enables finding analogies with the conventional linear

systems theory.

Most works on modelling deal with the minimality of the

model [7], [10], [12]. The present work does not care about

this problem. We are only interested in developing a simple

method to compute the parameters of the transfer relation by

the analyse of the DES impulse response. Such an approach

has been already proposed in [3]. In this paper, we propose a

more convenient modelisation method, in the sense that it

does not need to have an estimation of the beginning periodic

behaviour of the impulse response. The approach is based on

the decomposition property of a linear system into a sum of

finite simple elements (under the form d cγ τγ ν( )* ) which is

reminiscent of the decomposition of a linear system into a

sum of first order simple elements in conventional linear

system theory. Then the proposed modelling method

individually identifies these simple elements in order to have

a model (expressed as a periodic form).

The paper is organised as follows: the second part recalls the

few linear algebraic results needed here. The third part

presents the identification method in Max-algebra which is

both based on the Residuation theory [1, sec. 4.4], [6] and on

the decomposition of periodic series [8], [11]. A practical

modelling procedure is presented in part 4 and a short

example is given in part 5.

2. Linear algebraic representation

Some results related to dioids, residuation, TEG and rational

series are briefly presented in this section. For a general

survey see [1], [5], [8].

2.1 Dioids

Definition 1 (dioid): A dioid D is a set endowed with two

internal operations denoted ⊕  (addition) and ⊗
(multiplication), both associative and both having neutral

elements denoted ε  and e  respectively, such that: ⊕  is

commutative and idempotent ( ∀ ⊕ =a a a a, ), ⊗  is

distributive with respect to ⊕ , and ε  is absorbing for ⊗
( ∀ ⊗ = ⊗ =a a a, ε ε ε ).

Note: The symbol ⊗  will be omitted subsequently.

Definition 2 (commutative dioid): A dioid is commutative iff

the product ⊗  is commutative.

Definition 3 (natural order): In a dioid, the following

relation denoted f  is a (partial) order relation:

a b a a b  f ⇔ = ⊕

Definition 4 (complete diod): A dioid is complete iff it is

closed for infinite sums and if the product ⊗  distributes over

infinite sums. There is a maximal element of the dioid

denoted by T  (the sum of all elements) which is absorbing

for addition ( ∀ ⊕ = ⊕ =a a T T a T, ).

Example: The set Z { }∪ − ∞ + ∞, with the operations ⊕  and

⊗  defined by { }a b a b⊕ = max , , a b a b⊗ = +  is a complete

commutative dioid denoted Z max  with ε = − ∞ = + ∞, T  and

e = 0 .



Definition 5 (lower bound): In a complete dioid D, since

there is a bottom element ε , the lower bound can be

contructed for any subset C of D. If C={a, b} then its lower

bound is denoted a b∧ . One has the following equivalence:

a a a b b a bf b ⇔ = ⊕ ⇔ = ∧

Definition 6 (isotone mapping): A mapping f : D C→ ,

where D and C are ordered sets, is isotone if:

∀ ∈ ⇒a b a f a b, , ( ) ( )D  b   ff f

2.2 Residuation

Theorem 1 ([1, sec. 4.4.2]): Let f  be an isotone mapping

from the complete dioid D into the complete dioid C. The

following three statments are equivalent:

• For all b ∈C, there exists a greatest subsolution to the

equation f x b( ) = ;

• f ( )ε ε=  and f  is lower semi-continuous, i.e.,

 f x f x
x X x X

( ) ( )
∈ ⊂ ∈ ⊂
⊕ ⊕=

D D

;

• There exists an isotone mapping f #  from C into D such

that:

f f Io p
#

C (identity of C);

f f I#
o f D (identity of D).

Consequently, f #  is unique. When f  satisfies these

properties, it is said to be residuated and f #  is called its

residual.

This theorem can be applied to the mapping x a xa ⊗  in a

complete dioid. The residual mapping will be denoted

y a ya \ .

2.3 Matrix residuation

Starting from a "scalar" dioid D, consider square n n×
matrices with entries in D. the sum and product of matrices

are defined conventionally after the sum and product of

scalars in D. The set of n n×   matrices supplied with these

two operations is also a dioid denoted by D
n n× .

Theorem 2: Let A D
m n∈ ×  and B D

m p∈ × , the residual of B

by A will be denoted C=A\B, C D
n p∈ × :

C A Bij

k

m

ki kj=
=
∧

1

( \ )

2.4 The equation x ax b= ⊕  and the star operation

Consider the equation:

x ax b= ⊕          (1)

and let a e a a* ...= ⊕ ⊕ ⊕2

Theorem 3 ([1, sec. 4.5.3]): Consider Eq. (1) with a  and b

given in a complete dioid D. Then,

• a b
*  is the least solution of (1);

• every solution x of (1) satisfies x a x= * .

2.5 TEG and daters approach

Event graphs are a particular class of Petri nets in which

each place has exactly one upstream and one downstream

transition. In TEG, the holding time of a token in a place is

the time a token must spend in the place before contributing

to the enabling of the downstream transitions.

For a transition labelled x , we define the non decreasing

mapping called dater k x ka ( )  where x k( )  is the date when

the kth  firing of the transition x  has occured.

Let us consider the manufacturing system described by the

TEG of Fig. 1.
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Fig 1: A TEG.

For example, (dater) equations obtained for transitions x1 and

x6 in Z max  are:

x k u k x k

x k x k x k x k

1 1

6 3 4 5

3 2 5

1 4

( ) ( ) ( )

( ) ( ) ( ) ( )

= ⊕ −
= ⊕ ⊕

         (2)

Using the analogue of the z-transform of conventional linear

system theory, we introduce the γ -transform of daters (γ can

be interpreted as backward shift operator: γ v k v k( ) ( )= − 1 ).

The γ -transform of a dater v is defined as:

V v k
k Z

k( ) ( )γ γ=
∈

⊕



For example, the Eqs. (2) can be transposed in the dioid of

non decreasing formal series Z max[[ ]]γ  (set

Z { }∪ −∞ +∞, with the laws ⊕  and ⊗  defined respectively by

max and + of formal series in γ :

X U X

X X X X

1
5

1

6 3 4 5

3 2

1 4

( ) ( ) ( )

( ) ( ) ( ) ( )

γ γ γ γ

γ γ γ γ

= ⊕
= ⊕ ⊕

         (3)

Usually, TEG are described by the following linear states

equations:

X AX BU

Y C X

( ) ( ) ( )

( ) ( )

γ γ γ

γ γ

= ⊕
=





For the TEG given in Fig. 1 we have:

X

e

X U( ) ( ) ( )γ

γ ε ε ε ε ε ε

ε ε ε ε ε ε

ε γ ε ε ε ε

ε ε γ ε ε ε

ε ε ε γ ε ε

ε ε ε ε

ε ε ε ε ε γ

γ

ε

ε

ε

ε

ε

ε

γ=





























⊕





























2

2
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1 4

1 1

35
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4

  
         (4)

[ ]Y X( ) ( )γ ε ε ε ε ε ε γ=                      4

According to theorem 3 we conclude that:

X A B U( ) ( )*γ γ=  and then Y CA B U( ) ( )*γ γ=

which leads to the transfer relation:

Y h U h CA B( ) ( ) ( ) ( ) *γ γ γ γ= = with          (5)

If input U ( )γ  of the system is an impulsion (transition u is

infinitely fired at time 0) then output Y( )γ  can be considered

as impulse response h( )γ  of the system.

For example transfer relation h( )γ  corresponding to Eqs. 4

leads to the impulse response illustrated in Fig. 2.
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Fig. 2: Impulse response of the transfert relation h( )γ .

2.6 Rational series over Z max[[ ]]γ

Definition 7 (rationality): A series s Z( ) [[ ]]maxγ γ∈  is

rational if its expression is composed of a finite number of

operation ⊗, ⊕ and *.

Definition 8 (periodicity): A series s Z( ) [[ ]]maxγ γ∈  is

periodic if there exists two polynomials p( )γ , q( )γ  and a

monomial τγ ν  ∈Z max [[ ]]γ  such that:

s p q( ) ( ) ( )( )*γ γ γ τγ ν= ⊕

with p p

i

i
i( )γ γ

ρ

=
=

−

⊕
0

1

, q q
j

j
j( )γ γ

ν
ρ=

=

−
+⊕

0

1

.

Definition 9 (realisabilty): A series s Z( ) [[ ]]maxγ γ∈  is

realisable if it can be written as: s CA B( ) *γ = .

Theorem 4 [5]: For s Z( ) [[ ]]maxγ γ∈ , the following three

statements are equivalent:

• s( )γ  is rational;

• s( )γ  is periodic;

• s( )γ  is realisable.

For example the transfer relation h( )γ  corresponding to Eqs.

4 can be written under the following periodic expression:

h( )

( )( )*

γ γ γ

γ γ γ γ γ

= ⊕ ⊕

⊕ ⊕ ⊕ ⊕

19 21 23

25 26 29 33 12

4 8

12 15 16 20 12         

The periodic expression:

h p q( ) ( ) ( )( )*γ γ γ τγ ν= ⊕          (6)

traduces that the pattern represented by q( )γ  is indefinitely

reproduced because the multiplication by τγ ν  symbolises a

ν  unit abscissa shift and a τ  unit ordinate shift. This

periodic behaviour begins after a transient behaviour which

may be represented by p( )γ .

Definition 10 (simple element): A series s Z( ) [[ ]]maxγ γ∈  is

a simple element if it can be written as: s d c( ) ( )*γ γ τγ ν=

Theorem 5 [5]: A series s Z( ) [[ ]]maxγ γ∈  is rational iff it

can be written as a finite sum of simple elements.

From theorems 4 and 5, we obviously see that a periodic

series s Z( ) [[ ]]maxγ γ∈  can be written as a finite sum of

simple elements:

p q d
i l

i
c

i
i i( ) ( )( ) ( )* *γ γ τγ γ τ γν ν⊕ =

=
⊕

1to

  (7)



Remark 1 (minimal representation): Given an impulse

response h( )γ  and { }S s si l= ( ), ... , ( )γ γ  with

s di i
c

i
i i( ) ( )*γ γ τ γ ν= , the minimal representation problem

consists in finding a subset of S  with minimal cardinality

lmin  such that:

h d

i

l

i
c

i
i i( ) ( )

min

*γ γ τ γ ν=
=

⊕
1

 (see [1, sec. 6.5.4]).

Remark 2 [8]: A periodic series has one simplest periodic

representation. This author gives some efficient algorithms to

establish the simplest polynomials p( )γ  and q( )γ .

3. Identification

We plan to identify an ARMA model in max-algebra in order

to compute in section 4 the parameters of the transfer

relation h( )γ  (see Eq. 6).

Let us recall that in conventional discrete time system theory,

the ARMA equation can be expressed as:

y k a y k j b u k ij i

i

m

j

n

( ) ( ) ( )= − + −
==
∑∑

01

To estimate the parameters of this equation, the following

prediction error is classically defined:

ε( ) ( ) $ ( ) $ ( )k y k a y k j b u k iG j G j

i

m

j

n

= − − − −
==
∑∑

01

where yG  is the measured output of the system and

$ ,..., $ , $ ,..., $a a b bn m1 0  are the estimated parameters.

A common criterion, which is minimised for the set of

parameters searched, is:

J k

k

= ∑ε2 ( )

This criterion is well known in least square method [9].

3.1 Identification of max-algebra ARMA model

By analogy with the previous method, let us consider the

identification of the following ARMA equation in

Z max[[ ]]γ :

[ ] [ ]Y a a Y b b Un
n

m
m( ) ... ( ) ... ( )γ γ γ γ γ γ= ⊕ ⊕ ⊕ ⊕ ⊕1 0

which corresponds in Z max  to:

y k a y k a y k n b u k b u k mn m( ) ( ) ... ( ) ( ) ... ( )= − ⊕ ⊕ − ⊕ ⊕ ⊕ −1 01

or equivalently y k
k

T
( ) = ϕ θ

with [ ]ϕ
k

T
y k y k n u k u k m= − − −( )... ( ) ( )... ( )1  the

regressive vector at event k and [ ]θ = a a b bn m

T

1 0... ...  the

model parameters vector.

For event k i to N i n= ≥(  and N is the number of data),

we consider the matrix equation Y M= θ  with

[ ]Y y i y N
T= ( )... ( )  the model output vector and the matrix

[ ]M
i N

T

= ϕ ϕ...  of regressive vectors.

By analogy with the conventional linear system theory, the

identification method considers the following prediction

error:

ε ϕ θ( ) ( ) ( $ )k y kG k

T= − ⊗

with [ ]$ $ ... $ $ ... $θ = a a b bn m

T

1 0  the estimated parameters vector

and [ ]ϕ
k

T
G Gy k y k n u k u k m= − − −( )... ( ) ( )... ( )1  the

measured regressive vector at event k with yG  the measured

system output.

By using the data of u k( )  and y kG ( ) , with k i n= −  to N

( )i n≥ , we obtain the matrix expression:

ε θ= − ⊗Y MG G( $)

where [ ]ε ε ε= ( )... ( )i N
T

 is the prediction error vector,

[ ]Y y i y NG G G

T= ( )... ( )  is the measured system output vector

and MG  is the matrix [ ]ϕ ϕ
i N

T

...  of the measured

regressive vectors.

Let us define a criterion J as:

J k k
k i

N

( ) ( ) ( )θ ε ε
∧

=
= ≥⊕ with 0

To determinate the estimated parameters vector $θ  which

minimises this criterion, we consider a basic result of the

Residuation theory [6] which states that $ \θ = M YG G

minimises J ( )θ
∧

 and is the greatest solution of

Y MG Gf ⊗
∧
θ .

3.2 Identification of simple elements

We study now the identification of simple elements.

Let us consider Y d Uc( ) ( ) ( )*γ γ τγ γν=  (see def. 10) which

leads by using theorem 3 to identify the following particular

ARMA equation:

Y Y d Uc( ) ( ) ( )γ τγ γ γ γν= ⊕

which corresponds in Z max  to

y k y k d u k c( ) ( ) ( )= − ⊕ −τ ν

or equivalently y k
k

T
( ) = ϕ θ



with ϕ ν
k

T
y k u k c= − −[ ( ) ( )]  and θ τ= [ ]d T .

In this paper, we consider an impulsion input u:

u k
e k

( ) =
≥




 if 

 otherwise

0

ε

which corresponds to the input transition infinitely fired at

the initial time.

According to the model structure and the impulsion input

U e( )γ = , we have:

Y Y d c( ) ( )γ τγ γ γν= ⊕

which means in Z max  that y k k c( ) = <ε for  and

y c i y c i k i k( ) ( ) ,+ = + + ≥ ≤ ≤ −ν ν ν0 0 1

Hence, we compute the estimated vector [ ]$ $ $θ τ= d
T

 (c and

ν are fixed) by considering the measured output vector:

[ ]Y y c y c y c jG G G G

T= + +( ) ( )... ( )ν ν

and the simplified matrix MG c c j

T

= 



+

ϕ ϕ
ν

...  with

{ }j Sup n c n N= + ≤ν  and [ ]ϕ ν ν ν
νc s G

T
y c s u s

+
= + −( ) ( )  where

y kG ( ) = ε  if k c< .

Then we can compute $ \θ = M YG G  which minimises the

criterion J k

k c

N

=
=

⊕ε( )  with ε( )k ≥ 0 .

Remark 3: Since $θ  is computed in Z max ,

$ ( \ ) ( )θ i

k

G G

k

G GM Y Y M
ki k k ki

= = −∧ ∧ ,. { }i = 1 2, .

4. Practical modelling of h(γγ)

The desired expression of the transfer relation h( )γ  is

periodic which cannot be expressed as the ARMA form

defined in the section 3.1.

A first solution to obtain h( )γ  has been proposed in [3] by

using not directly this ARMA form. It consists in identifying

the transient and the periodic parts of h( )γ  separately,

which means to have an estimation of the transient part

length. In this paper, this constraint is not necessary.

Let us consider the transfer relation h( )γ  as a finite sum

(max) of simple elements si ( )γ  (see Eq. 7):

h s

i

l

i( ) ( )γ γ=
=

⊕
1

 with s di i
c

i
i i( ) ( )*γ γ τ γ ν= .

In other words we have:

Y Y s U

i

l

i

i

l

i( ) ( ) ( ) ( )γ γ γ γ= =
= =

⊕ ⊕
1 1

Under the assumption that the input is an impulsion

(U e( )γ = ), it is possible to individually identify these

simple elements (see section 3.2).

Practically, it consists in computing ν , $τ , $d  which

minimises J for c fixed. This procedure is repeated by

increasing c until the sum of simple element outputs behaves

as the system ouput (see the following algorithm).

Y M = ε
c = 0

DO

Y prev YM M=
FOR ν = 1 to (N-c)/2

Compute [ ]$ \ $ $θ τ= =M Y dG G

T

END_FOR

Y Y prev dM M
c= ⊕ $ ( $ )*γ τγ ν

IF Y Y prevM Mf  THEN the simple element is kept

c c= + 1

UNTIL Y M  near Y G

Then we sum these simple elements thanks to the algorithm

proposed in [8] in order to obtain the periodic series which

characterises h( )γ .

5. Example

Let us apply results of section 4 to modelise the transfer

relation h( )γ  corresponding to Fig. 2. In this way, we

suppose to have the N first (N = 44) measured data YG

represented in dotted line in Fig. 3. To illustrate the

modelling procedure, we have also represented the simple

element given by the algorithm for c = 12 .
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Fig 3 : Modelling procedure.



The result of this modelling procedure yields to:

h( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

* * *

* * *

* * *

γ γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

= ⊕ ⊕

⊕ ⊕ ⊕

⊕ ⊕ ⊕

19 18 21 16 21 12

21 12 21 8 23 18

23 15 25 4 26 12

0 24 4 22 5 15

6 14 7 9 8 20

11 16 12 4 15 12

Using algorithm proposed by [8] the transfer relation can be

written under the simplest representation of the periodic

series defined in section 2:

h( )

( )( )*

γ γ γ

γ γ γ γ γ

= ⊕ ⊕

⊕ ⊕ ⊕ ⊕

19 21 23

25 26 29 33 12

4 8

12 15 16 20 12         

which corresponds to the transfer relation of the system.

Remark 4: The given algorithm detects the periodic part of

the impulse response when it appears twice in the measured

data. If not, it will return many degenerated simple elements

of the form d cγ γ ν( )*0 .

6. Conclusion

We have proposed a practical modelling method of linear

SISO DES in Max-Algebra. This method offers analogies

with conventional linear system theory: the impulse response

is considered as a sum of simple elements which are

individually identified. We have improved the method given

in [3] in the sense that it does not need to have an estimation

of the transient part of the transfer relation h( )γ .

Let us note that the algorithm does not guarantee the

minimal representation of the system (see remark 1),

nevertheless we obtain the simplest representation of the

periodic series which characterises the transfer relation h( )γ

(see remark 2).
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