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We propose to modelise the time behaviour of SISO discreteevent systems linear in Max-algebra. The method is inspired from the conventional linear system theory: from the impulse response, the model is obtained by using a decomposition of the system into a sum of first order sub-systems. From an ARMA form, we compute the parameters of the model by using both results of residuation theory to minimise an error criterion and decomposition of periodic series.

Introduction

In performance evaluation systems [START_REF] Baccelli | Synchronization and Linearity. An Algebra for Discrete Event Systems[END_REF], [START_REF] Cohen | Algebraic Tools for the Performance Evaluation of Discrete Event Systems[END_REF] or in control system setting [START_REF] Boimond | Internal Model Control of Discrete Event Processes in the Max-Algebra[END_REF], [START_REF] Boimond | Internal Model Control and Max-Algebra: Controller Design[END_REF], we need a mathematical model to characterise systems properties.

We are interested in modelling SISO discrete-event systems (DES) whose behaviours can be described by timed-event graphs (TEG) [START_REF] Baccelli | Synchronization and Linearity. An Algebra for Discrete Event Systems[END_REF] (a sub-class of Petri nets which can represent synchronisation constraints). It is well known that a TEG can be linearly described in Max-algebra which enables finding analogies with the conventional linear systems theory.

Most works on modelling deal with the minimality of the model [START_REF] Schutter | Max Algebraic System Theory for Discrete Event Systems[END_REF], [START_REF] Olsder | On an Analogy of Minimal Realizations in Conventionnal and Discrete Event Dynamic Systems[END_REF], [START_REF] Wang | On Minimal Realization of SISO DEDS over Max-Algebra[END_REF]. The present work does not care about this problem. We are only interested in developing a simple method to compute the parameters of the transfer relation by the analyse of the DES impulse response. Such an approach has been already proposed in [START_REF] Boimond | A Modeling Method of SISO Discrete Event Systems in Max-Algebra[END_REF]. In this paper, we propose a more convenient modelisation method, in the sense that it does not need to have an estimation of the beginning periodic behaviour of the impulse response. The approach is based on the decomposition property of a linear system into a sum of finite simple elements (under the form d c γ τγ ν ( ) * ) which is reminiscent of the decomposition of a linear system into a sum of first order simple elements in conventional linear system theory. Then the proposed modelling method individually identifies these simple elements in order to have a model (expressed as a periodic form).

The paper is organised as follows: the second part recalls the few linear algebraic results needed here. The third part presents the identification method in Max-algebra which is both based on the Residuation theory [1, sec. 4.4], [START_REF] Cuninghame-Green | Minimax Algebra[END_REF] and on the decomposition of periodic series [START_REF] Gaubert | Théorie des Systèmes Linéaires dans les Dioïdes[END_REF], [START_REF] Prou | Decomposition of Periodic Series[END_REF]. A practical modelling procedure is presented in part 4 and a short example is given in part 5.

Linear algebraic representation

Some results related to dioids, residuation, TEG and rational series are briefly presented in this section. For a general survey see [START_REF] Baccelli | Synchronization and Linearity. An Algebra for Discrete Event Systems[END_REF], [START_REF] Cohen | Algebraic Tools for the Performance Evaluation of Discrete Event Systems[END_REF], [START_REF] Gaubert | Théorie des Systèmes Linéaires dans les Dioïdes[END_REF].

Dioids Definition 1 (dioid):

A dioid D is a set endowed with two internal operations denoted ⊕ (addition) and ⊗ (multiplication), both associative and both having neutral elements denoted ε and e respectively, such that: ⊕ is commutative and idempotent ( ∀ ⊕ = a a a a , ), ⊗ is distributive with respect to ⊕ , and ε is absorbing for ⊗

( ∀ ⊗ = ⊗ = a a a , ε ε ε ). Note:
The symbol ⊗ will be omitted subsequently.

Definition 2 (commutative dioid):

A dioid is commutative iff the product ⊗ is commutative. • For all b ∈C, there exists a greatest subsolution to the

equation f x b ( ) = ; • f ( ) ε ε = and f is lower semi-continuous, i.e., f x f x x X x X ( ) ( ) ∈ ⊂ ∈ ⊂ ⊕ ⊕ = D D ;
• There exists an isotone mapping f # from C into D such that:

f f I o p # C (identity of C); f f I # o f D (identity of D).
Consequently, f # is unique. When f satisfies these properties, it is said to be residuated and f # is called its residual.

This theorem can be applied to the mapping x a x a ⊗ in a complete dioid. The residual mapping will be denoted y a y a \ .

Matrix residuation

Starting from a "scalar" dioid D, consider square n n × matrices with entries in D. the sum and product of matrices are defined conventionally after the sum and product of scalars in D. The set of n n × matrices supplied with these two operations is also a dioid denoted by D n n × .

Theorem 2:

Let A D m n ∈ × and B D m p ∈ × , the residual of B by A will be denoted C=A\B, C D n p ∈ × : C A B ij k m ki kj = = ∧ 1 ( \ )

The equation x ax b = ⊕ and the star operation

Consider the equation: • every solution x of (1) satisfies x a x = * .

x ax b = ⊕ ( 

TEG and daters approach

Event graphs are a particular class of Petri nets in which each place has exactly one upstream and one downstream transition. In TEG, the holding time of a token in a place is the time a token must spend in the place before contributing to the enabling of the downstream transitions.

For a transition labelled x , we define the non decreasing mapping called dater k x k a ( ) where x k ( ) is the date when the k th firing of the transition x has occured.

Let us consider the manufacturing system described by the TEG of Fig. 1. For example, (dater) equations obtained for transitions x 1 and x 6 in Z max are:

x k u k x k x k x k x k x k 1 1 6 3 4 5 3 2 5 1 4 
( ) ( ) ( ) ( ) ( ) ( ) ( ) = ⊕ - = ⊕ ⊕ (2) 
Using the analogue of the z-transform of conventional linear system theory, we introduce the γ -transform of daters (γ can be interpreted as backward shift operator:

γ v k v k ( ) ( ) = -1 ).
The γ -transform of a dater v is defined as: 

V v k k Z k ( ) ( ) γ γ = ∈ ⊕
γ : X U X X X X X 1 5 1 6 3 4 5 3 2 1 4 
( ) ( ) ( ) ( ) ( ) ( ) ( ) γ γ γ γ γ γ γ γ = ⊕ = ⊕ ⊕ (3) 
Usually, TEG are described by the following linear states equations:

X AX BU Y C X ( ) ( ) ( ) ( ) ( ) γ γ γ γ γ = ⊕ =   
For the TEG given in Fig. 1 we have:

X e X U ( ) ( ) ( ) γ γ ε ε ε ε ε ε ε ε ε ε ε ε ε γ ε ε ε ε ε ε γ ε ε ε ε ε ε γ ε ε ε ε ε ε ε ε ε ε ε γ γ ε ε ε ε ε ε γ =                       ⊕                       2 2 1 3 2 4 5 2 1 4 1 1 3 5 3 4 4 4 (4) [ ] Y X ( ) ( ) γ ε ε ε ε ε ε γ = 4
According to theorem 3 we conclude that:

X A B U ( ) ( ) * γ γ = and then Y CA B U ( ) ( ) * γ γ =
which leads to the transfer relation:

Y h U h CA B ( ) ( ) ( ) ( ) * γ γ γ γ = = with (5) 
If input U ( ) γ of the system is an impulsion (transition u is infinitely fired at time 0) then output Y( ) γ can be considered as impulse response h( ) γ of the system.

For example transfer relation h( ) γ corresponding to Eqs. 4 leads to the impulse response illustrated in Fig. 2. 

2: Impulse response of the transfert relation h( )

γ .

Rational series over Z max [[ ]] γ

Definition 7 (rationality): γ such that:

A series s Z ( ) [[ ]] max γ γ ∈ is rational if its expression
s p q ( ) ( ) ( )( ) * γ γ γ τγ ν = ⊕ with p p i i i ( ) γ γ ρ = = - ⊕ 0 1 , q q j j j ( ) γ γ ν ρ = = - + ⊕ 0 1 .

Definition 9 (realisabilty):

A series s Z ( ) [[ ]] max γ γ ∈ is
realisable if it can be written as: s CA B ( ) * γ = .

Theorem 4 [START_REF] Cohen | Algebraic Tools for the Performance Evaluation of Discrete Event Systems[END_REF]:

For s Z ( ) [[ ]] max γ γ ∈
, the following three statements are equivalent:

• s( ) γ is rational; • s( ) γ is periodic; • s( ) γ is realisable.
For example the transfer relation h( ) γ corresponding to Eqs. 4 can be written under the following periodic expression: The periodic expression:

h( ) ( )( ) * γ γ γ γ γ γ γ γ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ 19 
h p q ( ) ( ) ( )( ) * γ γ γ τγ ν = ⊕ (6) 
traduces that the pattern represented by q( ) γ is indefinitely reproduced because the multiplication by τγ ν symbolises a ν unit abscissa shift and a τ unit ordinate shift. This periodic behaviour begins after a transient behaviour which may be represented by p( ) γ .

Definition 10 (simple element):

A series s Z ( ) [[ ]] max γ γ ∈ is
a simple element if it can be written as:

s d c ( ) ( ) * γ γ τγ ν = Theorem 5 [5]: A series s Z ( ) [[ ]] max γ γ ∈
is rational iff it can be written as a finite sum of simple elements.

From theorems 4 and 5, we obviously see that a periodic series s Z ( )

[[ ]] max γ γ ∈
can be written as a finite sum of simple elements: 

p q d i l i c i i i ( ) ( )( ) ( ) * * γ γ τγ γ τ γ ν ν ⊕ = = ⊕ 1to (7 
s d i i c i i i ( ) ( ) * γ γ τ γ ν =
, the minimal representation problem consists in finding a subset of S with minimal cardinality l min such that:

h d i l i c i i i ( ) ( ) min * γ γ τ γ ν = = ⊕ 1 (see [1, sec. 6.5.4]).
Remark 2 [START_REF] Gaubert | Théorie des Systèmes Linéaires dans les Dioïdes[END_REF]: A periodic series has one simplest periodic representation. This author gives some efficient algorithms to establish the simplest polynomials p( ) γ and q( ) γ .

Identification

We plan to identify an ARMA model in max-algebra in order to compute in section 4 the parameters of the transfer relation h( ) γ (see Eq. 6).

Let us recall that in conventional discrete time system theory, the ARMA equation can be expressed as:

y k a y k j b u k i j i i m j n ( ) ( ) ( ) = -+ - = = ∑ ∑ 0 1
To estimate the parameters of this equation, the following prediction error is classically defined:

ε( ) ( ) $ ( ) $ ( ) k y k a y k j b u k i G j G j i m j n = - -- - = = ∑ ∑ 0 1
where y G is the measured output of the system and

$ ,..., $ , $ ,..., $ a a b b n m 1 0
are the estimated parameters.

A common criterion, which is minimised for the set of parameters searched, is:

J k k = ∑ ε 2 ( )
This criterion is well known in least square method [START_REF] Ljung | System Identification: Theory for the User[END_REF].

Identification of max-algebra ARMA model

By analogy with the previous method, let us consider the identification of the following ARMA equation in

Z max[[ ]] γ : [ ] [ ] Y a a Y b b U n n m m ( ) ... ( ) ... ( ) γ γ γ γ γ γ = ⊕ ⊕ ⊕ ⊕ ⊕ 1 0
which corresponds in Z max to: By analogy with the conventional linear system theory, the identification method considers the following prediction error:

y k a y k a y k n b u k b u k m n m ( ) ( ) ... ( ) ( ) ... ( ) = -⊕ ⊕ -⊕ ⊕ ⊕ -
ε ϕ θ ( ) ( ) ( $ ) k y k G k T = - ⊗ with [ ] $ $ ... $ $ ... $ θ = a a b b n m T 1 0
the estimated parameters vector and [ ]

ϕ k T G G y k y k n u k u k m = - - - ( )... ( ) ( )... ( ) 1
the measured regressive vector at event k with y G the measured system output.

By using the data of u k ( ) and y k G ( ) , with k i n =to N ( ) i n ≥ , we obtain the matrix expression:

ε θ = - ⊗ Y M G G ( $ )
where Let us define a criterion J as:

[ ] ε ε ε = ( )... ( ) i N T is the prediction error vector, [ ] Y y i y N G G G T = ( 
J k k k i N ( ) ( ) ( ) θ ε ε ∧ = = ≥ ⊕ with 0
To determinate the estimated parameters vector $ θ which minimises this criterion, we consider a basic result of the Residuation theory [START_REF] Cuninghame-Green | Minimax Algebra[END_REF] which states that $

\ θ = M Y G G minimises J ( ) θ ∧ and is the greatest solution of Y M G G f ⊗ ∧ θ .

Identification of simple elements

We study now the identification of simple elements.

Let us consider

Y d U c ( ) ( ) ( ) * γ γ τγ γ ν = (see def. 10
) which leads by using theorem 3 to identify the following particular ARMA equation:

Y Y d U c ( ) ( ) ( ) γ τγ γ γ γ ν = ⊕ which corresponds in Z max to y k y k d u k c ( ) ( ) ( ) = -⊕ - τ ν or equivalently y k k T ( ) = ϕ θ with ϕ ν k T y k u k c = - - [ ( ) ( )] and θ τ = [ ] d T .
In this paper, we consider an impulsion input u: 

y k G ( ) = ε if k c < .
Then we can compute

$ \ θ = M Y G G which minimises the criterion J k k c N = = ⊕ ε( ) with ε( ) k ≥ 0 . Remark 3: Since $ θ is computed in Z max , $ ( \ ) ( ) θ i k G G k G G M Y Y M ki k k ki = = - ∧ ∧ ,. { } i = 1 2 , .

Practical modelling of h(γ γ)

The desired expression of the transfer relation h( ) γ is periodic which cannot be expressed as the ARMA form defined in the section 3.1.

A first solution to obtain h( ) γ has been proposed in [START_REF] Boimond | A Modeling Method of SISO Discrete Event Systems in Max-Algebra[END_REF] 

h s i l i ( ) ( ) γ γ = = ⊕ 1 with s d i i c i i i ( ) ( ) * γ γ τ γ ν = .
In other words we have:

Y Y s U i l i i l i ( ) ( ) ( ) ( ) γ γ γ γ = = = = ⊕ ⊕ 1 1
Under the assumption that the input is an impulsion ( U e ( ) γ = ), it is possible to individually identify these simple elements (see section 3.2).

Practically, it consists in computing ν , $ τ , $ d which minimises J for c fixed. This procedure is repeated by increasing c until the sum of simple element outputs behaves as the system ouput (see the following algorithm).

Y M = ε c = 0 DO Y prev Y M M = FOR ν = 1 to (N-c)/2 Compute [ ] $ \ $ $ θ τ = = M Y d G G T END_FOR Y Y prev d M M c = ⊕ $ ( $ ) * γ τγ ν IF Y Y prev M M f THEN the simple element is kept c c = + 1 UNTIL Y M near Y G
Then we sum these simple elements thanks to the algorithm proposed in [START_REF] Gaubert | Théorie des Systèmes Linéaires dans les Dioïdes[END_REF] in order to obtain the periodic series which characterises h( ) γ .

Example

Let us apply results of section 4 to modelise the transfer relation h( ) γ corresponding to Fig. 2. In this way, we suppose to have the N first (N = 44) measured data Y G represented in dotted line in Fig. 3. To illustrate the modelling procedure, we have also represented the simple element given by the algorithm for c = 12 . which corresponds to the transfer relation of the system.

Remark 4: The given algorithm detects the periodic part of the impulse response when it appears twice in the measured data. If not, it will return many degenerated simple elements of the form d c γ γ ν ( ) * 0 .

Conclusion

We have proposed a practical modelling method of linear SISO DES in Max-Algebra. This method offers analogies with conventional linear system theory: the impulse response is considered as a sum of simple elements which are individually identified. We have improved the method given in [START_REF] Boimond | A Modeling Method of SISO Discrete Event Systems in Max-Algebra[END_REF] in the sense that it does not need to have an estimation of the transient part of the transfer relation h( ) γ .

Let us note that the algorithm does not guarantee the minimal representation of the system (see remark 1), nevertheless we obtain the simplest representation of the periodic series which characterises the transfer relation h( ) γ (see remark 2).

Definition 3 (

 3 natural order): In a dioid, the following relation denoted f is a (partial) order relation: a b a a b f ⇔ = ⊕ Definition 4 (complete diod): A dioid is complete iff it is closed for infinite sums and if the product ⊗ distributes over infinite sums. There is a maximal element of the dioid denoted by T (the sum of all elements) which is absorbing for addition ( ∀ ⊕ = ⊕ = a a T T a T , ). Example: The set Z { } ∪ -∞ + ∞ , with the operations ⊕ and ⊗ defined by { } a b a b ⊕ = max , , a b a b ⊗ = + is a complete commutative dioid denoted Z max with ε = -∞ = + ∞ , T and e = 0 . Definition 5 (lower bound): In a complete dioid D, since there is a bottom element ε , the lower bound can be contructed for any subset C of D. If C={a, b} then its lower bound is denoted a b ∧ . One has the following equivalence: a a a b b a b f b ⇔ = ⊕ ⇔ = ∧ Definition 6 (isotone mapping): A mapping f : D C → , where D and C are ordered sets, is isotone if: sec. 4.4.2]): Let f be an isotone mapping from the complete dioid D into the complete dioid C. The following three statments are equivalent:

2 Theorem 3 (

 23 [1, sec. 4.5.3]): Consider Eq. (1) with a and b given in a complete dioid D. Then,• a b * is the least solution of (1);
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