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Global Numerical Approach te Nonlinear
Discarete-Time Control

Lue Jaulin and Erxec Walter

Abstract—Interval analvds is used to characterize the set of all input
sequences with a given length that drive a nonlinear discretetime state-
space system from a given initial stafe to a given set of terminal states.
No requirement other than romputability (ie, ability to be evaluated by
afinite algorithm) 12 put on the nature of the state equations. The method
15 hased on an algorithm for set mversion and approximates the solution
set in a guaranteed way,

Index Terms— Characterization of sets, interval analysis, nonlinear
contrel, set inversion.

NOMENCLATURE
Plain lower case letters (x): Scalars.
Plain capital letters (X ): Scalar mntervals.
Bold lower case letters (x): Vectors
Eold capital letters (X): Vector intervals, or boxes.

Outlined capital letters (V): Sets that are not necessmily inter-
vals or boxes.

I INTRODUCTION

Cousider an nth-order discrete-time system described by the state
equation

x(k+ 1) = £{x(k), u(k)). x(0) = xg )

where u(#) 15 the input vector, x(k) 1s the state at time e, %n 15
some known imtial state, and £ 15 a known nonlinear vector function.
Vartous approaches have been propesed to control such a system.
Une may, for instance, look for a feedback law that transforms it
into a lueor systent [1] and then apply some linear techuique such
as pole placement. The results obtained are often local and rely on
malyhety conditions. Une may also search for the sequence of inputs
that 1< best in the sense of some optimality eriterion {see, e .. [2]).
Here also, the results obtamed are mwst often local, because of the
nonconvexity of the criterion. At best, one may expect to get one of
the possible solutions, even if there are several of them
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The problem considered here is the guaranteed characterization
of the set V of alf input sequences v = [u® (0},- -, uf (m - 1))’
of grven length i that dnive the state of the system from %o to
some given tenminal set X. Methods for ebtaining one such contrul
sequence for a discrete-time linear system wath a closed and convex
target X, are presented in [3], but the guaranteed charactenzation of
the set of all possible selutions 1 a nonlinear context seems to be
addressed here for the first time. A control equence v of length m
will be said to be feasible 1f

g{v) & E(F( - (£(x(0),n(0)), - ), ulm — 2}, ulm — 1)) € X,

{2)
Thus, the cet of all feasible input sequences of length 2 is given by
V=g (%) &)

where g™ is the reciprocal function of g in a set-theoretic sense.
I B

If £ is polynonual in x and u. g is polynomial in v. When X, 15 a
singleton, solving (3) for ¥ then amounts to findmg all solutions of
a set of polynomial equations in several unknowns Many methods
have been proposed for that purpoese. Global continuation methods
are munerical and based on the notion of homotopy paths (see, e.g..
[4]). Methiods based en elimination theory and computer algelna
transform the set of pelynomial equations into a sumpler one (often
triangular) with the same solutions (see, e.g.. [53]). Interval variants
of the Newton method can also be used to approxunate the set of all
solutions munerically, but in a guaranteed way [6].

Contrary to those mentioned above, the method to be presented
i3 not lumted to the case where X; 15 a singleton. It dees not
require f fo have any specific choractenistic (such as analytieity,
contiuity or differentiability) other than bemng computable by a finite
algonithm, which permits one to tale into avcomnt nenlineanties cuch
as saturatiens or threshiolds. Although the methed 15 numencal. 1t
provides global and guaranteed results

The algorithm set mverter via interval analysis (SIVIA), introduced
in the context of bounded-error estinwation [7], [8] and applied to the
characterization of stability domain: [9]. will be used to approximate
V by solving the set-inversion problem (3). The minunum knowl-
edge about interval analysis required to understand the procedure is
reealled in Section I The algorithm for set inversion is described in
Section IMI. Examples are treated in Section TV

0. INTERVAL ANALYSIS

Interval analysis [10] is a fundamental numerical tool for preving
properties of sets. solving sets of nonlinear equations or inequalities
and optinuzing noncomvex citteria i a guaranteed wav. A box, or
vector imterval X of RB" is the cartesian product of n real intervals
Ay

X=[ef ] x--x {x;,mi] =Xy ne % Xee (D

Denote the set of all boxes of R” by IR™. Let f: R® — RB? be a vector
function; the set-valued funetion F: R™ — IR” 15 a {convergent)
inclusion funcrion of £ if, for any box X of R". it saticfies the two
following conditions:

£(X) C F(X) ()

w{X) — 0= w(F(X}) -0 w

where w{X) 1s the width of the box X, 1e., the length of 1ts larzest
side(s) Note that £{X) is usually not a box. conbrary to ¥ (X)), wluch
is a box by definition. The calculation of an miclusion function for
any computable function (i.e.. given by a finite algorithm) ig usually
very simple [10] and routinely performed by conunercially available
laiguages such az PASCAL XSC [11].

Example 1: An inclusion function for

o
E - £y xcos{e *x 2} +u -
b g = ( 3] — sinfu s 22} ) O
£
is
5 ; (X v eos{Xy € Xa)+ U &
' x‘, 3X7 —sin(U » Xu}

If. for instance, X = [0,1] x [0, w/3] and U = [~ 2, 1], then the box
F(X,U) 1s computed as follows:

10,1] % cos([0, 1] %[0, /3 -2.1
FX,0) = ( ia 0. 1% ;?'sil.([[fw)z. {1 P[{; L/s; ) ! )
_ ([{}, 1] tcos{[{?.ﬂfiii} + -2, 11)
3% [0.1] - sin(|-27/3,7/3])
. ([o,ﬂﬂo.s,tt}ﬂ 2,11)
(03] ~ [~ 1, v/3/2]

(Wi ) = (ama) @

Note that the operators +, *, — and fonctions cos, sin, md (-)* in (8)
are interval counterparts of those i (7). Replaving eacli elementary
operator and funchon by its interval counterpart is but one method to
obtain an nclusion function, usually far from being the most effective.
The resulting inclusion function i called natural melusion function.

I ALGORITHM FOR SET INVERSION

The algorithm STVIA proceeds directly from the notion of the
inclusion fimetion. Its aim is to build two subpavings (ie.. sets of
uonoverlapping boxes), V™ and W, 50 a5 to bracket the set ¥ defined
by (31 between an inner and an outer approximation

v cvcvt

SIVIA uses a stack of boxes. 1e. a firstan-first-out cet of boxes
(think of a stack of plates), on which three operations are possible,
namely stackimg (putting a box on the top), unstacking (removing the
top Lox). and testing the stack for enphness. The current box V 15
initially taken equal to the prior box of interest (i.e., some possibly
very large box in the space of the input sequences of length m, in
which the search is going to be performed) and then split whenever
no conclusion 1s reached, unless its wadth 15 smaller than some given
required accuracy ..
STVIA can be summnarized as follows,

L0y

Tnputs:

Prior box of interest: V.

Inclusion function for gi ) G().

Width of the sniallest box allowed to be bisected: &,..
Imtialization:

Stack i= 0,V 1= 0,¥" 1= 0,V = V,.
Tteration:

Step 1) If GIV) C X, then ¥V
V¥ U V. go to Step 4).
If G{V)INX, = O, then zo to Step 4).

It w{V) < ¢, then V¥ := VT UV, else bisect V
along a symmetry plane perpendicular to oue of its
largest edges and stack the two resulting boxes.

If the stack is not empty, then unstack into 'V and
go to Step 1).

Output ¥V and V' end.

= ¥ UV vt =
Step 2}
Step 3)
Step 41

Step 5) {11}
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If the condition of Step 1) is satisfied, all v in 'V are feasble
and V is appended to ¥V and V. If the condition of Step 2)
is satisfied, no v m V is feasible and 'V is discarded If none of
the conditions of Steps 1) and 2) is satisfied and f V is lage
enough, then it 1s split info subboxes to be considered agoin at a
later stage. Checking the conditions of Steps 1) and 2) is trivial
since G(V) is a box. STVIA is a fimte algorithm that terminates
in less than (w(Vo)/z, + 1)%#Y jterations [7]. which corresponds
to the degenerate situation where all boxes remain indeterminate
The complexity of the algorithm was also studied in [7]. The main
limitations of SIVIA lie in the expaonential micrease of the computing
time and number of boxes fo be considered with the dimension of the
box V., here the length m of the mput sequence times the dimension
of the input vector u. Even for a very laige dim v, the maxinmm
size of the stack remains extraordinarily snall. For mstance. if dim
v e 100, w(Vy) = 10%, and o = 10 ', then it ean be proved [7]
that card(Stack) < 4600, Convergence conditions were given in [8];
under continuity conditions, 1.e., the asswnption that a small variation
of X; results in a small variation of V. (10} defines a neighborhood
of ¥ in the set of compacts with a diameter that rends to zero with ¢,
The characterization of V can then be made as precise as desired, at
the cost of inereasing the computation. An algorithm similar to STVIA
was developed independently [12], withthe stack replaced by a quene
which inereases the memory requirements quite considerably

Note that if V' funs out to be enipty, the set-inversion problem
is guaranteed to have no selution,

IV, APPLICATION TO C'ONTROL

SIVIA applies directly to the global and guaranteed characteriza-
tion of the set of all control sequences that diive the system from
xy to X, Sequences of mereasme length m ¢on be studied unhl
a nonempty selution set is obtained. Two cases can be considered,
depending on how X, is defined.

The first case 15 when X; 1¢ defined by a set of equalities hix} = 0,
which may for mstance correspond to the largest linearizable manifold
[13] or to the equation x = 0. The set of control sequences to be
characterized is then given by V = (ho g} '(0). and SIVIA will
produce a subpaving V¥ guaranteed to contain it If V¥ is empty,
the algorithm has proved that no feasible voutrol sequence of length
m exists. Exvept for pathological cases [8], V is of zero measnre. so
V  remains empty even when V' 15 not. However, the distance to
X: of the terminal state resulting from a control sequence in ¥ can
be made as small as desired by decreasing =,

The second case is when X, 15 defined by a set of mequalities
h{x) < 0, which may for instance correspond to a region where it is
pessible to switch to a local approach. The set of control sequences
to be characterized ¥ = (hog) '({R™ ™), if not empty, is generally
net of zere measure, so it becomes possible to obtain s uonempty ¥V,

Teo examples will now be ¢onsidered, The first corresponds to the
case where X is the singleton {0} and the second to the case where
X 12 a box. Tt both problems. the mput is scalar, and the leugth of
the input sequence is two. The number dimi v of control variables is
theretore two, which facilitates the presentation of the results. The
method obviously applies to vector inputs and lenger input sequences
but the dimension of the problems that can be handled is limited by
the exponential complexity of the algorithm with respect to dim v.
All examples have been treated with a prograni written in PASCAL
and rum on a Compaq 386.3J.

Example 2: Consider the discrete-time state-space model

ai(k+1) = ml‘{k) *cos{wi (k) * z2(k)) + u(k)
#p(h+ 1) = 323 k) sin(u(k) = 52 (%))

w-()

{12)
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Fig. 1. Boues eliminated by SIVIA for Example 2. The five boxes remaining
in V* are too small to be seen. The frame corresponds to the prior box of
interest [-1, 1}2 in the (u(0), u{1}) space.

Driving it back to the origin in two steps amounts to finding a vector

w= (i)

that satisfies g(v) = 0. where g{v) is computed by-the pseudo-code:
21 (0) o= a0} := 2
For k:=0to1 do
begin
zp(k 4 1) = 21 (k) % cosl{ay (k) * z2(k)) + u(k);
ap(h 4 1) v= B (k) — sin(e(k) * p2(k) )

end:

(13)

{4
with

! = [=12)
g{v) = glu(0),#(1) = (k‘taf?})' {15y
An inclusion function G (V) for g(v) is thus given by the pseudo-
code:
X, (0) = [1,1}; X2(0) := [2, 2],
Fork:=0to 1 do
begin
Kilk+ 1) = Xy (k) » cos{ X (k) « Xa(8)) + Ulk),
Kok + 1) = 3K (k) — sin(U (k) = X2(E)):
end; (10}
wath

G(V) = G(U(0), U(1)) 1= (Ad?)). 17

X2(2}

For a requured acouracy of o, = 10 and o prior domain of iuterest

for the coentrols given by Vi = [~1,1}%. in 2 5, SIVIA produces

the paving presented in Fig. 1 and generates an outer subpaving V7,

that consists of five boxes. These five boxes form two sets of adjacent
boxes. which can be enclesed in two boxes

V.. = [0.0268,0.0270] x [0.1600,0.1603]

Vi = [0.4160, 0.4162] x [0.0000, 0.0001].

V1 therefore satisfies

(18)

vtcocv.uvs (19)
As X, iz a sngleton, no mmer subpaving ¥~ can be abtained.
Two quite distinet control strategies can therefore be considered. For
iistamice

Vo = (0.0269,0.1601)" and ¥ = (0.4161,0.0000)7  (20)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 6, JUME 1997 875

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers for their help
in the preparation of fhis paper.

REFERENCES

[1] 5. Monaco and D. Normand-Cyrot, “The immersion under feedback of
amultidunensional discrete-ime nonlinear system into alinear system,”
Int. J. Contr., vol. 38, no. 1, pp. 245-261, 1983

[2] M & Mahmoud and M. G Singh, Discrete Systems, Analysis, Control
and Optimization. Berlin: Springer-Verlag, 1984,

[3] B P Van Tal and W, E Schmitendorf, " Constrained controllability of
discrete time systems,” Int J. Contr., vol 43, no, 3, pp 941-956, 1986.

[4] C. B. Garcia and W I Zangwill, “Finding all solutions to polynomial
systems and other systems of equations,” Math. Programming, vol. 16,
pp 159-176, 1979

(5] B Buchberger, “Theoretical basis for the reduction of polynomials to
canonical forms,” SIGSAM Bull., vol. 39, pp. 19-29, 1976,

[6] E R.Hansen, Global Optimization Using Interval Analysis. New York:

Marcel Dekker, 19%2.

L. Jaulin and E. Walter, “Guaranteed nonlinear parameter estimation

From bounded-error data via interval analysis,” Math, Comput. Simul,,

vol. 35, pp. 123-137, 1993

Fig. 2. Paving generated by SIVIA for Example 3. The frame 15 asin Fig. 1. i

—

respectively generate the state sequences , [8] , “Set inversion via interval analysis for nenlinear bounded-error
r estimation,” Automatica. vol. 29, no. 4, pp 10531064, 1993,
x:(0) = (1,2} [9] E. Walter and L Jaulin, “Guaranteed characterization of stability do-
x.{1) = (~1.3892, 2_945}T mains via set inversion,” JEEE Trans. Ausormut. Contr., wol. 39, ne 4,
T pp B886-889, 1394
x.(2) = (~0.60003, 0.0001) [10] B E Mocre, Methods and Applications of Interval Analysis. Philadel-
and (213 phia, PA SlAM.\ 1979
T [11] E Elate, U, Kuhsch, M. Neaga, D. Ratz, and C. Ullrich, Pascal X5C,
x3(0) = (1,2} Language Reference with Examples. Heidelberg Springer-Verlag,
. - ; it 1992,
()= (0.0, 2.2606) : [12] B. E Moore, “Parameter sets for bounded-error data,” Math. Comput.
xu(2) = (~0.00005, 0.00000)" . Smul., wol. 34, pp. 113-119, 1592
i [13] R. Maiino, “On the largest feedback lineanzable subsystem,” Syst
Example 3: Consider the same system. but assume now that we Contr. Lett., wol. 6, pp. 345-351, 1986

only want to drive it in two steps mto the box [~0.12,0.12]%. This
amounts to characterizing the set

V=g (012,012, 22

For ¢, = 0.01 aud the same prior doman of interest for v as in
Exmmple 2, in 8 5, SIVIA brackets ¥V between two subpavings as
illustrated by Fig. 2. Boxes in dark grey belong to V™ and have thus
been proved to belong to V., Those in lieht grey have been elunmated.
The uncertainty layer is in white The complexity of fhe problen:
increases exponentially with the dimension of the acciunulation set
of the paving [7]. which is one in this example instead of zers in
Example 2. Thue explains why the computing time is larger than in
Example 2, although =, is lorger. Any v € ¥ 1s guaranteed to send
the state into X.

Note that if X == [ 0.05,0.05)%, for the sane required accuracy
¢, and prior domsm of interest for the control. SIVIA nunencally
proves the nonconnexity of ¥.

V. CONCLUSION

By taking advantage of the guaranteed nature of the numerical
results provided by interval analysis, it is possible to solve the prob-
lem of computing all sequences of centrols driving a deternunistic
nonlinear discrete-time state-space system from a given initial state to
a given desired set of tenunal states. To the best of our kuowledge,
ne other guaranteed method i: available for that purpose. Toking
additional inequality constraints on the =tate or input into account
would be particulardy simple.



