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Abstract

Set-inversion is applied to recent collision-induced scattering data concerning gaseous CFj.
It makes it possible to approximate the set of all vectors of independent components of
the CI'y dipole-quadrupole and dipole-octopole polarizability tensors. Numerical analysis
shows that short range effects must be taken into account in the high frequency range of each
dipole-multipole contribution to the CIS isotropic spectrum of CFy. It also demonstrates

the agreement between experiment and recent ab initio calculations.



1 Introduction

In low density fluids, interactions between molecules are binary. Thus, collision-
induced light scattering (CIS) results from collisional polarizabilities of molecular
pairs [1]. For optically isotropic molecules like CF,, pure collision-induced depolar-
ized and isotropic spectra are observed in the vicinity of the Rayleigh line, where no
monomolecular scattering is allowed [2]. These spectra provide information on mole-
cular interactions and may be used to estimate the origin-independent parameters
of the dipole-multipole polarizability tensors (e.g. A and E which characterize the
dipole-quadrupole and dipole-octopole tensors A and E of any tetrahedral molecule).
For pairs of molecules that cannot be easily described in terms of quantum mechanics,
a semi-classical model may be considered [3]. In this case, the CF, spectral intensity

I? can be written as follows [4, 5]:

Fw) = Ipp(w) + cora o’ A? Tora(w) + cirg o’E® Iyre(W)

. CSATAA4IATA (LL}) + C;TEAQEQIATE(M) + C%}TEELIIETE(LJ) + (1)

where w denotes the frequency shift and « is the main polarizability. The sub-
script DID refers to the dipole-induced-dipole interaction. Subscripts aTA, oTE,
ATA, ATE and ETE refer to the successive dipole-multipole light scattering mecha-
nisms [4, 5]. The coefficients ¢® depend on the nature s of the spectrum (depolarized
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or isotropic) and on the dipole-multipole mechanisms [4, 5]. Unfortunately, point

estimation of A and F is highly uncertain due to the following four reasons:

1) Short range effects such as overlap and exchange effects are not taken into account
in the aforementioned semi-classical model. As a result, in the CF; case, depolarized
and isotropic spectra lead to different conclusions. The isotropic spectrum has been

shown to be the more adapted [5].

i) Because of the competition between the dipole-multipole mechanisms (like o'TA
and aTE) several different parameter vectors (4, F) may correspond to similar fits,

i.e. the model is said to be almost unidentifiable.

i#1) Errors on measurement of the isotropic spectrum are large [5] and many unsimilar

fits can be considered as consistent with all data.

iv) The model is nonlinear (¢f. Eq. (1)) and local minimization procedures may
converge to any local minimum.

For all these reasons, a bounded-error estimation approach (see [6], [7] and references
therein) is considered in this work. It consists of characterizing the set S of all values

of the vector (A, E) such that the associated model output is consistent with all



experimental data, i.e. goes through all error bars. The method to be used is new
for most physicists and based on set inversion [8]. Set inversion, presented in Section
2, is particularly suited in our case because of the nonlinearities involved in the semi-
~ classical model; it uses interval analysis which is a numerical tool for computing with
sets (also presented in Section 2). Section 3 gives an approximation of the set S of
all feasible vectors (A, E) and compares it with former estimations. We show that
recent ab initio computations by Maroulis [9, 10] partly confirm our results. Finally,

we conclude on the advantages that set inversion analysis offers to spectroscopists.

2  Set inversion

Let ? be a nonlinear continuous vector function mapping R"™ into R™ and ) be a
subset of R™. The set inversion problem is to characterize the set X defined by

e

X={T|F(@)cYy=F1.

The set function ]?1 is the reciprocal function of ? The set-inversion algorithm to be
presented is based on interval arithmetic which is a numerical tool originally developed
in order to quantify the effect of finite-precision arithmetic on results obtained by a
computer [11]. Interval arithmetic extends classical operators on real numbers to
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intervals in a natural way. Thus, if [z] = [z7,z"] and [y] = [y~, "],

(2] + [y = [z~ +y7, 2t + 7],
[z] - [y] = [z~ -yt 2" —y7],
[2] - [y] = [min(e~y~, 27y", aty”, aty?), max(e"y ™, 27yt 2ty 2ty
For example, we have ([1,2] + [-3,4]) - [-1,5] = [-2,6] - [-1,5] = [-10, 30],
As another example, let us consider the real function f(z) = 2% + 2z +4. An interval

evaluation for f is [f]([z]) = [z] - [z] + 2[z] + 4. For [z] = [-3, 4], we have:
(f1([—3,4]) = [-3,4] - [-3,4] + 2[-3,4] + 4 = [-12,16] + [—6,8] +4 = [-14, 28].

Note that the actual image by f of the interval [z], f([—3,4]) = [3, 28] is a subset of the
interval evaluation [f]([—3,4]) = [~14,28]. This illustrates that interval evaluation

is usually pessimistic [11].

A box or vector interval [Z'] of R™ is defined as the Cartesian product of n intervals.
] = a1, 2] %+ x [0, 2)

The i** component of the box [Z'] is an interval denoted by [z];. It can be proven
(see [11]) that the interval evaluation [f]([Z]) = [f]([z]1,--,[z],) always contains

the image interval f([7Z']), i.e.

v[Z], £([]) € A1) (3)
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The width w([®']) of a box [Z'] is the size of its largest side. For instance, the width
of the box [Z'] = [1,2] x [~1,3] is equal to 4. A principal plane of [ Z'] is a symmetry
plane of [Z'] normal to a side of maximum length. To bisect a box ['] means to
cut it along one of its principal planes. Bisecting [z'] = [1,2] x [~1, 3] produces two

boxes [Z'](1) = [1,2] x [-1,1] and [Z’](2) = [1,2] x [L, 3].

The algorithm SIVIA (Set Inverter Via Interval Analysis) partitions some prior box
of interest [2](0) into a set of non-overlapping boxes. For the sake of simplicity, it
is assumed that the set ) to be inverted is a box [?] SIVIA uses the two following

tests to decide whether a given box [ 7] is inside or outside the solution set X:

v, [ € [yl = [Z]lcx n
@) | [fLITDNkli=0 = [FInx =0
Proofs
(i) I %3, [f1:([Z']) C )i, then from (3), V4, £([Z]) C yl, ie. £ (7)) C [7].
Therefore [7] C X.

(it) If 3¢ | [f:([Z]) N [y); = 0, then from (3), Fi | £([Z]) N [v); = 0.

Therefore f ([Z]) N [7] =0, ie. [T]NX = 0.

SIVIA is a recursive routine that brackets the solution set X between an inner set
of boxes and an outer set of boxes. For the sake of simplicity, it will be presented
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here in the case of a two dimensional solution set, but the algorithm readily extends
to higher dimensions [8]. Boxes that have been proved to belong to X via test (i)
are drawn in dark grey, those that have been proved to be outside X via test (ii) are
drawn in light grey and those that satisfy neither (i) nor (ii) and are too small to be

bisected are drawn in white. The accuracy € is a small positive real number.

SIVIA(T)

Step 1 V4, [f1:([Z']) C [yli, {draw([T’], 'darkgrey’); return};

Step2 3 | [fL(F]) N sk = 0, {draw([7], lightarey’); returnl;

Step 3 If w(z') < ¢, {draw ([Z], 'white’); return};

Step 4 Bisect (2] and store the two resulting boxes into [Z'](1) and [Z](2);

Step 5 SIVIA([Z'](1)); SIVIA([Z](2));

SIVIA is first called for [Z']) = [Z'](0), where [Z'](0) is a box assumed to contain
the solution set X. If we denote by AX the union of all white boxes and by X~ the

union of all dark grey boxes, then the solution set X' is bracketed by:

X CXCAWAR (5)



Remark 1 When the box Y to be inverted is a singleton {4’} (for example when
dealing with error-free data), the solution set X is often reduced to a singleton { T }
which is easily féund by SIVIA or by other punctual approaches. When two or more
solutions exist, SIVIA detects all of them in a guaranteed way, contrary to punctual

approaches.

Remark 2 Inversion methods generally considered are punctual: they try to find
the best. fit. In a linear context, numerical instabil@ty appears when the matriz to
be inverted is almost non invertible. With a set inversion approach, the problem of
instability does not exist. Even if the model is non identifiable (which corresponds to a
situation where the matriz is non invertible in a punctual and a linear context), a set
with a stretched shape is obtained. All informations about uncertainties (numerical,
errors on measurements, ...) are given by X': if X is big, as in the application treated
in the next section, the problem can be considered as "ill-posed” in o punctual point

of view.



3 Results and discussion

The experimental CF, isotropic spectrum I**° reported in [5] had been recorded
for a set of Raman frequency shifts w; relative to the green spectral line (A =
514.5nm) of an argon laser. Following the bounded-error approach, uncertainties
on experimental data are assumed to be bounded, i.e. the ith ideal measurement
I{* (the measurement that should be obtained if no measurement errors occurred)
is assumed to belong to the interval [I75¢, (i), 1%° (i)] provided in [5] and recalled in

Table 1.

Possible location for Table 1

As regards the theoretical spectrum, and according to Eq. (1), the ith model output
is given by
I°(A,E) = DID;+a?A?aTA; + o?E? oTE;
+ A'ATA, + A’E? ATE,; + E*ETE,. (6)
The dipole-dipole and dipole-multipole components (DID; = I#2, (w;), aTA; =
ciota Tora(ws), ete.) are provided in Table 1 (see [5] for the details of their com-

putation). Since the value of the CF, polarizability is known (o = 2.93A3 for
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Ar = 514.5nm [12]), the unknown parameters are A and E. Prior feasible inter-

vals for A and F are given by
A€ 0,2 and E € [0,4]. (7)

where A and E are expressed in A* and A® units, respectively. Table 2 shows how

the problem of estimating A and E can be cast into the framework of set inversion

Possible location for Table 2

In less than 5 seconds on a Pentium 100 Personal Computer, SIVIA brackets S as

represented in Fig. 1.

Possible location for Figure 1

Because of some mechanism not taken into account in our semi-classical model, it
may happen that SIVIA eliminates a part of the parameter space that could contain
the true values of A and E. To protect against this, one would like to be especially

careful about data points that turn out to have a critical influence on the size of S.
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For this purpose, we define the safety of the ith interval data by

L Vol(8)
"0 = Fosy

(8)
where Vol corresponds to the volume (an area in our two-dimensional case) and
S; is the set of all parameters that are consistent with all data but the ith. The
smaller the safety is, the more careful one must be with the corresponding data
point. SIVIA can easily be adapted to compute volumes of sets [8] and therefore
the coefficients v(¢). We obtain v(1) = (3) = «(5) = 1., which means that a,ny of
the associated data points can be removed without changing the feasible domain for
(A, E). Moreover, y(2) = 0.98,v(4) = 0.98,~(6) = 0.93 and (8) = 0.74. The safety
of the 8th measurement is the smallest and the reliability of the semi-classical model
at the corresponding frequency ws = 120cm ™' can be questioned.. After removing
the 8th measurement, SIVIA brackets Sg as represented in Fig. 2. Note that the

upper boundary of Sg is not significantly different from that of S, but the lower

boundary of Sg lie much lower.

Possible location for Figure 2

In [5], an empirical estimation leads to the intervals [0.5, 1.2] A* and [1.0, 3.5] A for A
and [, respectively. The corresponding rectangle, drawn with dashed lines in Figs.1-
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2, contains a large part of the solution sets S and Sg. Moreover, the maximum values
of A and E given in [5] are very close to those provided here. The aforementioned
rectangle, however, also contains parameter vectors that are not consistent with the
data. Finally, note that the vector (A4, E) = (0.97A%, 1.1545), recently calculated ab
iitio by Maroulis [9, 10] and represented by a white cross on Figs. 1-2, is located
outside S and deep inside Sz. This corroborates the hypothesis that the 8th data is
not consistent with the semi-classical model. The discrepancy may be due to short
range effects that take place for high frequencies of each dipole-multipole contribution.
When scattering data for frequency shifts higher than 120 cm=" are considered, similar

discrepancies can be observed [5].

In conclusion, the set inversion approach, advocated here, makes it possible to es-
timate unknown parameters, their uncertainties, as well as their correlations, when
bounded-error data and nonlinear models are involved. Such problems arise often in
spectroscopy where many efforts are focused on estimating physical coefficients from
experimental data (e.g. collision-induced scattering or absorption processes). The ex-
ample of recent CIS studies on gaseous CFy is but one illustration of the advantages

of set-inversion over more conventional methods.
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Table 1

Experimental intensities of the CF; isotropic spectrum versus frequency shifts

together with corresponding dipole-dipole and dipole-multipole theoretical contribu-

tions.
7 1 2 3 4 5 6 7 8 units
w 50 | 60 | 70 | 80 | 90 | 100/ 110 | 120 em-!

I 192 | 177 | 116 75 41 22 | 16 | 10 107% o’

min

et 1732 | 1003 | 656 | 299 | 165 | 89 | 61 | 41 10758 cm®

max

DID || 27.78 | 14.17 | 7.53 | 4.18 | 2.34 | 1.34 | 0.78 | 0.46 10~%¥ cm®

oTA || 133.1 | 80.57 | 44.55 | 22.55 | 10.47 | 4.53 | 1.87 | 0.77 || 10~ 58cm®A 14
oTE | 6.39 | 478 | 3.39 | 2.27 | 1.44 | 0.87 | 0.50 | 0.27 || 10~%8cmBA~16
ATA | 196.1 | 153.7 [ 114.9 | 81.9 | 55.7 | 36.1 | 22.4 | 13.3 || 10~%cmSA 16
ATE | 20.20 | 16.94 | 13.73 | 10.74 | 812 | 5.93 | 4.19 | 2.86 || 107 %%cmSA-18

ETE || 070 | 0.61 | 052 | 0.43 | 0.35 | 0.27 ]| 0.21 | 0.16 || 10~6%m6A 20
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Table 2

Translation table between the set inversion formalism and the problem of estimating

the A and E values of CF,.

Set inversion Estimation of A and £
[l; [Tt (8), Zize, (3)]
Y=1[7] [Foata(1), Zitea (1)] - x [Ii32,(8), 13%2_(3)]
z : (4, E)T
fi(2) I™(A, E)
Fil ('(A4, B), -, Ig(A, B))"

X={Z| f Y} |S={(4B)|viI4 E) c (Lo (3), Zise ()]}

[=](0) [0,2] x [0, 4]

16



Figure Captions

Figure 1: Set of A and E that are consistent with all data (dark grey area) in the
(A, E) plane. The units are in A% for A and in A% for E. The dashed rectangle
corresponds to the intervals for 4 and E provided in [5], the white crosé represents
the vector (A4, E) found by Maroulis [9, 10], and the light grey area is the set of

forbidden parameter vectors.

Figure 2: Set of A and E that are consistent with the first seven data.
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