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(2) Université de Toulouse ; UPS, INP; LAAS;

F-31077 Toulouse Cedex 4, France

(3) Czech Technical University in Prague; Faculty of Electrical Engineering;

Karlovo namesti 13, 121 35, Prague 2, Czech Republic

Emails: {briand, ngueveu}@laas.fr suchap@fel.cvut.cz

Cooperative projects involve a set of self-interested contractors, each in charge of a part of the project. Each

contractor may control the duration of his activities, which can be shorten up to an incompressible limit,

by gathering extra resources at a given cost. In this context the resulting project makespan depends on all

contractors’ decisions. The client of the project is interested in a short project makespan. As an incentive, the

client offers a daily reward to be shared among the contractors in order to complete the project earlier than

expected. In practice, either the reward sharing policy results from an upfront agreement or payments are

freely allocated by the client himself. Each contractor is only interested in the maximization of his own profit,

and behaves accordingly. This paper addresses the problem of finding a Nash equilibrium and a sharing

policy that minimize such project makespan while ensuring its local stability. We explain how the resulting

problem, which is NP-hard, can be modeled and solved with mixed integer linear programming (MILP). A

computational analysis on large instances proves the effectiveness of our approach. Useful insights are also

derived from an empirical investigation of the influence of reward sharing policy, for a better understanding

of how a project customer should make the most of his funds in such project management context.

Key words : project scheduling; time/cost trade-off; Nash equilibrium; mixed integer programming

1. Introduction

Time-Cost tradeoffs in project management have been widely studied in the literature De et al.

(1995), Diaby et al. (2011). The objective is often either to minimize the project makespan at a min-

imum cost, or to maximize a net present value. Recently, the focus has been put on the dynamics

between the client and a contractor in charge of the realization of the project, through mechanisms
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such as time-dependent bonuses, penalties and payment retention Bey et al. (1981),Dayanand

and Padman (2001),Bahrami and Moslehi (2012). However, most results in this area considered

only one-side’s benefit, either the client or the contractor. In his study of the definition of pay-

ments schedules, Szmerekovsky (2005) highlighted this gap and emphasized on the necessity to

consider the reaction of one to the decisions of the other: the client may be interested in a short

project makespan, but the contractor is self-interested and would behave accordingly by readjust-

ing the processing and completion time for each activity to maximize his own financial objective.

Szmerekovsky and Venkateshan (2012) extended this work to irregular time-cost tradeoffs. Unfortu-

nately, such studies consider interactions with a single contractor. In practice, different contractors

would often be involved, each in charge of a part of the project. The project output depends on all

contractors’ decisions, yet each one behaves in its own best interest. In this case, the issue becomes

twofold: how to get the shorter makespan the client aims at, and how to reach an equilibrium

among the different contractors to ensure the stability of the resulting schedule.

In this paper we consider a cooperative project which involves a set of self-interested entities

called agents, each in charge of a part of the project. The project is classically defined by an acyclic

activity network. Each agent is able to reduce the duration of his activities by gathering extra

resources, at a given cost. Consequently, the project makespan depends on the decisions (called

strategies) of all agents. Since the project customer is interested in reducing project makespan, he

offers a reward to be shared among agents if the project ends earlier than expected. The amount

of the reward is given by the number of saved days, i.e. for each saved day the customer offers a

constant daily reward. Daily reward sharing is part of the decision. Moreover, every agent has to

choose his individual strategy by specifying the durations of his activities, which have minimum

and maximum values. Activity duration shortening causes expenses on agent’s side called crashing

cost (or compression cost). Each agent wants to maximize his profit equal to the difference between

his part of the reward and his expenses for shortening activities. We highlight that, in the single-

agent case, this framework exactly corresponds to the well known ”Project Time/Cost Trade-off

problem”; which received a lot of attention in PERT/CPM methodology Demeulemeester and

Herroelen (2002).

A strategy profile is the concatenation of all agents’ individual strategies. It is considered locally

stable if there is no incentive for any agent to modify his own strategy in order to improve his

profit. The stability of a strategy is important since it ensures that agents can trust each other. It

is totally connected to the notion of a Nash equilibrium. Therefore, from the customer viewpoint,

the problem of finding a Nash equilibrium that minimizes the project makespan is of interest,

because its solution gives the lower makespan that can be reached for the customer, provided that

the organization remains stable. Hence the objective is to determine the duration of activities
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and the sharing of the reward in order to find a stable schedule with minimal project makespan.

This problem generalizes the cooperative project scheduling with controllable processing times

introduced in Briand and Billaut (2011) by considering variable sharing policies.

An example of this problem is depicted in Figure 1 with an activity-on-node network involving

five activities a, . . . , e (activities 1 and 7 are dummy). The customer offers a $120 reward which is

shared equally between agents 1 and 2. The amount of money associated to each node corresponds

to agent expenses for decreasing the activity duration by one time unit. For example, to decrease

by one unit the duration of activity c, agent 1 has to pay $20. In the case this decision induces a

decrease of the project duration, he will obtain a $60 reward from the customer and therefore, it

is profitable for him to do so (i.e., the original solution was not stable). Furthermore, if agent 2 is

able to increase the project duration by one unit by increasing duration of activities d and e, then

the original solution is not stable as well. Indeed, by increasing duration of his activities agent 2

saves $70, while the reward offered by the customer is only $60. Now, if we offer a bigger portion

of the daily reward to agent 2, then the solution may become stable. Fundamentally, the stability

of this problem depends on the capability of agents to decrease/increase the duration of selected

activities and on the difference between agent cost and offered reward.

activity 1

$0

activity a

$70

activity b

$30

activity c

$20
activity e

$50

activity 7

$0

activity d

$20

daily reward = $120

agent 0 agent 1 agent 2

crashing cost

Figure 1 A project represented by an activity on node network

Briand and Billaut (2011) described several applications of such problems, from the fields of

building trades, supply chain networks and automotive industries Diaz (2006), Dudek and Stadtler

(2005), where different actors, for example regrouped in a consortium, must cooperate but have

their own goal/agenda. The authors in Briand and Billaut (2011) also touched upon the notions

of solution efficiency and stability. They define an efficient solution as a Pareto optimal solution

and a stable solution as a Nash equilibrium.

The remainder of the paper is organized as follows. The next section reviews related works

and states this paper contribution. In Section 3 we formally define the problem addressed in this

paper. Section 4 discusses the complexity analysis of a very similar problem with weaker stability

constraints. Section 5 presents a formal mathematical model of the addressed problem which is
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transformed into a MILP formulation in Section 6. Properties of reward sharing are discussed in

Section 7. Experimental results are discussed in Section 8 and the last section concludes this work.

2. Related Works

To the best of our knowledge, only two papers address the problem outlined in Section 1, considering

the special case with fixed sharing policies. This special case was introduced in Briand and Billaut

(2011) for the first time. Agnetis et al. (2012) proved that the problem with fixed sharing policies

is NP-hard. They proved that a strategy profile is a Nash equilibrium if and only if there does not

exist any increasing or decreasing residual cut which allows one agent to increase his profit with

respect to the daily reward. This notion of a cut will be further developed in the rest of the paper.

Recently, some papers tackled the issue of Nash equilibrium for different scheduling problems.

Averbakh (2010), studies the problem of scheduling activities of a project for a firm that competes

with another one that has to perform the same project. The profit that a firm gets from each activity

depends on whether the firm finishes the activity before or after its competitor. The objective of

that problem is to find a Nash equilibrium solution. Lee et al. (2012) take interest in coordination

mechanisms for the distributed scheduling of n jobs on m parallel machines, where each agent

selects a machine to process each of his jobs. Without a central authority to construct a schedule,

each agent acts selfishly to maximize his own utility. However, the overall system performance

is measured by a central objective which is different from the agents’ objective. In that paper

the authors give bounds for the price of anarchy defined as the maximum ratio of the objective

function value of a Nash equilibrium schedule versus that of an optimal coordinated schedule.

Estévez-Fernández (2012) deals with a cooperative project game. The paper analyzes situations in

which a project consisting of several activities is not realized as initially planned. If the project

is expedited, a reward arises. On the other hand, a penalty arises if the project is delayed. This

paper is focused on how to divide the total post-project reward (or penalty) among the activities.

Works dealing with resources sharing in multi-agent systems where the objective is to find Pareto

optima are more frequent. Recently, Elvikis and T’kindt (2012) studied a two-agent scheduling

problem on uniform parallel machines. They consider all jobs have the same processing time but

the speeds of machines are different. They assume that agents are selfish and their criteria are

conflicting due to resources sharing with the other agent. The authors propose a polynomial time

algorithm for the enumeration of the strict Pareto optima. Authors in Agnetis et al. (2004) also

deal with a scheduling problem considering two competing agents. They consider a single machine

scheduling environment, each agent managing his set of jobs and having his objective function,

which depends on the completion times of his jobs only. This work addresses the complexity of

various problems related to Pareto-optimal schedules set. Decentralized multi-project scheduling
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is considered in Homberger (2012). In this problem many distributed projects, sharing a set of

resources, have to be planned simultaneously by a group of local decision makers having their own

objective functions. The authors describe a coordination mechanism for managing the usage of

shared resources.

This paper considers the problem of finding a Nash equilibrium that minimizes the project

makespan, including when the customer can decide how to share the reward among the agents. We

further refer to this problem as P1. The key contributions are the following: the paper (i) provides

an optimal mixed integer linear programming (MILP) model for problem P1 using the simplified

conditions, (ii) extends the network flow model proposed by Phillips and Dessouky (1977) for

Project Time/Cost Trade-off problem to this multi-agent problem, (iii) shows complexity analysis

of two sub-problems where the notion of Nash equilibrium is substituted by a weaker constraint

(problem denoted as P2), (iv) discusses the influence of the reward sharing policy and derives useful

insights which should help project customers make the most of their funds in a project management

context and (v) provides a computational analysis of the MILP model on large instances to prove

the effectiveness of the approach.

3. Problem Statement
3.1. The Multi-agent Project Scheduling Problem

The multi-agent project scheduling environment is defined as a tuple
〈
G,A, P ,P ,C,π,w

〉
where G

is the project network, A represents the set of agents, P ,P ,C are parameters of project activities

and π,w represent the daily reward offered by the customer. The project network is an activity-

on-arc graph G = (X,U) where U is the set of activities and X is the set of project events. In the

set of nodes X = {1, . . . , n}, nodes 1 and n correspond to the project beginning and project end.

The set of arcs U can be decomposed into two subsets: UR and UD, corresponding respectively to

the real and dummy project activities. Such dummy activities are needed to correctly represent all

precedence constraints Demeulemeester and Herroelen (2002). UR is distributed among the given

set A= {A1, . . . ,Am} of m agents, and Tu denotes the set of activities assigned to agent Au. Each

activity (i, j)∈UR belongs to exactly one agent, i.e., Tu∩Tv = ∅ for any pair of agents (Au,Av)∈A2

such that u 6= v.

Every activity (i, j) ∈ U has a minimal duration p
i,j
∈ P , a normal duration pi,j ∈ P and a

unitary crashing cost ci,j ∈ C. For each activity (i, j) ∈ UR, the processing time pi,j belongs to[
p
i,j
, ..., pi,j

]
∩Z. It is an integer variable and its value is chosen by agent Au who owns it (meaning

(i, j) ∈ Tu). The crashing cost incurred by agent Au when shortening activity (i, j) ∈ Tu from pi,j

to pi,j is (pi,j − pi,j)ci,j. For each dummy activity (i, j)∈UD, we have p
i,j

= pi,j = 0 and ci,j = 0. It

is noteworthy that this linear crashing cost function can be easily generalized to piecewise linear

crashing cost (e.g., see Bachelet and Mahey (2003)).
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The strategy of an individual agent is the duration vector Pu of activities Tu. An agents’ strategy

profile S is a vector that gathers all individual agent strategies, i.e., S = (P1, . . . , Pm). For each

strategy profile S, the project makespan D(S) corresponds to the longest path in the graph G(S)

where length of arc (i, j) equals pi,j. Let wu be the percentage of the daily reward π allocated

to agent Au. The profit sharing policy chosen by the customer must verify
∑

Au∈Awu = 1, with

wu ∈ [0,1]. The resulting profit Zu(S) of an agent Au, when strategy profile S is applied, can be

computed with equation (1), where (D−D(S)) is the project makespan reduction and D is the

maximal project duration given by the longest path in the project network G when no activity is

crashed (i.e., when pi,j = pi,j, ∀(i, j)).

Zu(S) =wuπ
(
D−D(S)

)
−
∑

(i,j)∈Tu

ci,j(pi,j − pi,j), (1)

Assuming that each agent aims at maximizing his profit, the multi-agent project scheduling

problem can be formulated as the following multi-objective optimization problem

max
∀Au∈A

wuπ (D− (tn− t1)
)
−
∑

(i,j)∈Tu

ci,j(pi,j − pi,j)


s.t. ti + pi,j ≤ tj ∀(i, j)∈U,∑

Au∈A

wu = 1,

pi,j ∈
[
p
i,j
, ..., pi,j

]
∩Z ∀(i, j)∈ Tu,

ti ≥ 0 ∀i∈X,

0≤wu ≤ 1 ∀(i, j)∈U,

where, ∀i∈X, ti is the occurrence time of project event i.

The objective in this paper is to determine an optimal S∗ strategy profile and a sharing policy w∗u

such that the solution is a Nash equilibrium and the project makespan is minimized. This problem

will be further referred to as P1. Recall that for the special case where wu are fixed, P1 is known

to be NP-hard Agnetis et al. (2012). On the other hand, considering one agent only, P1 reduces to

the famous Project Time/Cost Trade-off problem Demeulemeester and Herroelen (2002), which is

polynomially solvable.

3.2. Problem Properties

In general, a Nash equilibrium is a stable strategy profile such that no agent is interested in

changing his strategy. Let S−u denote the strategies played by the (m− 1) agents except Au (i.e.,
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S−u = (P1, . . . , Pu−1, Pu+1, . . . Pm)). Then, focusing on a particular agent Au, S can be also written

as a couple (S−u, Pu).

Definition 1. For a given sharing policy wu, a strategy profile vector S = (Pu, S−u) is a Nash

equilibrium if for all agents Au and any other strategy P ′u, we have Zu(Pu, S−u)≥Zu(P ′u, S−u).

It is obvious that an algorithm looking for a Nash equilibrium can ignore all solutions where an

agent can increase his profit (by changing his strategy) without negatively affecting neither the

other agents nor the project makespan D. Let us refer to these strictly dominated solutions as poor

strategy profiles.

Definition 2. A strategy profile S with project duration D(S) and given wu is said poor if

there exists an alternative strategy S′ = (P ′u, S−u), only differing from S by the strategy taken by

Au and such that Zu(S)<Zu(S′), Zv(S)≤Zv(S′), for all Av 6=Au and D(S′) =D(S).

A poor strategy profile S = (Pu, S−u) can be easily transformed into a non-poor strategy profile

S′ = (P ′1, ..., P
′
m) by adapting Pu for each agent Au ∈A, while keeping durations of activities defined

by S−u, denoted pi,j(S−u), constant. For fixed w, S−u and D(S) =D(S′), a non-poor strategy P ′u

can be obtained by solving the linear program:

min
∑

∀(i,j)∈Tu

ci,j
(
pi,j − p′i,j

)
s.t. t′i + p′i,j ≤ t′j ∀(i, j)∈U,

p′i,j = pi,j(S−u) ∀(i, j)∈U \ Tu,

t′n− t′1 =D(S) ∀(i, j)∈U,

p′i,j ∈
[
p
i,j
, ..., pi,j

]
∩Z ∀(i, j)∈ Tu,

t′i ≥ 0 ∀i∈X.

Finding a Nash equilibrium is not easy in general, but using the notions of increasing and decreasing

residual cuts, the problem is made easier to tackle Briand et al. (2012). An increasing (resp. decreas-

ing) residual 1-n-cut ω = {ω+, ω−} is an arc set defined over G(S) partitioning the set of nodes

X into two sets Y and (X \ Y ) such that 1 ∈ Y , n ∈X \ Y , ω+ = {(i, j)∈U, i∈ Y ∧ j ∈ (X \Y )}

and ω− = {(i, j)∈U, i∈ (X \Y )∧ j ∈ Y }. Then increasing (resp. decreasing) residual 1-n-cut ω is

defined as follows.

Definition 3. A residual 1-n-cut ω is called increasing (resp. decreasing): a) if (i, j)∈ ω+ then

pi,j < pi,j (resp. pi,j > pi,j); and b) if (i, j)∈ ω− then pi,j > pi,j (pi,j < pi,j resp.).

In other words, an increasing residual 1-n-cut represents a set of activities ω = {ω+, ω−} such

that by increasing pi,j : (i, j)∈ ω+ by 1 and by decreasing pi,j : (i, j)∈ ω− by 1 the project makespan

is prolonged exactly by 1. Symmetrically, decreasing residual 1-n-cut represents a set of activities
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ω = {ω+, ω−} such that decreasing pi,j : (i, j) ∈ ω+ by 1 and increasing pi,j : (i, j) ∈ ω− by 1 causes

a project makespan shortening of exactly 1. These two operations where pi,j is increased (resp.

decreased) by 1 are denoted application of cut ω on S, i.e., it is a function ω(S) mapping S onto

S′.

In the multi-agent context, it is meaningful to project the crashing cost of the residual 1-n-cut

on each agent Au. Let costu(ω) be the projected crashing cost for agent Au using 1-n-cut ω. This

cost is the amount that agent Au saves/pays for increasing/decreasing the project makespan by 1

when modifying the durations of tasks (i, j)∈ Tu ∩ω. This price can be expressed as

costu(ω) =
∑

(i,j)∈Tu∩ω+

ci,j −
∑

(i,j)∈Tu∩ω−
ci,j. (2)

An increasing cut having maximal costu(ω) is denoted as optimal increasing cut ωinc(u). Similarly,

a decreasing cut having minimal costu(ω) is denoted as optimal decreasing cut ωdec(u). Using results

presented in Briand et al. (2012), a Nash equilibrium in project network G(S) can be expressed in

this way:

Proposition 1. For given sharing policy wu and a non-poor strategy profile S let ωinc(u) and

ωinc(u) be the optimal decreasing and increasing cuts respectively. Then S is a Nash equilibrium if

and only if, for all agents Au ∈A

costu(ωdec(u))≥wuπ

and

costu(ωinc(u))<wuπ.

The proof of this proposition is detailed in Briand et al. (2012). In this paper, an increas-

ing/decreasing cut ω is said profitable for agent Au if its use leads to a growth of the profit Zu.

Using this term, Proposition 1 can be formulated such that: for given sharing policy wu a non-poor

strategy profile S is a Nash equilibrium if and only if there is no profitable cut for any agent.

3.3. An Illustrative Example

For illustration, let us consider the activity network of Figure 2(a) with 5 activities distributed

among agents A1 and A2 such that T1 = {a, c} and T2 = {b, d, e}. Therefore G = (X = {t1, ...t4},U =

{UR = {a, ..., e}} ∪ {UD = ∅}). For simplicity, we consider fixed wu and assume that the customer

and agents have agreed to share the daily reward π= 120 fairly: w1 =w2 = 0.5.

When the durations of all activities are set to their maximal value, i.e., S = (pa, pb, pc, pd, pe) =

(7,9,3,8,5), the project makespan is 15. With the strategy profile S′ = (7,9,2,7,5), the makespan

becomes 14 and profits are Z1(S′) = Z2(S′) = 40. The makespan can be further reduced to 13

with the strategy profile S′′ = (6,9,3,7,4), leading to Z1(S′′) = 50 and Z2(S′′) = 50. S′′ is efficient
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b

c

e

d

pi,j

pi,j
ci,j Agent A1

Agent A2

t1
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t3

t4

7

9

7

5

2

pi,j

(b) Strategy profile S´

t1

t2

t3

t4

6

9

7

4

3

t1

t2

t3

t4

6

9

8

5

3

ω : (cost1(ω) = 0, 

       cost2(ω) = 70)

(c) Strategy profile S´´ (d) Strategy profile S´´´

(a) Instance

Figure 2 A multi-agent activity network with two agents and five activities

because it corresponds to a Pareto optimum that maximizes the profit of both agents. Nevertheless,

it is not stable: agent A2 can improve his profit, to the detriment of A1, by simply increasing

back the duration of d and e, which leads to the strategy S′′′ = (6,9,3,8,5), with makespan 14

and profits Z2(S′′′) = 60 and Z1(S′′′) = −10. On the other hand, the strategy S′, which is not a

Pareto optimum, is stable since no agent is able to improve his profit by himself (i.e., it is a Nash

equilibrium). Note that it is not possible to find another Nash equilibrium with a shorter makespan,

therefore S’ is the desired solution.

4. Problem Complexity

Finding a Nash equilibrium that minimizes the project makespan when the profit sharing has been

predefined is already NP-hard in the strong sense Briand et al. (2012). Since introducing variable

profit sharing generalizes that problem, our problem P1 is NP-hard as well.

In this section we discuss the complexity of two problems simpler then P1. We intend to find out

which constraints make the problem NP-hard. In both problems we substitute the Nash equilibrium

constraint by a weeker constraint stating that the profit of all agents has to be non-negative, i.e.,

Zu(S)≥ 0, ∀Au ∈A. The first one is the problem of finding minimal makespan when the profit of

all agents is non-negative and the duration of activities is a real number. This problem is denoted

PR
2 . The second problem considers integer activity durations and is denoted by P I

2.

Proposition 2. The multi-agent project scheduling problem which aims at minimizing D(S)

under the constraint that agents have nonnegative profits Zu(S)≥ 0, with pi,j ∈R+ (problem PR
2 ),

can be solved in polynomial time.
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Proof Problem PR
2 can be described with the following non-linear mathematical model.

min tn− t1 (3)

s.t.

tj − ti− pi,j ≥ 0 ∀(i, j)∈U (4)∑
Au∈A

wu = 1 (5)

wuπ
(
D− (tn− t1)

)
−
∑

(i,j)∈Tu

ci,j(pi,j − pi,j)≥ 0 ∀Au ∈A (6)

where

ti ∈R, pi,j ∈
[
p
i,j
, pi,j

]
, wu ∈ [0,1]

The model is not linear due to the multiplication wu(D− (tn− t1)) in constraints (6). The multi-

plication can be linearized using substitutions Wu =wu(D− (tn− t1)) where Wu is a new decision

variable. Constraints (6) then become Wuπ−
∑

(i,j)∈Tu ci,j(pi,j − pi,j)≥ 0, ∀Au ∈A. Consequently,

constraint (5) transforms into
∑

Au∈AWu = (D− (tn− t1)). The resulting mathematical model has

only continuous decision variables and linear constraints, therefore problem PR
2 can be solved using

linear programming in polynomial time. �

Proposition 3. The multi-agent project scheduling problem (P I
2) where agents have nonnegative

profit Zu(S)≥ 0 and durations are integer pi,j ∈Z+ and D(S)≤ λ is strongly NP-complete.

Proof The complexity of problem P I
2 can be shown using a reduction from the 3-PARTITION

problem which is known to be NP-complete in the strong sense Garey and Johnson (1990). A

3-PARTITION problem consists in deciding whether a given set ζ = {a1, ..., al, ..., aK} of K = 3k

positive integers, such that
∑K

l=1 al = kB and B/4≤ al <B/2, can be partitioned into k subsets

ζ1, ..., ζu, ..., ζk that verify: |ζi|= 3 and
∑

j∈ζi
aj =B, for all i∈ 1, ...k.

An instance of 3-PARTITION polynomially reduces to an instance of multi-agent project schedul-

ing problem by constructing a project network G as follows (see Figure 3). Network G considers k+1

agents. Each number al ∈ ζ is represented by a chain of k activities, with pi,j ∈
{
p
i,j

= 0, pi,j = 1
}

and ci,j = al, where the order of activities determines their affiliation to the agents, i.e., the first

activity belongs to A1, the second one to A2 etc. Each first activity of the chain has a predecessor

dummy activity starting at node 1. Each last activity of the chain has a successor dummy activity

ending at node n. In this way, we have a network composed of K chains connected with the nodes

representing the project beginning (node 1) and the project end (node n). Moreover, there is one

extra activity from node 1 to node n belonging to dummy agent A0 with p
i,j

= pi,j = k − 1 and

ci,j = 0. This arc represents the project makespan lower bound. The daily reward is π = kB and

the profit sharing policy is fixed to wu = 1/k ∀Au ∈A.
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t1

Agent A1
Agent A2

Agent A0

([0, 1], a1)

([0
, 0

], 0
)

([0, 1], a1) ([0, 1], a1)

tn

([0, 1], a2) ([0, 1], a2) ([0, 1], a2)

([0, 1], aK) ([0, 1], aK) ([0, 1], aK)

([k-1, k-1], 0)

([0, 0], 0)

([0, 0], 0)

([0, 0], 0)

([0, 0], 0)
([0, 0], 0)

([0, 0], 0
)

([0
, 0

], 
0)

Agent Ak

A1 A2 Ak

Figure 3 Reduction from 3-PARTITION problem

There are only two feasible project makespans D ∈ {k− 1, k} on the resulting network, because

each chain of activities contains k activities with pi,j = 1 whereas the extra activity has p
i,j

= pi,j =

k− 1. We want to know whether it exists a profitable strategy profile such that D(S)≤ λ.

If D(S) = k − 1, it is obvious that exactly one activity of each chain has pi,j = 0 while the

rest of activities has pi,j = 1. If there are two activities on the same chain with pi,j = 0 then

obviously the solution is poor. In the case D(S) = k − 1, each constraint (6) transforms into

B ≥
∑

(i,j)∈Tu ci,j(pi,j − pi,j), i.e., the sum of crashing costs of activities with pi,j = 0 belonging

to agent Ak is smaller or equal than B. Since it holds for each agent and
∑K

l=1 al = kB, then∑
(i,j)∈Tu ci,j(pi,j−pi,j) =B. Moreover, since B/4≤ al <B/2 there are exactly three activities with

pi,j = 0 belonging to agent Au. Therefore, the corresponding strategy profile S is a solution of the

3-PARTITION problem, such that when an activity (i, j) that belongs to agent Au and to chain l

has a duration pi,j = 0, then the number al belongs to subset ζu.

On the other hand, if D(S) = k, it means that a strategy profile S′ with D(S′) = k− 1 does not

exist. Therefore, there is no strategy profile S′ such that
∑

(i,j)∈Tu ci,j(pi,j−pi,j) =B for each agent

Au and the 3-PARTITION problem has no a feasible solution. �

5. Formal Mathematical Model

In this section, a mathematical formulation is given for solving problem P1. Recall that P1 aims at

finding a Nash equilibrium that minimizes D(S). The next section shows how it transforms into

the MILP. Let us consider the mathematical model (7)-(10). We are going to prove that it solves

P1.

min

(tn− t1) +

∑
∀(i,j)∈U ci,j

(
pi,j − pi,j

)
1 +

∑
∀(i,j)∈U ci,j

(
pi,j − pi,j

)
 (7)

s.t.
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tj − ti− pi,j ≥ 0 ∀(i, j)∈U (8)∑
Au∈A

wu = 1 (9)

costu(ωinc(u))<wuπ ∀Au ∈A (10)

where

ti ∈R ∀i∈X

pi,j ∈
[
p
i,j
, ..., pi,j

]
∩Z ∀(i, j)∈U

wu ∈ [0,1] ∀Au ∈A.

As before, decision variables ti are associated with occurrence times of the project events.

Variables pi,j and wu correspond to the strategy profile S and the profit sharing, respectively.

Constraints (8) model precedence relations between project activities. Constraint (9) enforces the

consistency of the daily reward sharing among the agents. The non-explicit (and thus not linear)

constraints (10) impose that no increasing residual 1-n-cut ω with a projected profit costu(ω)

greater or equal to wuπ (see Proposition 1) exists in solution S. Decreasing cuts do not need to be

bounded since the project makespan is minimized, as explained in Proposition 5.

The objective-function (7) primarily aims at minimizing the project makespan D(S) = tn − t1.

Expression ∑
∀(i,j)∈U ci,j

(
pi,j − pi,j

)
1 +

∑
∀(i,j)∈U ci,j

(
pi,j − pi,j

) , (11)

being strictly smaller than 1, forces the optimal solution to be non-poor. In fact, it behaves as a

secondary objective function ensuring that, for the optimal project makespan D, the algorithm

chooses a strategy profile S where
∑
∀(i,j)∈U ci,j

(
pi,j − pi,j

)
is minimal. Since processing times of

activities are integer numbers, then the optimal project makespan D(S∗) is integer as well. Nor-

malizing
∑
∀(i,j)∈U ci,j

(
pi,j − pi,j

)
to be strictly smaller than 1, the second objective can become a

penalization of the objective function in the mathematical model. More formally:

Proposition 4. If S is a solution of mathematical model (7)-(10) then S is a non poor strategy

profile.

Proof Let S be a strategy profile obtained by solving mathematical model (7)-(10). If S is

poor, then, by definition, there exists S′ = (P ′u, S−u), only differing from S by the strategy taken

by Au, such that Zu(S) < Zu(S′), Zv(S) ≤ Zv(S′), for all Av 6= Au and D(S′) = D(S). Therefore∑
Au∈AZu(S)<

∑
Au∈AZu(S′). Using equation (1) the total profit can be expressed as
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∑
Au∈A

wuπ (D−D(S)
)
−
∑

(i,j)∈Tu

ci,j(pi,j − pi,j(S))

<

∑
Au∈A

wuπ (D−D(S′)
)
−
∑

(i,j)∈Tu

ci,j(pi,j − pi,j(S′))

 . (12)

Since D(S) =D(S′), Equation (12) can be further simplified∑
(i,j)∈U

ci,j(pi,j − pi,j(S))>
∑

(i,j)∈U

ci,j(pi,j − pi,j(S′)). (13)

Equation (13) shows that objective function (11) is greater for S than for S′. But it leads to a

contradiction with the assumption that the objective function is minimal for S. Therefore S has

to be a non poor strategy profile. �

Now, let us show that the mathematical model (7)-(10) solves the problem P1. Using Proposi-

tion 1, we show that minimizing objective function (7), while imposing that there is no profitable

increasing residual cut, satisfies that there cannot be a profitable decreasing cut, i.e., the solution

of the mathematical model is a Nash equilibrium.

Proposition 5. If S is a solution of mathematical model (7)-(10) then S is a Nash equilibrium.

Proof Let S be a non-poor strategy profile obtained by solving mathematical model (7)-(10).

Assume that S has an optimal decreasing residual 1-n-cut ω
dec(u)
1 such that costu(ω

dec(u)
1 )<wuπ.

Denote a strategy profile S′ = ω
dec(u)
1 (S) a solution obtained by application of ω

dec(u)
1 . Since D(S′) =

D(S)− 1, solution S′ must contain a profitable increasing 1-n-cut ω
inc(v)
2 . This cut is either (i)

profitable for agent Au, i.e. Av = Au, or (ii) profitable for agent Av such that Av 6= Au. In both

cases, using ω
inc(v)
2 , another strategy profile S′′ = ω

inc(v)
2 (S′) can be obtained.

(i) When ω
inc(u)
2 is profitable for agent Au, i.e., costu(ω

inc(u)
2 ) ≥ wuπ, we can express the

profit of agent Au after applying ω
inc(v)
2 as follows. Zu(S′′) ≥ Zu(S′) − wuπ + costu(ω

inc(u)
2 ) ≥(

Zu(S) +wuπ− costu(ω
dec(u)
1 )

)
− wuπ + costu(ω

inc(u)
2 ) = Zu(S) − costu(ω

dec(u)
1 ) + costu(ω

inc(u)
2 ).

Since both 1-n-cuts were profitable therefore costu(ω
dec(v)
1 )<wuπ and costu(ω

inc(u)
2 )≥ wuπ. Con-

sequently Zu(S′′)>Zu(S). Since the strategy and therefore profit of other agents stayed the same

the objective function (11) is higher for S′′ than for S. But it lead to a contradiction with the

assumption that the objective function is minimal for S. Therefore S can not contain a decreasing

1-n-cut which is profitable for agent Au.

(ii) If ω
inc(v)
2 is profitable for agent Av such that Av 6= Au then it means that ω

inc(v)
2 has to

involve some activities that become critical after applying cut ω
dec(u)
1 . Cut ω

dec(u)
1 affects activities

belonging to Au only. Decreasing the project makespan can create new critical 1-n-paths. Activities
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that become newly critical can belong to an arbitrary agent but their pi,j = pi,j. It means that their

duration can only be decreased. But this fact cannot increase costu(ω
inc(v)
2 ) in S′ w.r.t. S. Since

there is no profitable ω
inc(v)
2 in S therefore there the same condition holds for strategy profile S′.

But this is in contradiction with a fact that S′ contains an increasing profitable 1-n-cut.

Since there is no profitable decreasing 1-n-cut in S for any agent, this solution states a Nash

equilibrium. �

The last proposition shows that our model solves problem P1 since the mathematical model

minimizes D(S).

6. A MILP for P1

This section focuses on the linearization of constraints (10). We propose to determine ωinc(u)

using a finite number of primal-dual constraints. The explanation of this approach is decomposed

into 3 main steps. Subsection 6.1 shows a residual network used to determine increasing cuts.

Subsection 6.2 details the additional primal-dual constraints used in the MILP model to determine

maximal residual 1-n-cuts from the residual network. Finally, Subsection 6.3 describes how the

residual network is modeled in the MILP.

6.1. Residual Network

An increasing 1-n-cut ω = {ω+, ω−} for a non-poor strategy profile S can be defined as a set of

activities such that by increasing pi,j of activities (i, j)∈ ω+ by one and decreasing pi,j of activities

(i, j) ∈ ω− by one, it will result into strategy S′ = ω(S) with D(S′) =D(S) + 1. Of course, due to

the bounds pi,j (resp. p
i,j

), some activity durations may not allow anymore increase (resp. decrease)

and therefore, these activities cannot be in ω+ (resp. ω−). To determine increasing 1-n-cuts, we

consider a residual network where crashing costs ci,j are substituted by forward and backward

residual costs cui,j, c
u
i,j.

The residual network Nu(S) with respect to an agent Au ∈ A is a tuple
〈
G(S), cui,j, c

u
i,j

〉
where

G(S) is the project activity network with strategy profile S. Element cui,j ∈R+ and cui,j ∈R+ are the

residual costs. These costs reflect the capabilities of corresponding activities to increase or decrease

the length of a critical 1-n-path. A critical 1-n-path in our problem is a path from node 1 to node n

such that the sum of pi,j of activities (i, j) belonging to the path is equal to the project makespan.

Activities on a critical 1-n-path are called critical activities.

Residual costs, on residual network Nu(S), are given by equations (14) and (15). For activities

(i, j)∈ Tu the values are the same as in Phillips and Dessouky’s work Phillips and Dessouky (1977)

while for activities (i, j) /∈ Tu we have to consider different values, as explained below. It is obvious

that, the price of 1-n-cut ω is then given by

costu(ω) =
∑

(i,j)∈Tu∩ω+

ci,j −
∑

(i,j)∈Tu∩ω−
ci,j,
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which exactly corresponds to Equation (2). In fact these equations extend Phillips and Dessouky

(1977) for Project Time/Cost Tradeoff problem since they use the same residual network in every

step of their cut search algorithm without considering agents. Here we extend this approach to the

multi-agent problem P1.

cui,j =


0 if (i, j)∈ Tu :

(
(i, j) is not critical∨ pi,j = p

i,j

)
,

ci,j if (i, j)∈ Tu :
(

(i, j) is critical∧ pi,j > pi,j
)
,

0 if (i, j) /∈ Tu.

(14)

cui,j =


ci,j if (i, j)∈ Tu :

(
(i, j) is critical∧ pi,j < pi,j

)
,

∞ if (i, j)∈ Tu :
(
(i, j) is not critical∨ pi,j = pi,j

)
,

0 if (i, j) /∈ Tu : (i, j) is not critical,

∞ if (i, j) /∈ Tu : (i, j) is critical.

(15)

A forward residual cost of 0 means that the arc does not matter in the computation of the

cost of forward arcs (see Equation (14)). This happens if the corresponding task (i, j) is not on a

critical 1-n-path (and thus increasing its duration by 1 cannot impact the project duration) or if

pi,j cannot be further increased (because pi,j = pi,j) or if (i, j) belongs to another agent. Otherwise

a cost cui,j = ci,j reflects the fact that the agent can make a profit by increasing the activity duration

since it belongs to a critical 1-n-path and pi,j ≤ pi,j.

In a similar way, a backward residual cost of 0 means that the arc does not matter in the

computation of the cost of backward arcs for agent u, and thus can be removed from the residual

network, which happens if the task is not on a critical 1-n-path or does not belong to the agent (see

Equation (15)). Cost cui,j = ci,j reflects the fact that the agent can make a profit by decreasing the

activity duration. Finally, setting cui,j =∞ ensures that any 1-n-cut that uses (i, j) as a backward

arc has a cost small enough to be disregarded. Indeed such 1-n-cut would have costu < 0 and thus

the Equation (10) would be trivially verified for this cut. This is the case of tasks that do not

belong the agent although they are on a critical 1-n-path, or of tasks that belong to the agent

but can no longer decrease their duration (already at their minimal duration), or of tasks that

belong to the agent but are not on a critical 1-n-path (since all tasks of ω+ belong to a critical

1-n-path). All cuts containing these arcs must be disregarded in order to satisfy the assumption

that increasing by one the duration of tasks in ω+ and decreasing by one the duration of tasks in

ω− causes a project makespan increase of precisely one. For implementation purpose∞ is replaced

in MILP by C =
∑

(i,j)∈U ci,j as an upper bound of any cut cost.

Having defined the residual network Nu(S), we need to compute its maximum increasing cut

ωinc(u) to obtain the left-hand-side of equation (10).
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6.2. Maximal Cut in the Residual Network

The main idea of our MILP model lies in determination of costu(ωinc(u)) in Equations (10) by

computing the maximal capacity of a 1-n-cut in Nu(S). To compute costu(ωinc(u)), our approach

uses the well-known Max-Flow-Min-Cut theorem Ford and Fulkerson (1956), which infers that

the maximum value of a 1-n-flow equals the minimum capacity of a 1-n-cut, and conversely, the

minimum value of an 1-n-flow equals the maximal capacity of a 1-n-cut (defined by Equation (6.1)).

Assuming residual network Nu(S), equations (16)-(17) define a 1-n-flow fui,j ∈R+ in the network

while equations (18)-(20) define 1-n-cut, denoted as ω, partitioning the set of nodes X into two

subsets Y and (X \Y ).∑
∀(k,i)∈U

fuki =
∑

∀(i,k)∈U

fuik ∀i∈X \ {1, n} ,∀Au ∈A (16)

cui,j ≤ fui,j ≤ cui,j ∀(i, j)∈U,∀Au ∈A (17)

The definition of a 1-n-cut ω requires binary decision variables γui , α
u
i,j, and βui,j. Variable γui = 1

iff i∈ Y (note that 1∈ Y ), else γui = 0 (note that n /∈ Y ). Variables αui,j, β
u
i,j specify the orientation

of the arc in the 1-n-cut, meaning αui,j = 1 (resp. βui,j = 1) iff (i, j) ∈ ω+ (resp. (i, j) ∈ ω−). This

is very important, since from the constraint (10) point of view, different arc orientation means

different arc cost.

αui,j −βui,j − γui + γuj ≤ 0 ∀(i, j)∈U,∀Au ∈A (18)

γu1 = 1 ∀Au ∈A (19)

γun = 0 ∀Au ∈A (20)

It is not possible to integrate the minimization of the total network flow directly as a set of linear

constraints, but it is possible to add previous constraints (16)-(20) and then force the network flow

to be equal to the capacity of a 1-n-cut. Indeed, because of the Max-Flow-Min-Cut theorem, that

flow would be forced to be minimal. Since a flow is always less or equal to a cut capacity, such

equality can be achieved simply by adding the inequality (21), whose right-hand side corresponds

to the 1-n-cut cost in the residual network Nu(S).∑
∀(1,k)∈U

fu1,k ≤
∑
∀(i,j)∈U

αui,jc
u
i,j −

∑
∀(i,j)∈U

βui,jc
u
i,j ∀Au ∈A (21)

The right-hand side of (21) contains multiplications of two variables, namely αui,jc
u
i,j and βui,jc

u
i,j.

Fortunately, since αui,j and βui,j are binary, the multiplication can be easily linearized (see Appendix).

Finally,
∑
∀(1,k)∈U f

u
1,k is equal to costu(ωinc(u)) and therefore constraints (10) can be replaced in

the MILP by ∑
∀(1,k)∈U

fu1,k <πwu ∀Au ∈A. (22)
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6.3. Activities Forming Increasing Cuts

Values of forward and backward residual cost cui,j, c
u
i,j in the residual network are defined by equa-

tions (14) and (15). In this section, we show how these values can be determined by means of a

reformulation of precedence constraints. In the mathematical model, constraints (8) can be substi-

tuted by constraints (23) and (24). The objective is to determine a set of activities whose processing

times increase or decrease will impact the project makespan. The new formulation requires the

introduction of four new decision variables: (i) xi,j ∈ {0,1} is equal to 1 iff processing time pi,j can

be increased, (ii) yi,j ∈ {0,1} is equal to 1 iff processing time pi,j can be decreased, (iii) zi,j ∈ {0,1}

is equal to 1 iff activity (i, j) is on a critical 1-n-path from node 1 to node n and finally, (iv)

si,j ∈R+ is the slack time, i.e., the time difference between the end of the activity (i, j) and event

tj.

tj − ti− pi,j − si,j = 0 ∀(i, j)∈U (23)

ε− zi,j ≤ si,j ≤ si,j (1− zi,j) ∀(i, j)∈U (24)

Equations (23) compute the slack times si,j. Constraints (24) express that si,j = 0 iff zi,j = 1,

otherwise si,j > 0. In these equations, si,j is an upper bound of si,j, which can be taken equal to

the project makespan if no activity is crashed, meaning si,j =D. On the other hand, constant ε

corresponds to a minimal slack value (when zi,j = 0) that can be obviously set to 1/n.

A 1-n-path is critical iff every activity (k, l) on the path verifies zk,l = 1. This property is obtained

by adding constraints (25) and (26) into our model, so as to ensure that anytime zi,j = 1, then

there exist activities (k, i) and (j, l) such that zk,i = zj,l = 1.

zi,j ≤
∑

∀(k,i)∈U

zk,i (i, j)∈U : i > 1 (25)

zi,j ≤
∑
∀(j,l)∈U

zj,l (i, j)∈U : j < n. (26)

For determining if activity (i, j) can form an increasing 1-n-cut, we use zi,j, but also xi,j and yi,j

that are determined by introducing constraints (27) and (28) into our model.

xi,j ≤
(
pi,j − pi,j

)
≤
(
pi,j − pi,j

)
xi,j ∀(i, j)∈U (27)

yi,j ≤
(
pi,j − pi,j

)
≤
(
pi,j − pi,j

)
yi,j ∀(i, j)∈U. (28)

Finally, constraints (29) can be added to eliminate some strictly dominated strategies since if an

activity (i, j) is not on a critical 1-n-path, then there is no need to decrease its processing time,

i.e., pi,j = pi,j.

zi,j ≥ xi,j ∀(i, j)∈U (29)
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Given xi,j, yi,j and zi,j, residual costs cui,j, c
u
i,j can be easily computed from equations (14) and (15).

The complete MILP model is summarized in Appendix A. It involves a polynomial number of

variables and constraints with respect to n and m. Note that in addition to all variables described

in this section, the MILP model also contains auxiliary variables φui,j and ϕui,j resulting from the

linearization of constraints (21). Although the model is quite huge, the performance of the model

is good as illustrated in experimental results of Section 8.

7. Reward Sharing Policy

An important decision in the multi-agent project scheduling problem is the sharing policy, corre-

sponding to the vector wu that specifies how the daily reward from the customer is to be distributed

among agents. The MILP model from Section 6 finds the optimal sharing policy for a given data

set, meaning the best dispatch of the reward, so as to minimize the project makespan whilst ensur-

ing the stability of the solution (Nash equilibrium). Of course, this model can also handle special

cases where the sharing policy is fixed: the percentage to be received by each agent is predefined

and non-modifiable.

There are at least three main reasons to study fixed policies. First, a better understanding of

the resulting problem, which was introduced in Briand and Billaut (2011) and proven NP-hard

in Agnetis et al. (2012), can be gained. Second, the agents may already have an agreement or

predefined rules, in which case the customer would not be able or allowed to reach directly each

individual agent. Third and finally, a customer, in control of the reward sharing or in direct contact

with every agent, may want to be advised on clear and common guidelines to be followed by his

employees on every project they are in charge of on his behalf. Regardless of the motivation for

fixed sharing policies, these can be easily implemented with our MILP model, by assigning the

variables wu to the predefined values wu =wfixed
u .

In this paper, we consider five fixed sharing policies, to be studied and analyzed: random,

egalitarian, activity number-based, total cost-based and available cost-based. The random pol-

icy, which consists in choosing wu values randomly for each agent Au, serves as a baseline: an

important difference between its results and the results from “smarter policies” or even the opti-

mal policy, would highlight the need for good sharing policies, whereas a negligible difference

in the results would call into question their relevance. The egalitarian policy splits the reward

equally between the m agents
(
wu = 1

m

)
. The three remaining “smarter” fixed policies take into

account the proportional importance of each agent. The activity number-based policy computes

wu = |Tu|/ |UR| prioritizing agents in charge of most of the activities. The total cost-based policy

computes wu =
∑
∀(i,j)∈Tu ci,j/

∑
∀(i,j)∈UR

ci,j prioritizing agents who pay high crashing costs. The
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available cost-based policy computes wu =
∑
∀(i,j)∈Tu ci,j

(
pi,j − pi,j

)
/
∑
∀(i,j)∈UR

ci,j

(
pi,j − pi,j

)
pri-

oritizing agents that have both high crashing cost tasks and many crashable days available.

Other well known cost or benefit sharing policies from the literature on delayed or expedited

project problems Hougaard (1990), Moulin and Shenker (1992), Sprumont (2008) could not be used

because in such problems, computations are done a posteriori, when all tasks have already been

executed, to share the resulting surplus or extra-cost, whereas in our case we are computing the

desired tasks durations a priori. For example, it is not possible to fix our coefficients wu according

to the classical serial surplus sharing mechanism, because this mechanism requires to rank each

1-n-path of the graph in increasing order of remaining slack, which is not possible in our case since

we do not know in advance what would be the duration of a path and, even less so if it will be

critical or not. It may still be possible to adapt some of the ideas or principles to our problem:

for example, we could evaluate the importance of each agent Au, either by computing the project

duration that can be achieved if Au cratches his activities whilst the other agents do not; or by

computing the project duration if all agents except Au cratch their activities. Then all agents could

be ranked in order of importance and some of the classical surplus sharing rules could be applied.

However, this approach would require several computations, which defeat the purpose of a simple

and practical rule. There is no interest in applying too complex or too elaborate rules that do not

even guarantee optimality, because we already have a MILP model that can provide the optimal

solution.

The goal when studying the chosen fixed sharing policies is twofold: to get a better understanding

of the influence of this parameter on the solution of the problem in order to derive useful insights

for project customers, and to deduce simple yet efficient guidelines that customers could use in

practice. Nevertheless, an explanation on why fixed sharing policies cannot provide (near-)optimal

solutions is provided in Subsection 8.3.5.

8. Experimental Results

The algorithm performance was evaluated on a PC with Windows Server 2008 R2 Enterprise

OS, 8 GB of RAM, a processor AMD Phenom II X4 945 of 3.0 GHz CPU. The MILP model

was implemented in IBM ILOG CPLEX Optimization Studio 12.3 and solved with the CPLEX

solver. The project makespan upper bound was determined using the heuristic from Briand et al.

(2012). The objective of this heuristic is not to minimize the project makespan, but to the best of

our knowledge, this is the only solution previously available for the addressed problem. Since no

standard benchmark instances exist for our problem, we generated new instances (see web page

blinded for peer review).
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Subsection 8.1 explains how instances were generated, while Subsection 8.2 discusses the effi-

ciency of our MILP model. The remaining subsections focus on the influence of the daily reward

and sharing policies to derive useful recommendations for customers.

8.1. Benchmark Instances

Problem instances were built up using RanGen1 Demeulemeester et al. (2003) generator. For each

problem size, 100 instances were generated with an Order Strength (OS) value = 0.3. Parameter

OS represents the number of precedence relations divided by the theoretical maximum number of

precedence relations in the network. As RanGen1 produces activity-on-node networks, we converted

them to activity-on-arc networks using the algorithm described in Demeulemeester and Herroelen

(2002).

The activity duration generated by RanGen is considered as minimal duration p
i,j

. The normal

activity duration is then set as pi,j = p
i,j

+ rand(20), where rand(20) is an integer random number

between 0 and 20. The activity crashing cost ci,j is computed as an integer random number between

10 and 200.

Because problem instances are generated from activity-on-nodes networks, the number of activ-

ities in the resulting activity-on-arc network varies significantly from an instance to another, even

if both have the same number of real activities. Recall that dummy activities are necessary to

represent precedence constraints. In the remainder of this section, the term “number of activities”

will refer to the number of real activities UR. Of course, the total number of activities |U | in the

network is typically much higher than |UR|.

The (real) activities are assigned to agents randomly. In our instances we consider 5 agents unless

it is specified otherwise. The daily reward π is determined with respect to the maximal cut cost

C(ωmax). This cost is given by equation (2) when affiliations to agents are ignored. It represents the

theoretical most expensive cut that can be used to decrease project makespan. The daily reward

π is determined such that π/C(ωmax)≤ 1.

8.2. Analysis of the resolution time of the MILP

To illustrate the influence of the number of real activities UR on the resolution time, we consider

5 sets of benchmark instances for |UR| = {20,40,60,80,100} with a fixed daily reward π = 0.05 ·

C(ωmax). Each benchmark set consists of 100 problem instances considering 5 agents + 1 virtual

agent for dummy activities. The results are summarized in Table 1. It shows the average, the

minimal and the maximal CPU time needed to solve the instances for each |UR|. In addition, it also

shows the average number of all activities U and nodes X. Two observations can be made: first,

the total number of activities is significantly larger than the number of real activities, and second,
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|UR| avg |U | avg |X| avg CPUtime min CPUtime max CPUtime
[−] [−] [−] [s] [s] [s]

20 50.57 20.28 0.941 0.031 2.901
40 162.40 47.24 2.046 1.248 4.852
60 327.41 76.44 5.908 2.106 11.029
80 538.35 106.15 13.627 7.192 32.402

100 790.85 135.05 54.393 12.309 304.528
Table 1 ILP model resolution time depending on the number of activities
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Figure 4 ILP model performance for n = 100: percentage of instances solved over time

the solving phase remains very fast since we are able to solve instances with 100 real activities

(almost 800 total activities!) in less than 1 minute on average.

Figure 4 presents how many instances (in %) have been solved in a given amount of time for

|UR| = 100. The results show that the MILP model is able to solve significantly large instances.

Although our MILP model is quite large, this positive behavior can be explained by the fact that

the model is composed of several totally unimodular sub-matrices that make the solution search

faster. However, the time complexity is quite sensitive to the daily reward parameter, as studied

in subsection 8.3.2.

8.3. Analysis of solutions

To compare the sharing policies (optimal, random, egalitarian, activity number-based, total cost-

based, and available cost-based) and to analyze the influence of the daily reward, we used the

set of benchmark instances with |UR| = 60, 5+1 agents, varied the customer daily reward π =

C(ωmax)× [0, 0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.7, 1], considered the optimal and the five fixed sharing

policies from Section 7, then recorded the project makespan, price of stability and CPU time
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Figure 5 Project makespan in function of the customer reward

obtained. Then, all data have been normalized before aggregation to facilitate data mining and

ensure the accuracy of subsequent analysis: ratio D/D gives the average relative project shortening

with respect to the maximal project duration (the lower the better), ratio π/C(ωmax) reflects the

relative daily reward available (the higher the more money the customer has spent overall).

The results are summarized in Table 2 as well as figures 5 to 7:

• Figure 5 shows the average relative project makespan reduction in function of the relative

daily customer reward,

• Figure 6 shows the evolution of the average resolution time in function of the relative daily

customer reward,

• Figure 7 shows the evolution of the average price of stability (PoS) in function of the relative

daily customer reward. Recall that PoS is defined as a ratio D(S∗)/D(S∗glob) where S∗ is the optimal

Nash solution and S∗glob is the global optimal solution obtained by the MILP model described in

the proof of Proposition 2 but considering pi,j ∈Z,

• Table 2 details the price of stability, the relative Nash makespan and the relative global optima

makespan obtained for the three selected policies, in function of the relative daily reward available.

Results for activity number-based and total cost-based sharing policies are not shown in the

graphs since these results are very similar to results of egalitarian sharing policy. The subsequent

subsections analyze the results obtained.

8.3.1. Influence of the Daily Reward on the project makespan From the customer

point of view, the daily reward π is an important parameter. Of course, it can be expected that the
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larger π, the shorter the project makespan. However, the customer may not want to waste money

by paying more than what is necessary for reaching a given makespan, or worse, by paying more

without any makespan improvement.

Figure 5 shows the evolution of the project makespan shortening in function of the customer

reward for all considered sharing policies. For now, let’s focus only on the heuristic and the optimal
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random available cost optimal
π

C(ωmax)
avg D(S∗)

D
avg PoS avg D(S∗)

D
avg PoS avg D(S∗)

D
avg

D(S∗glob)

D
avg PoS

[−] [−] [−] [−] [−] [−] [−] [−]

* 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.01 1.00 1.12 0.99 1.11 0.94 0.90 1.05
0.05 0.93 1.63 0.92 1.62 0.77 0.58 1.35
0.1 0.83 2.07 0.81 2.01 0.68 0.41 1.69
0.2 0.72 1.90 0.64 1.69 0.56 0.38 1.48
0.3 0.65 1.71 0.54 1.42 0.48 0.38 1.26
0.4 0.60 1.58 0.47 1.24 0.42 0.38 1.12
0.5 0.56 1.48 0.42 1.11 0.39 0.38 1.03
0.7 0.52 1.37 0.39 1.02 0.38 0.38 1.00

1 0.47 1.24 0.38 1.01 0.38 0.38 1.00

Table 2 Overall sharing policy comparison

policy, the others policies will be analyzed in Section 8.3.4. As expected, the makespan decreases

when the reward increases. However, it is important to note that (i) the correlation is not linear, (ii)

until approximately 0.3C(ωmax) every additional reward results into significant makespan decrease,

but after 0.3C(ωmax), each additional reward leads to less and less improvement to the makespan

until 0.7C(ωmax), after which almost no improvement is obtained, of course, (iii) there is a makespan

lower bound that cannot be decreased, and finally (iv) the heuristic does not give good results and

gives solutions quite far from the optimum.

A project customer should therefore apply our model on the specific instance corresponding to

his own project, in order to identify the minimal reward that would lead to the makespan reduction

he aims at. Otherwise, a simple yet useful rule of thumb could be not to assign a total reward π

higher than 70% of the maximal cut cost.

8.3.2. Influence of the Daily Reward on the resolution time The “optimal” curve of

Figure 6 shows the experimental time complexity of our MILP model from the daily reward point

of view. It is obvious that for the optimal profit sharing policy the average CPU time is much

higher than for fixed policies as the model is more difficult to solve. Also, the model tends to be

faster for very high and very low customer rewards, which can be explained by the fact that (i) if

the reward is very low, then only a handful of tasks may be considered for crashing because most

tasks will have a crashing cost higher than the reward, whereas (ii) if the reward is very high then

almost all tasks may benefit from crashing, making the decision problem slightly easier.

Nevertheless, we can conclude that at least up to 60 real activities (size of the instances used), the

proposed MILP model is able to solve common problem instances in reasonable time for arbitrary

daily rewards.

8.3.3. Influence of the Daily Reward on the price of stability A high PoS means that

the makespan could be much lower if the solution was not forced to satisfy the Nash equilibrium

condition. It can be expected that PoS would be small for very low and very high customer rewards.
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The “optimal” curve of figure 7 shows that PoS is only significant for rewards between 0.1C(ωmax)

and 0.5C(ωmax), and very small otherwise. This interval also corresponds to the customer reward

interval in which each reward increase leads to significant makespan reduction on Figure 5.

Overall, the PoS shows which rewards may incite agents to cooperate more, if coalitions and

cooperations were considered. Basically, it suggests that for rewards between 0.1C(ωmax) and

0.5C(ωmax), then agents may have made much more individual profits, had they trusted each other

enough to cooperate.

8.3.4. Analysis of the fixed sharing policies In this subsection, the influence of the five

fixed sharing policies is analyzed. Figure 5 shows the relative makespan obtained in function of the

customer reward. It can be observed that (i) the random policy is the worst of the policies, which

highlights the importance and validates the need of “smarter sharing policies”, (ii) the random

policy produces better solutions than the heuristic from Briand et al. (2012), which confirms that

our MILP is a much better resolution tool for the problem than such heuristic, (iii) as expected

optimal sharing policy produces better solutions than the fixed sharing policies but the difference

is very significant (almost 0.1D̄), meaning that the optimal sharing provides considerable more

savings for the customer, in addition, (iv) surprisingly, the average makespan difference among the

“smart” fixed sharing policies is almost negligible, suggesting that there may exist several Nash

equilibrium of equivalent makespans, and finally, (v) if one fixed sharing policy had to be chosen,

it would be the “available cost” one, which seems to give slightly lower makespan than the others,

although the difference is almost negligible.

Figure 6 shows the resolution times depending on the customer reward. Optimal sharing has

a significantly higher resolution time compared to fixed policies, which is comprehensible since

assigning predefined values to variables wu makes the problem easier.

Finally, the results in Figure 7 show that optimal sharing policy has considerably lower price of

stability than the other policies, which is coherent with the fact that fixed policies lead to higher

makespans than optimal sharing.

8.3.5. Focus on (near-)optimal fixed sharing policy Results commented in the previous

subsection clearly show that our fixed sharing policies produce results far from the optimum.

However, it remains to be proven that these conclusions will hold for every fixed sharing policy a

customer could design. This subsection shows a compelling illustrative counter-example which is

at the basis of our conjecture that no fixed sharing policy could systematically produce optimal or

even near-optimal solutions for different customer rewards and of course different instances.

Lets consider the instance of Figure 8(a) which consists of 6 real activities divided between

two agents, plus 4 dummy activities representing precedence constraints. The maximal cut cost
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Figure 8 Optimal profit sharing bounds

C(ωmax) can be computed. If a fixed-sharing policy was able to find (near-) optimal solutions, it

would accurately evaluate the optimal share w∗1 of agent A1, for a given customer reward π. The

question therefore becomes whether it may be possible to accurately predict w∗1 given the reward,

for example by looking for a pattern between the relative total reward π/C(ωmax) and the optimal

share.

Since several solutions may produce the same makespan, therefore for a given reward, we can

define an optimal interval noted [minw∗1;maxw∗1]. The bounds of such interval can be computed

by modifying the objective-function of our MILP to respectively min(D+w1/2) or min(D−w1/2).

Note that in this case, the part of the objective-function supposed to ensure that the solution is a

non-poor strategy is omitted, since the objective of this experiment is only to compute the optimal

makespan D(S∗), and the optimal bounds minw∗1, maxw∗1, but not the strategy profile.

Figures 8(b) and (c) represent (i) in grey the optimal interval for agent A1 in function of the

relative reward, (ii) with the black line, the corresponding evolution of the project makespan.

The difference between these two pictures is that figure (b) shows results for the optimal Nash

equilibrium and the figure (c) the global optimal solution. From a customer point of view, it is

useless to increase reward if it does not translate into a project makespan decrease, which means

that only the 7 highlighted points matter (P1, ..., P7 on the figure). Of course, using the optimal
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policy in our MILP model allows us to always find these points. The question remains whether

a fixed-sharing policy could find those points as well. It is clear on the Figure 8(b) that on these

seven points minw∗1 = maxw∗2, which means there is no margin for error in the computation of the

optimal shares at these points. A fixed sharing policy aspiring at finding near-optimal solutions

would have to obtain these five almost exact values. Yet, no simple relation exists between the

optimal shares w∗1, and the customer reward π/C(ωmax). Sometimes the former decreases when the

latter increases. For example, π/C(ωmax) at P1 is smaller than π/C(ωmax) at P3, but w∗1 at P1 is

higher than w∗1 at P3. Whereas other times the opposite happens. For example, w∗1 at P7 is higher

than w∗1 at P6. There is also no simple relation identifiable, on the amount of increase or decrease

of w∗1 from a point to another.

These observations lead to the conjecture that no fixed sharing policy can provide (near-)optimal

solutions for all customer rewards, even on a single small instance. Moreover, the same experiments

performed on the subproblem from Section 4 and illustrated on Figure 8(c) highlight the difference

in the level of difficulty when the Nash equilibrium constraint is enforced (figure (b)) compared to

when it is disregarded (figure (c)).

The resulting recommendation is to use the proposed MILP to find optimal sharing policies

suitable for the specific project of the customer, instead of relying on predefined sharing rules,

especially since computational results show that the resolution time is moderate.

9. Conclusion

This paper proposes an optimal MILP-based modeling and resolution method for the multi-agent

project scheduling problem where the objective is to find a Nash equilibrium with minimal project

makespan. We extend results presented in Briand et al. (2012) and simplify necessary conditions

satisfying the solution optimality. The MILP formulation uses a finite number of primal-dual

constraints that, up to our knowledge, have not been used in the existing literature yet. Although

the MILP model is not trivial and quite large it is able to be solved for instances with more than

100 activities in reasonable time. Another advantage of our MILP formulation lies in the fact that

daily reward sharing wu can be considered as variables without changing the nature of the MILP.

It provides a possibility to find even better solutions as is illustrated in the experimental part of

the paper. Such a study is of interest in a project management context, especially if the customer

is able to influence the rewards sharing policy.
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Appendix A: ILP Model

min

(
(tn− t1) +

∑
∀(i,j)∈U ci,j(pi,j−pi,j)

1+
∑

∀(i,j)∈U ci,j

(
pi,j−p

i,j

)
)

(30)

s.t.
tj − ti− pi,j − si,j = 0 ∀(i, j)∈U (31)∑
Au∈A

wu = 1 (32)

ε− zi,j ≤ si,j ≤ si,j (1− zi,j) ∀(i, j)∈U (33)

zi,j ≤
∑

∀(k,i)∈U

zk,i (i, j)∈U : i > 1 (34)

zi,j ≤
∑
∀(j,l)∈U

zj,l (i, j)∈U : j < n (35)

xi,j ≤
(
pi,j − pi,j

)
≤
(
pi,j − pi,j

)
xi,j ∀(i, j)∈U (36)

yi,j ≤
(
pi,j − pi,j

)
≤
(
pi,j − pi,j

)
yi,j ∀(i, j)∈U (37)

zi,j ≥ xi,j ∀(i, j)∈U (38)

cui,j = ci,j − (1−xi,j) ci,j ∀(i, j)∈U,∀Au ∈A, (i, j)∈ Tu (39)
cui,j = ci,j + (2− yi,j − zi,j)C ∀(i, j)∈U,∀Au ∈A, (i, j)∈ Tu (40)
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cui,j = 0 ∀(i, j)∈U,∀Au ∈A, (i, j) /∈ Tu (41)
cui,j =Czi,j ∀(i, j)∈U,∀Au ∈A, (i, j) /∈ Tu (42)

αu
i,j −βu

i,j − γu
i + γu

j ≤ 0 ∀(i, j)∈U,∀Au ∈A, (i, j) /∈ Tu (43)
γu
1 = 1 ∀Au ∈A (44)
γu
n = 0 ∀Au ∈A (45)∑
∀(k,i)∈U

fu
k,i =

∑
∀(i,k)∈U

fu
i,k ∀i∈X \ {1, n} ,∀Au ∈A (46)

cui,j ≤ fu
i,j ≤ cui,j ∀(i, j)∈U,∀Au ∈A (47)

φu
i,j ≤ αu

i,jci,j ∀(i, j)∈U,∀Au ∈A (48)
φu
i,j ≤ cui,j ∀(i, j)∈U,∀Au ∈A (49)
φu
i,j ≥ cui,j −

(
1−αu

i,j

)
ci,j ∀(i, j)∈U,∀Au ∈A (50)

ϕu
i,j ≤ βu

i,j3C ∀(i, j)∈U,∀Au ∈A (51)
ϕu

i,j ≤ cui,j ∀(i, j)∈U,∀Au ∈A (52)
ϕu

i,j ≥ cui,j −
(
1−βu

i,j

)
3C ∀(i, j)∈U,∀Au ∈A (53)∑

∀(1,k)∈U

fu
1,k ≤

∑
(i,j)∈U

φu
i,j −

∑
∀(i,j)∈U

ϕu
i,j ∀Au ∈A (54)

∑
∀(1,k)∈U

fu
1,k <πwu ∀Au ∈A (55)

where
ti,D ∈R, si ∈R, pi,j ∈Z, p

i,j
≤ pi,j ≤ pi,j ,

0≤wu ≤ 1, xi,j , yi,j , zi,j ∈ {0,1},
αu

i,j , β
u
i,j , γ

u
i ∈Z+, fu

i,j ∈R+,
cui,j , c

u
i,j ∈R+, φu

i,j ,ϕ
u
i,j ∈R+, ε= 1/n,

C =
∑

(i,j)∈U ci,j , si,j =D.


