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Abstract. The stability of marine ice sheets grounded on
beds that slope upwards in the overall direction of flow is
investigated numerically in two horizontal dimensions. We
give examples of stable grounding lines on such retrograde
slopes illustrating that marine ice sheets are not uncondition-
ally unstable in two horizontal dimensions. Retrograde bed
slopes at the grounding lines of marine ice sheets, such as
the West Antarctic Ice Sheet (WAIS), do not per se imply
an instability, nor do they imply that these regions are close
to a threshold of instability. We therefore question those es-
timates of the potential near-future contribution of WAIS to
global sea level change based solely on the notion that WAIS,
resting on a retrograde slope, must be inherently unstable.

1 Introduction

Large parts of the West Antarctic Ice Sheet (WAIS) rest be-
low sea level on a bedrock sloping downwards towards the
ice sheet’s centre. It has been argued that such marine-type
ice sheets on retrograde slopes are inherently unstable and
susceptible to rapid disintegration (e.g.Weertman, 1974).
The question of WAIS being potentially subject to a marine
ice-sheet instability (MISI) is of utmost importance for any
quantitative estimates of future sea level change, because it
raises the possibility of WAIS rapidly contributing several
meters of sea level change.

The possibility of a MISI and the conditions under which
such an instability could manifest itself have been investi-
gated by a number of authors. To date most analytical and nu-
merical work has focused on analysing the stability regime of
MISI in situations where the problem geometry and the flow

field varies primarily in along-flow direction. The problem
can then be treated as a problem in one horizontal dimension
(1HD).

In what can be considered to be the first quantitative study
of this problem, Weertman (1974) concluded that a marine-
based ice sheet resting on a retrograde slope is inherently un-
stable. Further work by Thomas and Bentley (1978) reached
similar conclusions and gave increased weight to the idea of
a MISI and its relevance to WAIS. Hindmarsh (1993, 1996)
revisited this problem and found, in contrast to previous
work, a marine-type ice sheet resting on a retrograde slope
to be neutrally stable and therefore not susceptible to an un-
stable retreat or advance once perturbed away from a steady
state. Schoof (2007a), in a further study of this same prob-
lem, however concluded that rapidly sliding marine-based
ice sheet do not exhibit neutral equilibrium and that steady
grounding lines cannot be stable on retrograde bed slopes.

The difficulty in settling the question of whether marine-
type ice sheets are subject to MISI, has been further con-
founded by the fact that the numerical solution of this prob-
lem has turned out to be more difficult than originally en-
visioned. Vieli and Payne (2005) showed that calculated
grounding-line positions, using some commonly used nu-
merical procedures, exhibited a strong dependency on grid
size and this question has recently been addressed further in
Gladstone et al. (2012). A recent model intercomparison ex-
periment (Pattyn et al., 2012) focusing on a 1HD problem
furthermore demonstrated that models based on the shallow-
ice approximation – a class of models frequently used to sim-
ulate the dynamics of large ice masses – do not allow for
correct description of grounding-line motion. Encouragingly
though, the same intercomparison experiment also showed
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a good overall agreement between numerical models that
both (a) account for horizontal transmission of stresses be-
tween the grounded and the floating parts, and (b) employ
very high spatial resolution (less than one ice thickness) in
the vicinity of the grounding line. These models produced
in turn steady-state solutions that were in a close agreement
with a semi-analytical solution (Schoof, 2007a) of this prob-
lem. This combination of theoretical work (Schoof, 2007a)
and communal effort by the numerical community (Pattyn
et al., 2012) has therefore now provided a general consensus
that rapidly sliding 1HD marine-based ice sheets are indeed
subject to the MISI. However, the more general case in two
horizontal dimensions (2HD) is still unanswered.

The possible stabilising effect of ice-shelf buttressing on
a grounding-line position has been investigated in several
recent studies. Dupont and Alley (2005) presented an ex-
ample of a stable grounding line on a retrograde slope.
Their model was a 1HD flow-line model using a param-
eterised side drag and a varying degree of imposed but-
tressing at the calving front. The resulting buttressing at
the grounding line was, thus, in effect prescribed and it is
unclear what three-dimensional geometrical configuration,
if any, gives rise to buttressing used by Dupont and Alley
(2005) in their example. A similar flow-line modelling ap-
proach was used by Jamieson et al. (2012) to study trans-
verse flow effects. Jamieson et al. (2012) state that lateral
drag can give rise to “transient stabilizations” on reverse
bed slopes. Stability is a property of steady states and the
meaning of the term “transient stabilizations” as used by
Jamieson et al. (2012) is unclear.

To our knowledge the only study showing stable ground-
ing lines on retrograde slopes, while resolving stresses
in both horizontal dimensions, is that of Goldberg et al.
(2009). Goldberg et al. (2009) performed a series of nu-
merical experiments using a vertically integrated model
that accounted for all the stress terms in 2HD otherwise
missing in vertically integrated 1HD models. One of their
numerical experiments suggested that ice-shelf buttressing
might restore stability and they concluded that a further
investigation was warranted.

Recently, Katz and Worster (2010) investigated the stabil-
ity of ice-sheet grounding lines in 2HD numerically using
a vertically integrated formulation of the force balance at
the grounding line. They concluded that unstable retreat of
grounding lines over retrograde beds is a “robust” feature of
such models. Katz and Worster (2010) assumed the stress
vector at the grounding line to be aligned in the direction
normal to the grounding line. Their model study did there-
fore not fully account for the variation of stresses in 2HD.
The fact that Katz and Worster (2010) did not find an ex-
ample of a stable grounding line on a retrograde slope in
2HD clearly does not exclude the possibility that such an
example may exist.

It is, hence, currently not clear if the MISI applies uncon-
ditionally in 2HD. On the other hand, to date neither an an-

alytical or a numerical example of a stable grounding-line
configuration of a marine ice sheet resting on a retrograde
slope has been found. The purpose of this work is to provide
such an example, and to show that the MISI does not hold
unconditionally in 2HD.

2 Problem definition

The model setup is motivated by the “Marine Ice Sheet
Model Intercomparison Project” (MISMIP) experiment 3
(Pattyn et al., 2012), and can be considered to represent
a three-dimensional (i.e. two horizontal dimensional) ex-
tension of that problem. The MISMIP experiment 3 was
in turn inspired by Schoof (2007a) who, in his analysis of
grounding-line dynamics in one horizontal dimension, used
a particular type of bed profile to demonstrate the marine in-
stability mechanism. This MISMIP experiment 3 has become
a benchmark case for assessing and testing the capability of
numerical models to simulate the advance and retreat of the
grounding line. The experiment also provides a striking ex-
ample of the marine instability mechanism in 1HD.

The model domain used here stretches from 0 to 1800 km
in x direction, and from−120 to 120 km iny direction. For
x = 0, both horizontal velocity components are set to zero,
i.e. u(0,y) = v(0,y) = 0, and along the left and right hand
sides wherey = ±120 km, they component is set to zero,
i.e. v(x,±120 km)= 0. No shear stresses are applied, and
the ice is allowed to flow freely, along the left and right side
margins, i.e. fory = ±120 km. Along the ice shelf edge, at
x = 1800 km, the ocean pressure is applied. The form of this
shelf-edge boundary condition is specific to the two models
used and is described below.

The bed geometry used here can be written as

B(x,y) = Bx(x) + By(y), (1)

where

Bx(x) = B0 −2184.8 (x/750000)2

+1031.72(x/750000)4

−151.72(x/750000)6, (2)

and

By(y) =
dc

1+ e−2(y−wc)/fc
+

dc

1+ e2(y+wc)/fc
, (3)

where the units are meters, andB(x,y) stands for the topog-
raphy of the ocean floor.

The bed is in the form of a channel incised into a slowly
undulating plane with an overall downward slope inx direc-
tion (see Fig. 1). The parameterfc controls the slope of the
flanks,dc controls the depth of the channel, andwc is the
half-width of the channel. The only parameter that is varied
in the model runs described below is the half-width (wc).

As can be seen from Eqs. (1)–(3), the slope of the bed
in x direction is independent ofy, i.e. ∂2

yxB(x,y) = 0. The
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slope inx direction is zero atx = 0,x = xa andx = xb where
xa = 973.7 km andxb = 1265.7 km, and forxa < x < xb the
bed slopes upwards (∂xB(x,y) > 0) and is retrograde across
the entire domain, i.e.∂xB(x,y) > 0 for xa < x < xb inde-
pendently ofy. The values for the geometrical parameters
B0, fc, dc used in all runs are listed in Table 1.

3 Numerical models

We use two different numerical models: (1) a three-
dimensional “full Stokes” model, and (2) a vertically in-
tegrated model of a type commonly used in glaciology to
model the flow of ice shelves and ice streams (in the glacio-
logical literature, this second model type is often referred
to as either “SSA”, “SSTREAM”, or as a “shelfy stream”
model). Both numerical models are based on the finite el-
ements method and both are capable of using unstructured
grids with spatially variable element sizes. The full Stokes
solver uses the open source finite element software package
Elmer and the solver will be referred to here asElmer/Ice.
The equations representing the vertically integrated model
are solved using a finite element code developed by one of
the authors (G. Hilmar Gudmundsson), and the code will
here be referred to aśUa. Most of the calculations presented
here were obtained with́Ua. The Elmer/Ice code was pri-
marily used to demonstrate that the some key aspects of the
results obtained with́Ua are not specific to that model.

The vertically integrated model used here is one of the
most commonly used models in glaciology for describing
the flow of ice shelves and ice streams. Derivation of the
model can be found, for example, in Hutter (1983), Mor-
land (1984), Muszynski and Birchfield (1987), MacAyeal
(1989), and Baral and Hutter (2001) and properties of the lin-
earised equations are discussed in some detail in Gudmunds-
son (2008).

The full Stokes model includes all the terms of the Stokes
equations, i.e.

σpq,q + fp = 0, (4)

where σpq are the components of the Cauchy stress ten-
sor, andfp the components of the body force, withf =

ρg(0,0,−1)T .
The vertically integrated model solves a simplified stress

balance that can be written in the form

∇T
h · (hT ) − tbh = ρgh∇h s, (5)

where

T =

(

2τxx + τyy τxy

lτxy 2τyy + τxx

)

, (6)

with

∇T
h =

(

∂x,∂y

)

, (7)

where h, when used as a subscript, is a mnemonic for “hori-
zontal”. In the above equationτij are the components of the
deviatoric stress tensor,s is the surface topography,h is the
ice thickness,ρ is the ice density,g is the gravitational ac-
celeration, andtbh is the horizontal part of the bed-tangential
basal tractiontb where

tb = σ n̂ − (n̂T · σ n̂)n̂, (8)

with n̂ being a unit normal vector to the bed pointing into the
ice.

Both models employ the Weertman sliding law

tb = C−1/m|vb|
1/m−1vb, (9)

wherevb

vb = v − (n̂T · v)n̂, (10)

is the basal sliding velocity,C is the basal slipperiness, and
m a stress exponent.

Both models also employ Glen’s flow law

ǫ̇ij = Aτn−1τij , (11)

whereτ is the second invariant of the deviatoric stress tensor

τ =
√

τpqτpq/2, (12)

ǫ̇ij are the strain rates,A is the rate factor, andn a stress
exponent. In addition to the equations above (and not listed
here) both models use appropriate forms of the mass-
conservation equation for an incompressible medium, and
employ the kinematic boundary conditions along free upper
and lower surfaces.

Along the calving front a pressure boundary condition is
applied that corresponds to ocean surface level atz = 0, i.e.

σ n̂ = −pwn̂, (13)

where n̂ is a unit normal vector pointing horizontally out-
ward from the ice front, andpw is the hydrostatic pressure
in the ocean. The surface of the ocean (S) is at S = 0, and
the oceanic pressure ispw = ρwg(S − z) for z < S and zero
otherwise, whereρw is the ocean density.

For vertically integrated model the boundary condition at
the ice-shelf edge atx = 1800 km takes the form

T n̂ =
1

2
̺ghn̂, (14)

provided the ice is fully floating at the calving
front, and where

̺ = ρ (1− ρ/ρw). (15)
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Fig. 1. Bedrock geometry. Upper panel: map-plane view of bedrock geometry with a corresponding colorbar below. Lower panel: longitudi-
nal section of bed along the medial line (y = 0).

In the vertically integrated model the floating condition
takes the formh < hf where

hf = ρwH/ρ, (16)

whereH is the ocean depth. The quantityhf represents the
maximum possible ice-shelf thickness at any location. A de-
tailed description of the contact condition that arises in the
treatment of the grounding line in the full Stokes model, and
its implementation, is given in Favier et al. (2012).

The two numerical codes, i.e. Elmer/Ice andÚa, have been
used extensively in the past to calculate grounding-line mi-
grations for various different setups (Durand et al., 2009a;
Gagliardini et al., 2010; Pattyn et al., 2012). Both models par-
ticipated in the recently finalised “Marine Ice Sheet Model
Intercomparison Project” (MISMIP) (see Pattyn et al., 2012)
and results from these two models were submitted to the
ongoing “Marine Ice Sheet Model Intercomparison Project
for Planview Models” (manuscript submitted to Journal of
Glaciology).

Automated remeshing was used to ensure a highly dense
discretisation of the area around the grounding line. Cal-
culations of grounding-line migration are known to require
a finely resolved mesh around the grounding-line area (e.g.
Durand et al., 2009b). How accurate the mesh needs to be
is a question that is difficult to answer a priori, but can
be answered easily by performing a number of runs us-
ing increasingly fine meshes until no resolution dependent
behaviour is seen.

Runs performed with solveŕUa were done using linear,
quadratic, and cubic triangular elements, however the set of
results fromÚa shown here were obtained using quadratic
elements. The Elmer/Ice solver used linear prismatic ele-
ments stabilised using the bubble-stabilising method. The ex-
act sizes and number of elements varied between runs, but,

as an example, results shown below usingÚa for a half-
width of wc = 50 km used a mesh of 228 537 elements with
457 340 nodes, with median, maximum and minimum ele-
ment sizes of 569 m, 26 862 m, and 86.7 m, respectively. The
region around the grounding line, and areas where ice thick-
ness changed most markedly was resolved much more finely
than other areas.́Ua uses an automated remeshing algorithm
where the mesh is refined based on several possible user-
defined criteria. The criteria used in the runs shown here
were (1) distance from flotation, and (2) second derivative
of ice thickness. The first criterion gives small elements in
the vicinity of the grounding line, and is similar to the one
used by Goldberg et al. (2009).

A fully implicit forward integration procedure was used by
Úa, with the prognostic and the diagnostic equations being
solved simultaneously using the Newton-Raphson method.
Further details of the solution procedure of the full Stokes
model Elmer/Ice can be found in Durand et al. (2009a).

4 Results

A number of runs using the parameters listed in Table 1 and
the bed geometry defined by Eqs. (1)–(3) were performed
and the runs continued until steady state was reached. Steady
state was considered to have been reached once both the
mean rate of surface elevation change over the surface nodes
was less than 0.001 ma−1.

The values used for surface accumulationa, the slipperi-
ness parameterC and the stress exponentm in Weertman’s
sliding law (Eq. 9), and the stress exponentn in Glen’s flow
law (Eq. 11) are identical to those used in MISMIP experi-
ment 3a (see Pattyn et al., 2012). The surface accumulation,
a, is set ata = 0.3 m a−1 across the whole surface. Note that
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Fig. 2. Map-plane view of surface velocities obtained with the numerical codeÚa for a channel half-width ofwc = 50 km. Values of all
other model parameters are listed Table 1. The two magenta lines atx = 973.7 km andx = 1265.7 km indicate where bedrock slope inx
direction is equal to zero. The strip 973.7km< x < 1265.7 km is an area of retrograde slope where the bed slopes upwards inx direction.
The grounding line marking the division between grounded and floating ice is shown as a thick black line. The arrows represent surface
velocities, with the corresponding colorbar shown to the right. To make the direction of the shortest velocity vectors visible in the figure, the
speed has been set to 100 m a−1 wherever calculated velocities are less than that value.

Table 1. Model parameters. The parametersB0, fc andd are geo-
metrical parameters that affect the shape of the bedrock (see Eq. 3).
A andn are the rate factor and the stress exponent of Glen’s flow
law, respectively,C andm are the basal slipperiness and the stress
exponent of Weertman’s sliding law, andρ andρw are the specific
densities of ice and ocean. The variablea is the surface mass bal-
ance in the units of ice equivalent. The number of days in a year is
365.25.

Parameter Value Units

B0 300 m
fc 5000 m
dc 1000 m
A 10−24 s−1Pa−3

n 3
C 2.256 × 10−21 ms−1Pa−3

m 3
ρ 900 kgm−3

ρw 1000 kgm−3

a 0.3 m a−1

the surface accumulation is in units of ice equivalent, and the
actual mass flux across the surface isρa = 270 kg a−1 m−2.

An example of calculated steady-state grounding-line po-
sition is given in Fig. 2. This particular run was obtained with
Úa for wc = 50 km. Note that in Fig. 2 only a part of the
model domain is shown and that the whole domain stretches
in x direction from 0 to 1800 km. A perspective plot of the
same model output, showing the whole model domain, is
given in Fig. 3.

As Fig. 2 shows the grounding line (shown in black)
curves considerably within thexy plane. At the left and right-
hand side margins of the numerical domain (y = ±120 km),

Fig. 3. A perspective plot of the steady-state geometry obtained
with the numerical codéUa for a channel half-width ofwc =

50 km. Shown is the upper and lower glacier surface and the ocean
bathymetry. The grounding line is drawn as a red line along the up-
per and the lower glacier surface.

the grounding line is located at approximatelyx = 1400 km.
Where the grounding line crosses the medial line (y = 0), it
is located at aboutx = 1100km. As a consequence, a size-
able confined ice shelf is formed. The upper and lower limits
of retrograde bed slope,xa = 973.7 km andxb = 1265.7 km,
are marked by two magenta lines in the Fig. 2. As the fig-
ure illustrates, sections of stable grounding line are located
on retrograde slopes. A perspective plot showing the steady-
state model geometry is given in Fig. 3. Inspection of Figs. 2
and 3 reveals that the highest velocities along the grounding
line, and the largest ice thicknesses, are found in the area of
retrograde slope.
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Fig. 4. Grounding-line positions as functions of time following per-
turbations in basal slipperiness (C). The grounding-line positions
shown are fory = 0, i.e. where the grounding lines cross the me-
dial line. Both runs started from the steady-state solution shown in
Fig. 2. The value ofC was changed by a factor of 1/2 and 2 from the
value listed in Table 1. The perturbations were applied for 100 yr,
and the model then run towards steady state. As the figure shows
both models converged back to the original steady state, showing
that the initial steady state is stable with respect to such perturba-
tions inC.

The steady-state geometry shown in Figs. 2 and 3 was ar-
rived at by starting with an initial constant ice thickness of
100 m. In the span of several thousand of years, the numer-
ical solution converged slowly to the steady-state solution
shown in the figures, and the possibility of the steady-state
being unstable with respect to perturbations in ice thickness
can be excluded. To illustrate that the steady-state solution
shown in Figs. 2 and 3 is stable with respect to perturba-
tions in other key model parameters as well, the steady state
solution was subjected to perturbations in both basal slip-
periness (C). Starting from steady state, the slipperiness was
increased/decreased by a factor of 2/0.5, respectively. The
perturbations were applied for 100 yr and the models then
run towards steady state. The resulting grounding-line posi-
tions at the medial line are shown in Fig. 4 as functions of
time. As the figure shows, the grounding lines reverted with
time back to the original position once the perturbations were
no longer applied. The grounding line is, hence, stable with
respect to perturbations in slipperiness.

Comparison between results obtained by Elmer/Ice andÚa
is given in Fig. 5 forwc = 50 km. As can be seen the surface
profiles obtained with the two models closely agree, and in
both cases the grounding line is located at a section of the
bed with a retrograde slope. Another model-intercomparison
experiment usingwc = 40 km resulted in a similarly close
agreement. The results obtained with Elmer/Ice were arrived
at by starting with the final geometry as given byÚa and run
until a new steady-state was reached.

Fig. 5. Longitudinal surface profiles along the medial line (y =

0) obtained with both the full Stokes solver Elmer/Ice (red lines)
and the vertically-integrated solverÚa (blue lines). The calculations
were done for a channel half-width ofwc = 50 km. The thick black
line is the ocean floor.

Fig. 6. Stable grounding-line positions along the medial line as
a function of channel half-width. The data points shown as black cir-
cles are based on results obtained usingÚa. The data points shown
as green stars were obtained with Elmer/Ice.

Runs were performed with half-widths (wc) ranging from
20 to 70 km. Each run was started by taking an ice-thickness
distribution from a previous run for a similarly shaped
bedrock as a starting point. Again the possibility of the mod-
els runs converging with time to an unstable steady-state can
be excluded.

The steady-state grounding-line position (xgl) at the me-
dial line (y = 0) for several different models with half-widths
(wc) ranging from 20 to 70 km is shown in Fig. 6. These cal-
culations were performed for the vertically integrated model
(see Eq. 5) with the numerical codeÚa. The results indicate
a gradual change in grounding-line position as a function of
channel width. Several cases of stable steady-state grounding
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lines located on retrograde slopes were found. As expected,
the grounding line is no longer located on retrograde slopes
for both large and smallwc values. Figure 6 suggest that,
for the particular parameter set used (see Table 1), grounding
lines are located on retrograde slopes forwc within the range
of 35 to 55 km.

A close inspection of Fig. 2 reveals that at around(x,y) =

(1400,±50) km, the grounding line (shown in black) extends
some distance downstream and appears to break up in a few
isolated regions of grounded ice. This is not an artefact of
the figure. In this area the ice is either grounded or close to
being grounded, and in the course of the transient run to-
wards steady state various smaller patches of ice become ei-
ther grounded or ungrounded.

A further, in our view an entirely realistic, feature found
in a number of our model runs are small (on the order of
one ice thickness in horizontal dimension) regions of thin
ice that form downstream of the grounding line within the
unconfined section of the ice shelf. For numerical purposes,
the thickness was forced to be slightly positive. In the runs
shown here, the minimum thickness was set at 10 m. This
thickness constraint was implemented in a similar manner
in both Elmer/Ice and́Ua. The method used in Elmer/Ice is
described in Durand et al. (2009a). TheÚa solver uses for
this purpose an active-set method where any violated thick-
ness constraints are activated using Lagrange multiplier ap-
proach. The modified system is then solved again, and the
sign of the Lagrange multipliers (or “slack variables” as these
variables are sometimes referred to in this context) used to
determine if an active constraint should subsequently be in-
activated, or if further constraints need to be included in
the active set. This procedure is repeated until the active set
no longer changes, before progressing to the next time step.
The number of active constraints differed between runs and
changed in the course of the transient calculations, but the
number of active nodal constraints was usually less than 10.
For the final steady-state solution shown in Fig. 2, for exam-
ple, the thickness constraint was activated at 7 nodes in total
(the total number of nodes in the finite-element mesh at the
end of this run was 457 340). These 7 nodes were located at
approximately(x,y) = (1460± 88) km. This is a region of
the ice shelf that is subjected to strong longitudinal exten-
sion and comparatively small concomitant transverse com-
pression. Runs with different minimum ice thickness con-
straints of 1 m, and 0.1 m, showed that the exact value of the
thickness constraint used was, for the purpose of the model
exercise, irrelevant, and had no effect of whether the ground-
ing line was located on a retrograde slope or not.

5 Discussion

The basis for the MISI is the idea of ice flux at the grounding
line being a monotonically increasing function of ice thick-
ness (hgl) at the grounding line. If this holds, then a sim-
ple heuristic argument (Weertman, 1974) shows steady-state
grounding-line positions of marine-type ice sheets on retro-
grade slopes to be unstable. As shown by Schoof (2007b),
ice flux can be expressed as a function of bothhgl and lon-
gitudinal stress, with ice flux being an increasing function
of both of these variables. It turns out that in 1HD, longitu-
dinal stress is also an increasing function of thickness and,
hence, ice flux always an increasing function ofhgl in 1HD.
It is important to realise that this argument does not hold in
2HD. In 2HD it is conceivable, in principle, to have a con-
figuration where longitudinal stress decreases with thickness
with the overall effect of flux being a decreasing function of
thickness. In that case, the MISI is not expected to operate
and a stable grounding-line position on a retrograde slope
becomes a possibility. However, hitherto, no such example
of a stable grounding line in 2HD has been provided.

The absence of such a specific counter-example may have
been taken to suggest that the MISI applies unconditionally
to the 2HD situation. Observations of grounding lines located
on reverse bed slopes have been used repeatedly in the past as
the sole basis on which to argue that large sections of WAIS
are either unstable, or close to a threshold of instability (e.g.
Ross et al., 2012). Some recent estimates (e.g. Bamber et al.,
2009) of potential sea-level rise from WAIS implicitly as-
sume that MISI operates in 2HD. By providing a numerical
example of a marine-type ice sheet in a stable steady-state
configuration with the grounding line located on a retrograde
slope, we have now shown marine ice sheets to be condition-
ally stable. Our finding that marine-type ice sheets on ret-
rograde slopes are not unconditionally stable do not contra-
dict, and are fully compatible with, theoretical and numerical
work showing that, in 1HD, rapidly sliding marine ice sheets
on retrograde slopes are unconditionally unstable.

For our particular parameter set (see Table 1), we find sta-
ble grounding-line positions for half-widths between the ap-
proximate range of 35 to 55 km. We do not expect this range
of half-widths values (wc) to remain the same for other pa-
rameter sets. Neither do we expect the existence of stable
grounding-line positions on retrograde slopes to be a simple
function of channel widths. The stability regime can be ex-
pected to be primarily determined by the level of ice-shelf
buttressing at the grounding line, with the buttressing in turn
being a (potentially complicated) function of bed geometry
and ice rheology. The stability of a given marine ice-sheet
configuration can most likely not be assessed from geomet-
rical considerations (bedrock slope, ice-stream width, etc.)
only, and each situation may require targeted modelling ef-
forts.
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In many situations the sensitivity of ice sheets to external
forcing is of key interest. We stress that here we have only ad-
dressed the very different question of the stability of marine-
type ice sheets. Our results do not, for example, exclude the
possibility that the sensitivity of grounding-line position to
changes in basal melt rates depends on bed slopes. Note in
this respect that in 1HD (and provided the horizontal varia-
tion of shear stresses can be ignored), the grounding-line po-
sition is independent of any forcing to which an unconfined
ice shelf is subjected to. In other words, in 1HD the sensi-
tivity of (stable) grounding-line positions to oceanic forcing
is not only independent of bed slope, but identically equal to
zero. Although we have not investigated this possibility here,
we find it likely that the 2HD situation is, in this respect, also
sharply different from the 1HD case.

Numerical modelling has shown ice sheets to respond to
changes in ice-shelf melting in complicated and at times non-
intuitive ways (Walker et al., 2008; Gagliardini et al., 2010).
We do not discard the possibility that further work, using
both 2HD and 3-D models, may show grounding lines on ret-
rograde slopes to be stable yet at the same time highly sen-
sitive to changes in external forcing such as ice-shelf melt
rates.

6 Conclusions

We have provided specific numerical examples of model ge-
ometries for which sections of stable grounding lines are
located on retrograde slopes. We conclude that marine ice
sheets on retrograde slopes are not unconditionally unstable.

Our confidence in our model results is strengthened by the
fact that we have solved the flow problem using two different
numerical codes (́Ua and Elmer/Ice), based on two different
set of model assumptions.

The conditional stability in 2HD does not contradict pre-
vious findings of unconditional instability in 1HD. These
differences simply show that the 1HD and the 2HD prob-
lems differ fundamentally in this respect. Real ice sheets are
of course three dimensional features and we caution against
applying arguments to ice sheets that are inherently tied to
1HD. These stark differences between the 1HD and the 2HD
cases should also be considered in any applications of 1HD
flow-line models, and the use of 1HD flow-line models to
investigate the stability regime of marine ice sheets is prob-
lematic.

Observations of retrograde bed slopes at the grounding
lines of marine ice sheets, such as the West Antarctic Ice
Sheet, do not as such imply an unstable mode of retreat or ad-
vance, nor do they imply that such regions are close a thresh-
old of instability. Questions regarding stability of a given ma-
rine ice-sheet configuration are unlikely to be answered with-
out targeted modelling efforts.
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