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We study the dynamics of a quantum spin ensemble controlled by trains of ultrashort pulses. To model distur-
bances of the kicks, we consider that the spins are submitted to different kick trains which follow regular, random,
stochastic, or chaotic dynamical processes. These are described by dynamical systems on a torus. We study the
quantum decoherence and the population relaxation of the spin ensemble induced by these classical dynamical pro-
cesses disturbing the kick trains. For chaotic kick trains we show that the decoherence and the relaxation processes
exhibit a signature of chaos directly related to the Lyapunov exponents of the dynamical system. This signature is
a horizon of coherence, i.e., a preliminary duration without decoherence followed by a rapid decoherence process.

DOI: 10.1103/PhysRevE.87.062903 PACS number(s): 05.45.Mt, 03.65.Yz, 75.10.Jm, 75.10.Nr

I. INTRODUCTION

Real quantum systems are never isolated; interactions
with the environment induce quantum decoherence [1], i.e.,
transitions from quantum state superpositions into incoherent
classical mixtures of eigenstates. In order to study this process,
spin baths [2–9] or quantum kicked tops [10–13] are interesting
systems. Spin baths can be studied by nuclear magnetic
resonance experiments and can be viewed as assemblies of
qubits (a qubit is a unit of quantum information in quantum
computing). These applications are needed to study the control
of spin baths [14–16], but the decoherence processes can
drastically decrease the efficiency of the control. Previous
studies concerning decoherence of spin baths focused on
decoherence induced by spin-spin interactions inner the bath
(the spin bath being itself considered as an environment
for one of its spins). In this paper we study decoherence
processes induced by disturbances of the control caused by
a classical environment. Since it is a simple but efficient
control method [17–19], we focus on a control by a train
of ultrashort pulses (kicks). In order to enlighten the role of
classical control disturbances in decoherence processes and
to avoid other decoherence causes, we consider a spin bath
without any spin-spin interaction. Strictly speaking, we then
consider a simple spin ensemble but one which could be
considered a spin bath for one spin chosen in the ensemble.
Since we do not consider any spin-spin interaction, the central
system (the chosen spin) does not directly interact with its bath.
Nevertheless, the control disturbance induces a statistical state
distribution on the spin ensemble. The chosen spin inherit a
mixed state (a density matrix) from the statistical distribution
of the ensemble. In this sense, we can consider the spin
ensemble as a model of a simple spin bath. We study different
disturbance processes that we model by classical dynamical
systems which can be regular, random, stochastic, or chaotic.

The role of the chaos in quantum decoherence processes is
a subject of debate [2–13]. But in these studies, the considered
chaos is associated with the inner dynamics of the spin bath.
In this paper we consider chaos associated with disturbance
processes on the control of the spin bath. We show that a
signature of this chaos can be observed in the decoherence
processes and that a Lyapunov exponent analysis is relevant to
describe this phenomenon.

This paper is organized as follows. Section II is devoted
to a presentation of the considered model, its dynamics,
and the classical dynamical systems modeling disturbances.
Section III analyzes the decoherence processes occurring in
the kicked spin ensemble for nonchaotic dynamical systems.
Section IV presents the chaotic case, its Lyapunov exponent,
and its entropy analysis. Finally, Sec. V summarizes the
properties of the different processes. Throughout this paper,
we consider with particular interest the relation between the
classical dynamical system (disturbed kick train) with the
quantum dynamical system (spin ensemble) controlled by
the classical one. The possibility that some dynamical proper-
ties are transmitted from classical systems to quantum systems
is not well known. In particular, we focus on the disorder
transmission between the two systems and on the role of the
sensitivity to initial conditions (SIC) in chaotic cases.

II. DYNAMICS OF KICKED SPIN ENSEMBLES

We consider an ensemble of N spins without spin-spin
interaction. A constant and uniform magnetic field �B is
applied on the spin ensemble inducing an energy level
splitting by the Zeeman effect. We denote by h̄ω1

2 the energy
splitting. At the initial time t = 0, the bath is completely
coherent, i.e., all the spins are in the same quantum state
|ψ0〉 = α|↑〉 + β|↓〉 (|α|2 + |β|2 = 1 with α,β �= 0; |ψ0〉 is
“Schrödinger’s cat state”). For t > 0 the bath is submitted
to a train of ultrashort pulses kicking the spins. We suppose
that a classical environment disturbs the pulses such that each
spin “views” a different train (Fig. 1). We denote by ω0 = 2π

T

the kick frequency of the primary train. We suppose that the
classical environment can attenuate kick strengths and delay
kicks. We denote by λ(i)

n and τ (i)
n the strength and the delay of

the n-th kick on the i-th spin of the bath. Let H0 = h̄ω1
2 |↓〉〈↓|

be the quantum Hamiltonian of a single spin with only the
Zeeman effect (where we have removed a constant value
without significance). The quantum Hamiltonian of the i-th
kicked spin is

H (i)(t) = H0 + h̄W
∑
n∈N

λ(i)
n δ

(
t − nT + τ (i)

n

)
, (1)
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FIG. 1. Schematic representation of a quantum spin ensemble
controlled by a disturbed train of ultrashort pulses. The set of kick
trains issued from the disturbance constitutes a kind of “classical kick
bath.”

where δ(t) is the Dirac distribution and where the kick operator
W is a rank one projector: W = |w〉〈w| with the kick direction
|w〉 = cos ϑ |↑〉 + sin ϑ |↓〉 (for the sake of simplicity, we do
not consider a relative phase between the two components of
|w〉). By considering the reduced time θ = 2πt

T
= ω0t we have

H (i)(θ ) = H0 + h̄ω0W
∑
n∈N

λ(i)
n δ

(
θ − 2nπ + ϕ(i)

n

)
(2)

with the angular delay ϕ(i)
n = ω0τ

(i)
n . The n-th monodromy

operator (the evolution operator from t = 2nπ
ω0

to 2(n+1)π
ω0

) is
[20]

U (i)
n = e

− iH0
h̄ω0

(2π−ϕ
(i)
n )[

I + (e−iλ
(i)
n − 1)W

]
e
− iH0

h̄ω0
ϕ

(i)
n . (3)

We see that the monodromy operator is 2π -periodic with
respect to the kick strength; λ(i)

n is then defined modulo 2π from
the viewpoint of the quantum system. Thus, the strength-delay
pair (λ,ϕ) defines a point on a torus T 2 which plays the role
of a classical phase space for the kick train.

Let |ψ (i)
n 〉 be the state of the i-th spin at time t = nT

(|ψ (i)
n 〉 represents the “stroboscopic” evolution of the spin).

By definition of the monodromy operator we have

∣∣ψ (i)
n+1

〉 = U (i)
n

∣∣ψ (i)
n

〉
. (4)

The density matrix of the spin ensemble is then

ρn = 1

N

N∑
i=1

∣∣ψ (i)
n

〉〈
ψ (i)

n

∣∣, (5)

where ρn represents the mixed state of the “average” spin of the
bath [1,21]. It encodes two fundamental pieces of information
as follows:

(i) the populations 〈↑|ρn|↑〉 and 〈↓|ρn|↓〉, which are the
average occupation probabilities of the states |↑〉 and |↓〉;

(ii) the coherence |〈↑|ρn|↓〉|, which measures the coher-
ence of the bath (the coherence is maximal if all the spins are in
the same quantum state, which can be a quantum superposition,
and is zero if the bath is a classical mixture of spins with some
in the state |↑〉 and others in the state |↓〉).

We consider the kick trains as classical dynamical systems
on the torus T 2. Let � be the (discrete time) classical flow of
these dynamical systems,(

λ(i)
n

ϕ(i)
n

)
= �n

(
λ

(i)
0

ϕ
(i)
0

)
. (6)

In the following, we will consider the different kick baths
defined by the following flows:

(1) Stationary bath defined by the stationary flow

�

(
λ

ϕ

)
=

(
λ

ϕ

)
. (7)

(2) Drifting bath defined by the flow

�

(
λ

ϕ

)
=

(
λ + 2π

a
mod 2π

ϕ + 2πb
a

mod 2π

)
, (8)

where a,b ∈ R \ Q. The orbit of (λ0,ϕ0) by � is dense on T 2.
(3) Microcanonical bath defined by a flow � consisting to

random variables on T 2 with the uniform probability measure:

dμ(λ,ϕ) = dλdϕ

4π2
, (9)

where μ is the Haar probability measure on T 2.
(4) Markovian bath defined by a stochastic flow � consist-

ing to random variables on T 2 with the following probability
measure:

dνn(λ,ϕ) = dλdϕ√
2πσ

e− 1
2σ

((λ−λn−1)2+(ϕ−ϕn−1)2). (10)

This process is a discrete-time Wiener process (a random walk)
corresponding to a Brownian motion on T 2 with average step
equal to σ > 0.

(5) Chaotic bath defined by a conservative chaotic flow �

as, for example, the Arnold’s cat map:

�

(
λ

ϕ

)
=

(
1 1

1 2

) (
λ

ϕ

)
mod 2π

mod 2π
. (11)

This flow is chaotic and mixing (and then ergodic).
In addition to the flow, kick baths are defined also by the

initial distribution of the first kicks {(λ(i)
0 ,ϕ

(i)
0 )}i=1,...,N . These

first kicks are randomly chosen in [λ∗,λ∗ + d0] × [ϕ∗,ϕ∗ +
d0] (with uniform probabilities). (λ∗,ϕ∗) can be viewed as
the parameters of the primary kick train. The length of the
support of the initial distribution (the initial dispersion) d0 is
the magnitude of the disturbance on the first kick.

The next section studies the dynamics of the spin ensemble
from the viewpoint of the decoherence processes for the kick
baths 1 to 4. The case of chaotic baths is treated in Sec. IV
(with the Arnold cat map and other hyperbolic automorphisms
of the torus).

III. DECOHERENCE AND RELATED PROCESSES

Strictly speaking, the decoherence consists with a decrease
of the spin ensemble coherence |〈↑|ρn|↓〉| with n. The
decoherence process is complete if limn→+∞ |〈↑|ρn|↓〉| = 0;
it is then a transition from a coherent superposition of quantum
states to an incoherent classical mixture of the two eigenstates.

062903-2



DECOHERENCE, RELAXATION, AND CHAOS IN A . . . PHYSICAL REVIEW E 87, 062903 (2013)

FIG. 2. (Color online) Evolutions of the coherence |〈↑|ρn|↓〉| of
the spin ensemble submitted to a stationary, a drifting, a microcanon-
ical, and a Markovian kick baths (top) for a small dispertion of the
first kicks and (bottom) for a large dispertion).

The decoherence is often associated with a relaxation process
limn→+∞〈↑|ρn|↑〉 = p

↑
∞. When p

↑
∞ = 1

2 (independently of
|ψ0〉) the relaxation consists with a transition to a spin ensem-
ble in the quantum microcanonical distribution (equilibrium
of a pseudoisolated quantum bath). If the decoherence occurs
without relaxation process, then it is called pure dephasing
(since it is only induced by relative phases in the quantum
states of the spins). We study these two processes for a bath
constituted by N = 1000 spins (the results do not evolve
significantly for N larger than this value).

A. Decoherence process

Figure 2 presents the evolutions of the coherence |〈↑|ρn|↓〉|
for different kick baths. The decoherence occurs if the kicks are
dispersed on T 2 (microcanonical bath, stationary and drifting
bath with a large initial dispersion d0, and Markovian bath
with a large initial dispersion or a large average step σ ). The
decoherence needs a large dispersion of kicks for the following
reason. Suppose that the dispersion of the kicks rests small
during the evolution. Each spin is kicked with a similar way
than the others. All the spins react then with a similar way, and
their states rest approximately equal during the dynamics. The
spin ensemble remains then coherent.

We see Fig. 2 that the decoherence is more efficient for
an irregular bath in time. Indeed, for the microcanonical kick
bath we have limn→+∞ |〈↑|ρn|↓〉| = 0 with a quasimonotonic
decrease, whereas for the drifting and the stationary baths (with

FIG. 3. (Color online) Top: Evolutions of the coherence
|〈↑|ρn|↓〉| for a spin ensemble submitted to a microcanonical kick
bath with respect to ω1

ω0
. The fall speed of the coherence increases

for high values of ω1
ω0

. Bottom: Evolutions of the coherence for a
spin ensemble submitted to a stationary kick bath (d0  1) with
respect to ϑ (|w〉 = cos ϑ |↑〉 + sin ϑ |↓〉). cmin decreases for ϑ close to
0 or π

2 .

d0  1) the decrease comes with large fluctuations. Moreover,
for the stationary bath (the more regular example), the
decoherence is not complete: limn→+∞ |〈↑|ρn|↓〉| = cmin �= 0.
With d0  1 the kick bath presents initially a strong disorder,
but with the regular evolution the disorder remains constant.
Since the disorder of the kick bath does not increase (and is not
necessarily maximal at time t = 0), the loss of coherence of
the spin ensemble, which consists of a disorder transmission
from the kick bath to the spin ensemble, is not optimal.

Figure 3 shows that the efficiency of the decoherence is
strong for a kick direction |w〉 close to an eigenvector |↑〉 or |↓〉
(ϑ in the neighbourhood of 0 or π

2 ) and for ω1
ω0

 1. For ω1 �
ω0 the decoherence is inefficient because the proper quantum
time of reaction of a spin 2π

ω1
is very large in comparison with

the time between two kicks 2π
ω0

. The spins have not the time to
evolve between two kicks. The system is kicked so much that
it cannot evolve significantly at short term. The different spin
states change then slowly and the loss of coherence is slow.
For a kick direction close to an eigenvector, the kicks tend to
suppress quantum superpositions (to “align” the spins along
an eigenvector which is a “classical direction”). The loss of
coherence, which is a loss of pure quantum behaviors, is then
naturally favored in this configuration.
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FIG. 4. (Color online) Evolutions of the population 〈↑|ρn|↑〉 of a
spin ensemble submitted to stationary and microcanonical kick baths.

B. Relaxation

Figure 4 shows the evolutions of the population 〈↑|ρn|↑〉 for
different kick baths. The relaxation occurs for dispersed and
irregular kicks in the time. The relaxation consists of a loss
of the memory of the initial state |ψ0〉. With irregular kicks,
the disorder in the kick bath is strong and it induces strong
increases of the disorder in the spin ensemble. The disorder in
the spin ensemble (which can be measured by its entropy)
is usually assimilated to a lack of information concerning
the spin ensemble [1,21]. The increase of the disorder is
then assimilated to a loss of information. The information
concerning the memory of the initial state is lost because the
disorder increases with irregular kicks. For the more efficient
kick baths we have limn→+∞ |〈↑|ρn|↑〉| = 1

2 (in the same time,
the coherence tends to 0). The spin ensemble is then in the
quantum microcanonical distribution, which corresponds to
the maximal lack of information (the memory of the initial
state is completely lost).

As for the decoherence process, the relaxation is more
efficient for ω1

ω0
 1 (if ω1 � ω0 the relaxation does not occur

for the extreme case of the stationary kick bath). The reason
is the same as that for the decoherence; for ω1 � ω0 the
spin system does not have the time to react between the
two kicks. In contrast with the decoherence process, Fig. 5
shows that the efficiency of the relaxation grows for kick
direction |w〉 far from the eigenvectors |↑〉 and |↓〉. Indeed, if
|w〉 = |↑〉 or |↓〉, then (|↑〉,|↓〉) are also eigenvectors of W (the
kick operator). They are then eigenvectors of the monodromy
operator Eq. (3). The dynamics induces only relative phases
between the components ↑ and ↓ of the spin wave functions.
The populations, which are not sensitive to relative phases, are
not modified. For a kick direction along an eigenvector, the
decoherence process is a pure dephasing.

C. Population oscillations

For weakly dispersed kicks and/or time regular kicks
(d0 � 1 in a stationary, a drifting or a Markovian kick
bath), the population presents rapid fluctuations (see Fig. 6).
These fluctuations are generated by Rabi oscillations of the
spin states. The kicks must be weakly dispersed because for
dispersed kicks the Rabi oscillations differ markedly from one
spin to another, and they disappear with the average on the bath.

FIG. 5. (Color online) Top: Evolutions of the population 〈↑|ρn|↑〉
for a spin ensemble submitted to a microcanonical kick bath, with
respect to ϑ (|w〉 = cos ϑ |↑〉 + sin ϑ |↓〉). The speed of the relaxation
increases for ϑ far from 0 and π

2 . Bottom: Evolutions of the population
for a spin ensemble submitted to a stationary bath (d0  1) with
respect to ϑ . limn→+∞ 〈↑|ρn|↑〉 = p↑

∞ approaches to 1
2 for ϑ far

from 0 and π

2 .

The fluctuation frequency is then ω1 (the Rabi frequency). We
can note that the amplitude of these fluctuations decreases
for |w〉 close to an eigenvector, because for |w〉 = |↑〉 or
|↓〉, (|↑〉,|↓〉) become eigenvectors of the evolution operator
[Eq. (3)].

For the Markovian case, these fluctuations become neat
oscillations which can be damped and can present beats
(Fig. 7). The damping increases if the “average step of the
random walk” σ increases. The damping is induced by the
increase with time of the dispersion of the kicks (which is
quick for large σ ). The kicks become dispersed, the coherence
of the bath decreases, and the Rabi oscillations are killed by
the average on the bath.

D. Population jumps and coherence falls

In some cases, we can observe short-term evolutions similar
to the decoherence and to the relaxation processes (which
are long-term processes) (Fig. 8). The population “jumps”
to another value that differs from the initial one, and at the
same time the coherence falls. This phenomenon is clearly
apparent for initially strongly dispersed but time-regular kicks
(for the drifting bath with d0  1) and for ω1

ω0
� 1. Numerical

tests show that the direction of the population jump is in the
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FIG. 6. Example of fluctuating population 〈↑|ρn|↑〉.

“direction” defined by the kick direction |w〉. The kick tends to
“align” the spin in its direction. Figure 9 shows the amplitude of
the jump with respect to |ψ0〉 and |w〉. This phenomenon needs
that ω1 � ω0 so the spins do not evolve significantly between
two kicks and do not then lose the alignment. The condition
concerning strong dispersion of the initial kicks ensures only
that the jump is not hide by fluctuations issued from Rabi
oscillations. This dispersion is responsible of the coherence
fall. The spins being kicked with different strengths, the state
changes in the direction of |w〉 are with different amplitudes for
the different spins. This induces a loss of coherence in the spin
ensemble.

IV. CHAOTIC KICK BATHS

A. Decoherence with the Arnold’s cat map

We consider now a chaotic kick bath defined by the Arnold’s
cat map � = ( 1 1

1 2 ) on T 2 with a small initial dispersion

d0 = 10−3. Figure 10 shows the evolution of the coherence of
spin ensemble |〈↑|ρn|↓〉| and the evolution of the population
〈↑|ρn|↑〉. During a period of approximately seven iterations,

FIG. 7. Oscillations of the population 〈↑|ρn|↑〉 for a Markovian
kick bath.

FIG. 8. (Color online) An example of a population jump with a
coherence fall (the decoherence and the relaxation processes are slow
with respect to the duration represented in this figure).

the spin ensemble remains coherent. In the same time the
population fluctuates around its initial value. The behavior
of the spin ensemble is then similar to the behavior of a
spin ensemble submitted to a regular kick bath (stationary
or drifting bath) with a small initial dispersion. But after the
period of seven iterations, the coherence falls rapidly to zero
and the population relaxes rapidly to 1

2 . This behavior is similar
to the behavior of a spin ensemble submitted to an irregular
kick bath with a large initial dispersion (microcanonical
bath). These results are confirmed by dynamics with other
parameters. The spin ensemble submitted to a chaotic kick
bath is the only one which presents two distinct dynamical
behaviors quickly succeeding each other. The system presents
then a horizon of coherence (equal to seven kicks in Fig. 10). To
this horizon of coherence, the spin ensemble is not subject to
the decoherence processes; after this horizon the decoherence
and the relaxation processes dominate the evolution. This
behavior is directly related to the chaotic property of the
Arnold’s cat map and more precisely to the sensitivity to initial
conditions (SIC). At the begining of the dynamics, the kicks of
the different spins are approximately identical (the dispersion
of the kicks is small, and the kick bath is strongly ordered).
No disorder can be transmitted to the spin ensemble, which
remains coherent. But the SIC separates quickly two orbits
initially closed and then increases the kicks dispersion. When
it becomes sufficiently large, the disorder created by the flow

FIG. 9. (Color online) Amplitude of the population jump with
respect to � = arccos〈w|ψ0〉. The curves can be interpolated by
sinusoidal curves.
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FIG. 10. Evolutions of the coherence |〈↑|ρn|↓〉| and of the
population 〈↑|ρn|↑〉 of a spin ensemble submitted to a chaotic kick
bath of which the dynamics is defined by the Arnold’s cat map. The
vertical dashed lines represent the horizon of coherence calculated
with Eq. (24).

in the kick bath is transmitted to the spin ensemble, which
loses its coherence and evolves to the quantum microcanonical
distribution.

B. Lyapunov exponent analysis

In order to analyze the horizon of coherence with a more
quantitative viewpoint, we consider more general hyperbolic
automorphisms of the torus: � = ( 1 1

x x ± 1 ) for x ∈ R∗. Since
|det �| = 1 the flow is conservative, and since the eigenvalues
of � are not root of 1, the flow is ergodic and chaotic [22–24].
Let λ± ∈ R be the eigenvalues of �,

�e± = λ±e± (12)

with e± ∈ T 2 (‖e±‖ = 1) and |λ+| > 1 (|λ+λ−| = 1), where
e+ indicates the unstable direction of the flow on T 2, whereas
e− indicates the stable direction. ln |λ±| are the Lyapunov
exponents of the dynamical system.

In order to simplify the discussion, we consider an initial
distribution of first kicks {(λ(i)

0 ,ϕ
(i)
0 )}i=0,...,N randomly chosen

into the square with base point (λ∗,ϕ∗) and sides d0e+ and
d0e−. After n iterations, the maximal separation of the kicks
is (for n sufficiently large)

dn =
∥∥∥∥�n

((
λ∗
ϕ∗

)
+ d0e+ + d0e−

)
− �n

(
λ∗
ϕ∗

)∥∥∥∥
= ‖�n(d0e+ + d0e−)‖
= ‖λn

+e+ + λn
−e−‖d0

=
√

λ2n+ + λ2n− d0

� |λ+|nd0. (13)

Let d� be the length of a classical microstate of an equipartition
of T 2 (T 2 is covered by a set of disjoint cells of dimensions
d� × d� which constitute the classical microstates). Disorder
appears in the kick bath when the SIC forbids predictions on
the orbits with a sufficiently accuracy (the dispersion of the
kicks becomes too large). For a classical dynamical system
this minimal dispersion length is fixed to be the length of a
classical microstate. The kick bath is then characterized by a
classical horizon of predictability equal to

n� = ln d� − ln d0

ln|λ+| (14)

(∀n > n� we have dn > d�). For an initial distribution of first
kicks randomly chosen in the square [λ∗,λ∗ + d0] × [ϕ∗,ϕ∗ +
d0], the previous formula is not completely satisfactory.
Indeed, the projections of this distribution on the stable and
unstable axis are not uniform distributions of support length

equal to d0. Let γ = arctan e
(ϕ)
+

e
(λ)
+

be the angle between e+ and

the λ axis of T 2. The dispersion of the projection of the initial
distribution on the unstable axis is approximately d0/ sin γ .
The horizon of predictability of the kick bath is then

n� = ln d� − ln(d0/ sin γ )

ln|λ+| . (15)

C. Entropy evolutions

The main physical phenomenon in the system is related
to the production and the transmission of disorder: the flow
produces disorder in the kick bath due to its chaotic behavior
(SIC), and this disorder is transmitted to the spin ensemble
inducing decoherence. Now we want to analyze more precisely
this phenomenon and we need to measure the disorder in the
baths. Entropy functions are measures of disorder [1,21].

The disorder in the spin ensemble is measured by using the
von Neumann entropy,

SvN,n = −10 tr(ρn log ρn), (16)

where tr denotes the matricial trace and log denotes the
matricial natural logarithm and the factor 10 is arbitrary.

To define the disorder in the kick bath we need to choose
classical microstates of the classical system. Let X be the parti-
tion of T 2 defined by the grid {i π

64 }i=0,...,128 × {j π
64 }j=0,...,128.

A cell of X constitutes one of the classical microstates for
one kick train. We choose here the number of spins, and then
the number of kick trains, equal to N = 1024. The length of a
microstate (d� = π

64 ) is chosen to have a small probability that
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several kicks of an uniform distribution are simultaneously in
the same microstate. The disorder of the kick bath is measured
by using the Shanon entropy,

SSh,n = −
∑
i,j

pij,n ln pij,n, (17)

where pij,n is the fraction of kick trains which are in the
microstate (i,j ) at the n-th iteration. The number of spins
N = 1024 and the arbitrary factor 10 in the von Neumann
entropy are chosen in order that the maximal entropies be
equal: sup SvN = sup SSh = 10 ln 2 = ln 1024. This permits a
direct comparison of classical and quantum entropies without
scale distortions.

Finally, the production of disorder by the flow can be
measured by the Kolmogorov-Sinaı̈ entropy (the so-called
metric entropy or measure-theoretic entropy) [22–24]. Let
Xn = ∨n−1

p=0 �−p(X) be the partition of T 2 refined by � with
�−1(X) = {�−1(σ )}σ∈X and X ∨ Y = {σ ∩ ς}σ∈X;ς∈Y . Let μ

be the Haar probability measure onT 2. The Kolmogorov-Sinaı̈
entropy of the flow is defined to be

hμ(�) = − sup
X

lim
n→+∞

1

n

∑
σ∈Xn

μ(σ ) ln μ(σ ). (18)

It is the average disorder produced by � at each iteration. For
hyperbolic automorphisms of T 2 we have [22–24]

hμ(�) = ln |λ+|. (19)

Entropy production starts in the kick bath at n� with a
production rate equal to ln |λ+|, and the entropy of the kick
bath must be theoretically estimated to be

SKS,n =
{

0 if n � n�
(n − n�) ln|λ+| if n � n�

(20)

(we can suppose that SSh,n � SKS,n). The effect of the disorder
in the kick bath is cumulative on the spin ensemble. Even if
the entropy of the kick bath rests is small, at each kick it
induces a small increase of disorder of the spin ensemble. The
disorder in the spin ensemble increases even if the disorder in
the kick bath does not increase significantly. The entropy of
the spin ensemble increases, then, if the cumulated entropy of
the kick bath exceeds a threshold value. Numerical simulations
show that this threshold value is the maximal entropy Smax =
sup SSh = 10 ln 2. The horizon of coherence n� is then such
that

n�∑
n=0

SSh,n = Smax. (21)

Since SSh,n � SKS,n, we have

n�∑
n=n�

(n − n�) ln |λ+| = Smax (22)

and then

(n� − n�)(n� − n� + 1)

2
ln |λ+| = Smax. (23)

FIG. 11. (Color online) For different chaotic flows: von Neumann
entropy of the spin ensemble, Shanon entropy of the kick bath,
cumulated Shanon entropy of the kick bath and entropy of the kick
bath predicted by the Kolmogorov-Sinaı̈ analysis. The horizon of
predictability of the kick bath and the horizon of coherence of the
spin ensemble are indicated by vertical dashed lines.
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TABLE I. Summary of the roles of the different parameters.

Paramaters Effects on dynamical processes

ω1
ω0

↗ Decoherence efficiency ↗
Relaxation efficiency ↗
Population oscillation frequency ↗
Population jump effect ↘

ϑ → 0 or π

2 Decoherence efficiency ↗
Relaxation efficiency ↘
Population oscillation amplitude ↘
Population jump effect ↘

d0 ↗ Decoherence effect ↗
Relaxation effect ↗
Population oscillation effect ↘
Population jump effect ↗
Horizon of coherence ↘ (chaotic cases)

σ ↗ Population oscillation damping ↗
(Markovian cases)

ln |λ+| ↗ Horizon of coherence ↘
(chaotic cases)

Finally, the theoretical horizon of coherence of the spin
ensemble is

n� = n� + 1

2

√
1 + 8Smax

ln|λ+| − 1

2
. (24)

Figure 11 shows SvN,n, SSh,n,
∑n

p=0 SSh,p, and SKS,n for
different chaotic flows. Figure 10 shows that the formula (24) is
consistent with the numerical results concerning the coherence
and the populations of the spin ensemble.

Note that in some cases, particularly when x is small
(|x| < 1), the theoretical formula (24) does not correspond
exactly with numerical results. This is caused by small failures
of the Kolmogorov-Sinaı̈ predictions for the classical entropy.
Small variations of SSh,n can occur before n� increases the
cumulated entropy. Moreover, for small x (weakly chaotic
systems) the entropy production rate can be smaller than
ln |λ+| (since this value issued from the Kolmogorov-Sinaı̈

TABLE II. Summary of the distinguishing behaviors of the spin
ensemble with respect to the kick baths.

Classical baths Specific behavior of the quantum bath

Stationary bath No or incomplete decoherence
No or incomplete relaxation

Drifting bath No or strongly fluctuating decoherence
No or strongly fluctuating relaxation

Microcanonical bath Rapid complete decoherence
Rapid complete relaxation

Markovian bath Neat damped population oscillations
Chaotic bath Horizon of coherence

analysis, it is an average value for very large n and for optimal
partitions X). Nevertheless, the formula (21) is always valid
(it is the approximation SSh,n � SKS,n which can present small
failures).

V. SUMMARY AND CONCLUSION

A spin ensemble controlled by a disturbed kick train is
subject to different dynamical effects: decoherence, relaxation,
population oscillations, population jumps, and horizons of
coherence (for the chaotic case). These different phenomena
can be controlled to a certain extent by adjust the system
parameters as summarized Table I. The different dynamical
effects could also permit us to distinguish the different classical
baths by studying the coherence and the populations of the
quantum bath as summarized in Table II. Chaotic kick baths
are particularly interesting since they present two distinct
behaviors. At the short term the spin ensemble presents
a behavior without decoherence and relaxation processes,
whereas at long term decoherence and relaxation processes
dominate the dynamics. Chaotically kicked spin ensembles
then present a horizon of coherence which is a quantum analog
to the horizons of predictability of chaotic classical systems
and which is a direct consequence of the sensitivity to initial
conditions in the kick bath. An interesting question would be
to know if similar behaviors occur for quantum baths in contact
with other kinds of classical baths.
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Sciences, Paris, 2013).

[24] Y. Benoist and F. Paulin, Systèmes dynamiques élémentaires,
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