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Abstract. Albedo is one of the variables controlling the mass
balance of temperate glaciers. Multispectral imagers, such as
MODerate Imaging Spectroradiometer (MODIS) on board
the TERRA and AQUA satellites, provide a means to moni-
tor glacier surface albedo. In this study, different methods to
retrieve broadband glacier surface albedo from MODIS data
are compared. The effect of multiple reflections due to the
rugged topography and of the anisotropic reflection of snow
and ice are particularly investigated. The methods are tested
on the Saint Sorlin Glacier (Grandes Rousses area, French
Alps). The accuracy of the retrieved albedo is estimated us-
ing both field measurements, at two automatic weather sta-
tions located on the glacier, and albedo values derived from
terrestrial photographs. For summers 2008 and 2009, the
root mean square deviation (RMSD) between field measure-
ments and the broadband albedo retrieved from MODIS data
at 250 m spatial resolution was found to be 0.052 or about
10 % relative error. The RMSD estimated for the MOD10
daily albedo product is about three times higher. One decade
(2000–2009) of MODIS data were then processed to create
a time series of albedo maps of Saint Sorlin Glacier during
the ablation season. The annual mass balance of Saint Sorlin
Glacier was compared with the minimum albedo value (av-
erage over the whole glacier surface) observed with MODIS
during the ablation season. A strong linear correlation ex-
ists between the two variables. Furthermore, the date when
the average albedo of the whole glacier reaches a minimum
closely corresponds to the period when the snow line is lo-
cated at its highest elevation, thus when the snow line is
a good indicator of the glacier equilibrium line. This indi-

cates that this strong correlation results from the fact that the
minimal average albedo values of the glacier contains con-
siderable information regarding the relative share of areal
surfaces between the ablation zone (i.e. ice with generally
low albedo values) and the accumulation zone (i.e. snow with
a relatively high albedo). As a consequence, the monitoring
of the glacier surface albedo using MODIS data can provide
a useful means to evaluate the interannual variability of the
glacier mass balance. Finally, the albedo in the ablation area
of Saint Sorlin Glacier does not exhibit any decreasing trend
over the study period, contrasting with the results obtained
on Morteratsch Glacier in the Swiss Alps.

1 Introduction

The surface albedo of glaciers, also referred to as the bi-
hemispherical broadband albedo (Schaepman-Strub et al.,
2006) is defined as the reflected fraction of the incoming so-
lar radiation. It largely governs the surface energy balance
and thus the mass balance of temperate glaciers (Hock, 2005;
Sicart et al., 2008; Six et al., 2009). During the ablation sea-
son, large temporal and spatial variations of the albedo oc-
cur that directly affect the amount of energy effectively ab-
sorbed by a glacier (Warren, 1982; Hock, 2005). The crucial
importance of the albedo on the energy budget of a glacier
in turn affects its mass balance. However, obtaining accu-
rate and systematic ground measurements of this parameter
throughout a glacier surface, and over extended periods of
time, remains challenging. Towards this goal, remote sensing
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technologies have proven useful in allowing such variations
to be monitored both spatially and temporally (Dozier et al.,
2009).

Multiple algorithms have been developed to estimate the
albedo of snow and ice surfaces from visible and near in-
frared (NIR) space borne imagery. For example, data from
Landsat Thematic Mapper (TM) have been used to de-
rive broadband glacier albedo in Switzerland (Knap et al.,
1999a,b) and in Sweden (Klok et al., 2003). Still in the
context of snow and ice targets, Greuell and Oerlemans
(2004) proposed a set of empirical equations for several
sensors (i.e. Landsat TM, Advanced Very High Resolu-
tion Radiometer (AVHRR), MODerate Imaging Spectro-
radiometer (MODIS), and Multi-angle Imaging Spectro-
Radiometer (MISR)) to convert measurements of narrow-
band albedo into estimates of broadband albedo. Many stud-
ies have since focused on the potential offered by the MODIS
instrument to retrieve snow and ice albedo (e.g. Liang et al.,
2005; Stroeve et al., 2006; Tedesco and Kokhanovsky, 2007;
Zege et al., 2011), sometimes in conjunction with estimates
of the snow grain size (Lyapustin et al., 2009; Painter et al.,
2009; Zege et al., 2011).

However, multiple sources of uncertainties can affect the
accuracy of albedo retrieval methods, particularly in moun-
tainous terrain. We identify the main difficulties as being
those associated with (i) the anisotropic reflection of snow
and ic;, (ii) the method of conversion from narrowband
albedo to broadband albedo; (iii) the effects of the atmo-
sphere, clouds, and topography on the radiative budget of the
surface; and (iv) the errors associated with image geoloca-
tion and terrain modelling. Indeed, the latter propagates to
the computation of topographical derivatives (e.g. slope, as-
pect), which in turn affects (i) and (iii) by compromising the
accurate representation of the illumination and viewing ge-
ometries.

In addition to the difficulty of estimating albedo from re-
mote sensing data, the validation of retrieval methods is of-
ten complicated by (i) the scale differences between ground
measurements and satellite data, and (ii) the effects of the to-
pography on the illumination and, therefore, on the measured
radiance. Thus, most studies presented above and involving
MODIS have relied on measurements of albedo obtained on
relatively flat and homogeneous surfaces for the design and
assessment of their method.

In the context of monitoring snow covered areas in moun-
tainous terrain, Sirguey et al. (2009) proposed and assessed
a method to routinely map sub-pixel snow fraction at 250 m
spatial resolution with MODIS. By implementing a compre-
hensive correction of the atmospheric and topographic ef-
fects, the method allowed the ground spectral reflectance
of snow and ice to be estimated. This method was since
adapted to retrieve broadband albedo from terrestrial pho-
tography while taking into account the snow and ice bidi-
rectional reflectance distribution function (BRDF) (Dumont
et al., 2011).

This study reports on a new method based on the work
of Sirguey et al. (2009) and Dumont et al. (2011) to retrieve
broadband albedo of ice and snow surfaces from MODIS.
The latter is particularly adapted to mountainous environ-
ments as it allows mapping the albedo with a spatial res-
olution of 250 m. The MODIS sensor onboard the TERRA
platform provides daily measurements of radiance at the top
of the atmosphere (TOA) in the visible (VIS), near-infrared
(NIR), and short wave infrared (SWIR) wavelengths. Despite
its relatively coarse spatial resolution (250 to 500 m for the
seven spectral bands used in this study), MODIS’s spectral
resolution and high temporal resolution make it a prime can-
didate to monitor the surface albedo of glaciers.

The glacier surface albedo is closely related to its mass
balance since it constrains its surface energy balance (Six
et al., 2009). Several methods have been developed to charac-
terise the relationship between albedo and mass balance vari-
ations (e.g. Greuell et al., 2007). Alternative methods based
on remotely sensed data have also been developed to esti-
mate the variations of mass balance from those of the equi-
librium line altitude (ELA), namely the line of null mass bal-
ance which separate the ablation zone (ice) from the accu-
mulation zone (snow) at the end of the ablation season (Ra-
batel et al., 2005, 2008). Both areas have greatly contrasting
albedo. Consequently, it is hypothesised that the albedo of
the glacier surface at the end of the ablation season may con-
tain a valuable signal related to the annual mass balance. In
proposing and validating a method to retrieve glacier albedo
from MODIS, this study aims at characterizing further the
relationship between the albedo measured at the end of the
ablation season from MODIS data, the annual mass balance
of a glacier and the ELA.

Section2 briefly describes the validation site. Definitions
and details on the retrieval method are given in Sect. 3.
Section 4 presents results obtained on Saint Sorlin Glacier
(Grandes Rousses area, France) and comparisons with broad-
band albedo obtained from ground measurements and terres-
trial photographs. Sources of error are discussed in Sect. 4.
Section 5 presents the first results obtained on Saint Sorlin
Glacier while applying the method over the 2000–2009 pe-
riod and comparing albedo with mass balance data. This sec-
tion characterises the relationship between the annual mass
balance of the glacier, its albedo and the ELA.

2 Data and study site

2.1 Saint Sorlin Glacier

Located at 45.10◦ N and 6.10◦ E in the Western Alps of
France (Grandes Rousses area), Saint Sorlin Glacier covers
3 km2 (Fig. 1). The glacier extends from nearly 3500 m a.s.l.
at Etendard Peak to around 2700 m a.s.l at its terminus. Its
mass balance has been monitored by the Laboratoire de
Glaciologie et de Ǵeophysique de l’Environnement (LGGE,

The Cryosphere, 6, 1527–1539, 2012 www.the-cryosphere.net/6/1527/2012/



M. Dumont et al.: Glacier albedo and mass balance 1529

899500.0 900000.0 900500.0 901000.0 901500.0 902000.0

324000.0

324500.0

325000.0

325500.0

326000.0

326500.0

Hut

AWSablation-2008

AWSablation-2009

AWSaccumulation-2008

Etendard
Peak

2750

2850

2950

Permanent
AWS

N 2500

3000

Projection Lambert III

3400

Elevation m.a.s.l

Saint Sorlin glacier 

Fig. 1. Map of Saint Sorlin Glacier. Location of the AWS used for validation during summer 2008 and summer 2009 are indicated on the
glacier. The cameras take photographs from the hut. Etendard peak is also indicated.

Grenoble, France) since 1957 (Vincent, 2002). The mean
equilibrium line altitude (ELA) is around 2950 m a.s.l. Much
information about mass balance measurements at this site can
be found at http://www-lgge.ujf-grenoble.fr/ServiceObs.

A permanent automatic weather station (AWS) set on the
moraine (2700 m a.s.l, see location in Fig. 1) has recorded
half-hourly data since 2005. Measurements of air tempera-
ture and relative humidity are used to compute the solar irra-
diance as described in Sect. 3.

Finally, irradiance modelling and anisotropy corrections
demand that accurate terrain geometry be modelled (Stroeve
et al., 2006). For that reason, we used the Global Digi-
tal Elevation Model (GDEM) generated at 30 m spatial res-
olution from stereo imagery acquired with the Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) (http://asterweb.jpl.nasa.gov/gdem.asp).The esti-
mated planimetric accuracy of the GDEM is about±30 m
(Zhao et al., 2011).

2.2 Ground measurements

To estimate the accuracy of the maps of glacier albedo
retrieved from MODIS, additional AWSs were set on the
glacier during the ablation season: two stations (one in the
ablation area and the other located in the accumulation zone)
during summer 2008 and one station during summer 2009 in
the ablation zone. Locations of these temporary stations are
indicated in Fig. 1.

These temporary stations were equipped with a net ra-
diometer Kipp and Zonen CNR1. The two pyranome-
ters facing upward and downward, respectively, were used
to measure the incident and reflected shortwave radiation
(305–2800 nm) with a 15 min time interval. The ratio of both
quantities allowed the bi-hemisperical albedo of the surface
to be estimated. Considering a possible tilt of the instrument
with respect to the surface of the glacier and the intrinsic ac-
curacy of the sensor in both directions (±3 % in terms of
Root Mean Squared Error (RMSE), Six et al., 2009), the
expected accuracy of the measured albedo value is±10 %
(RMSE) (Kipp and Zonen, 2009). The slope of the surface
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below the sensor is relatively small, about 5◦. The footprint
of the device is about 300 m2 (the instrument is about 1 m
above the surface) (Kipp and Zonen, 2009).

2.3 Terrestrial photography

As described in Dumont et al. (2011), two digital cameras,
one visible and one near-infrared, captured automatic pho-
tographs of the glacier three times a day which were used to
compute maps of glacier broadband albedo at 10 m spatial
resolution. It was shown that the accuracy of the final broad-
band albedo retrieved from terrestrial photography is±10 %
and compared to the inherent accuracy of the albedo derived
from the net radiometer (Dumont et al., 2011). These maps
were used to evaluate the method of albedo retrieval from
MODIS data.

2.4 MODIS data

This study relied on MODIS/TERRA Level 1B radiances
available at http://ladsweb.nascom.nasa.gov. These products
give calibrated radiances at the top of the atmosphere (TOA)
at 250 m spatial resolution (bands 1 and 2) and 500 m res-
olution (bands 3 to 7). Information on the viewing and in-
cident geometry are also provided. Tables 1 and 2 provide
a more comprehensive description of these products. Images
were chosen so that the local time of the acquisition was ap-
proximately matching that of terrestrial photographs to allow
the comparison between the maps of albedo retrieved from
MODIS data and those derived from terrestrial photographs.
Thirteen images were processed over the summer 2008, and
twenty one images over the summer 2009.

MODIS daily snow products, MOD10A1 processed by the
National Snow and Ice Data Center (Stroeve et al., 2006; Hall
et al., 2007) also provide daily estimates of the albedo of
snow surfaces at 500 m spatial resolution. They are used in
our study for comparison with the albedo values produced us-
ing the retrieval method described in the next section. How-
ever, it should be noted that broadband albedo estimates from
this data product correspond to directional-hemispheric re-
flectance (Klein and Stroeve, 2002). By considering irradi-
ance from a collimated source only, this variable departs in
its definition from the bolometric albedo being estimated in
this study which can be referred to as the bi-hemispherical
reflectance (Schaepman-Strub et al., 2006; Dumont et al.,
2011).

3 Retrieval method

This section gives first a brief description of the processing
of MODIS data to retrieve subpixel snow cover fraction in
mountainous terrain (Sirguey et al., 2009) and then outlines
the developments performed to retrieve broadband albedo.

Table 1.Description of the MODIS products used in this study.

Product name Description

MOD02QKM Reflectance at the top of the atmosphere,
for bands 1 and 2, at 250 m

MOD02HKM Reflectance at the top of the atmosphere,
for bands 3 to 7, at 500 m

MOD021KM Reflectance at the top of the atmosphere,
for bands 8 to 36, at 1 km

MOD03 Geolocation, geometry and topography parameters,
such as solar and sensor azimuths and zeniths

MOD10A1 Daily snow cover (albedo, lake ice,
snow cover) L3 500 m grid

Table 2.Description of the seven spectral bands of MODIS images
used in this study.

Band Band width (nm)

1 620–670
2 841–876
3 459–479
4 545–565
5 1230–1250
6 1628–1652
7 2105–2155

3.1 Retrieving subpixel snow cover and
hemispherical-conical reflectance

The method used to map the snow and ice surfaces at sub-
pixel level is extensively described in Sirguey et al. (2009).
MODIS images are first reprojected and resampled. A mul-
tispectral fusion is applied between MOD02HKM (500 m,
bands 3 to 7) and MOD02QKM (bands 1 and 2) data to pro-
duce images with seven synthetic spectral bands at 250 m
spatial resolution (Sirguey et al., 2008). The Digital Num-
ber of each pixel is then converted into spectral conic-
hemispherical reflectance (Schaepman-Strub et al., 2006) us-
ing atmospheric and topographic corrections from Bird and
Riordan (1986) and Sirguey (2009). Maps of fractional snow
cover are then calculated using linear spectral mixture al-
gorithm whose accuracy was assessed using concomitant
ASTER data (Sirguey et al., 2009).

3.2 Retrieving broadband albedo

In addition to the maps of fractional snow and ice cover,
the method described above enable the radiance at ground
level to be estimated for for each spectral band accounting
for atmospheric effects and multiple reflections occurring in
rugged terrain. Five bands are used in total in the retrieval
method for albedo described below. The method is applied
only to pixels identified as snow (i.e. containing more than
50 % of snow).

The Cryosphere, 6, 1527–1539, 2012 www.the-cryosphere.net/6/1527/2012/
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3.2.1 From radiance to directional-hemispherical
reflectance

From the description provided by Dumont et al. (2011), it is
possible to relate the directional-hemispherical reflectance,
α, hereafter called spectral albedo, to the radiance measured
by MODIS,LMODIS, by accounting for the anisotropy factor
R(θ̃s, θ̃v, φ̃v,λc), as follow

α(θ̃v,λc) =
πLMODIS(θ̃v, φ̃v,λc)

Es(λc)cosθ̃sR(θ̃v, θ̃s, φ̃v,λc) + Ediff (λc)
(1)

where θ̃v and φ̃v, are, the viewing zenith and azimuth an-
gle, respectively, expressed in the reference frame attached
to the pixel of the glacier and aligned with the azimuth of the
sun.Es(λ) andEdiff (λc) are the direct and diffuse solar ir-
radiances at ground level, respectively.Es is inferred from a
clear sky single layer atmospheric model (Bird and Riordan,
1986). Ediff is derived using the same atmospheric model
together with an iterative method to account for the contri-
bution of the neighbouring slopes to the diffuse irradiance.
This is described in more details in Dumont et al. (2011) and
Sirguey (2009).α(θ,λ) is the spectral albedo of the pixel.
LMODIS(θ̃v, φ̃v,λc) is the corrected MODIS radiance in the
spectral band centred atλc.

The anisotropy factor of snow and ice surfaces,
R(θ̃v, θ̃s, φ̃v,λc), was estimated using measurements of
the BRDF obtained over snow and ice with a spectro-
gonioradiometer as explained in Dumont et al. (2010).

3.2.2 From directional-hemispherical reflectance to
broadband albedo

The broadband albedo is inferred from the spectral albedo
derived from five MODIS bands and using Look-Up-Tables
(LUTs) generated with DISORT (Stamnes et al., 1988). The
methodology is the same as the one described in Dumont
et al. (2011). One LUT was produced for each of the two
main classes of targets, namely ice and snow. The LUTs
gather spectral albedo values simulated using DISORT when
varying the snow specific surface area (SSA) (Domine et al.,
2007), the soot content and the incident zenith angle. The
SSA is inversely proportional to the optical radius of the
snow grains and is defined as the ratio of the entire surface
of the snow grains to the mass of the snow sample. Table 3
provides details about the varying parameters used to create
both LUTs.

It becomes then possible to quantify the departure between
the measured spectral albedo and each theoretical spectrum
stored in the LUT. In turn, this provides a means to infer a full
spectrum based on discrete spectral albedo measurements.

The computation follows the steps outlined below:

1. Using the DISORT LUTs, the values of SSA and soot
content that minimise the spectral distance below are
found

dVIS =
√

1

3

∑

i=(1,2,4)

(αMODIS(λi) − αDISORT(λi))
2. (2)

The band 3 (blue) is not used here because it revealed
for being too much affected by atmospheric scattering.

2. Using the DISORT LUTs, the values of surface specific
area (SSA) that minimise the spectral distance below are
found

dIR =

√

√

√

√

1

2

6
∑

i=5

(αMODIS(λi) − αDISORT(λi))
2. (3)

The band 7 is not used here since the signal is really low
for these wavelengths.

3. The two spectral distances above are computed for each
spectrum stored in both LUTs associated with snow and
ice targets. The discrimination between snow and ice
is inferred from the minimum ofd2

VIS, snow+ d2
IR, snow

andd2
VIS, ice+d2

IR, ice, which indicates the best matching
spectrum.

4. Based on the best matching spectrum created with DIS-
ORT, the spectral albedo is known over the whole spec-
trum. It is then integrated with weights that correspond
to the ground irradiance modelled by SPCTRAL2 (Bird
and Riordan, 1986), thus yielding an estimate of the
broadband albedo value.

This method allowed the contrasting optical properties of
snow and ice to be accommodated. Indeed, the soot content
mainly influences the albedo in the first part of the solar spec-
trum (up to around 1 µm), whereas the albedo in the second
part of the solar spectrum is mainly influenced by the value
of the SSA (Warren and Wiscombe, 1980). Since the pen-
etration of light is generally decreasing as the wavelength
increases, the SSA value retrieved in step 1 corresponds to
a “mean” value for the first centimeters of the snowpack,
whereas the SSA value retrieved in step 2 reflects more the
conditions very close to the surface (Li et al., 2001). In the
steps described above, either each band has the same weights
(steps 1 and 2) or more weight is assigned to the IR bands
(step 3). In the future, more advanced band weighting de-
pending on the information content of each band (e. g. more
weight for band 4 which is the most sensible to impurity to
retrieve the impurity content) could be implemented as de-
scribed inSomers et al. (2009).

As outlined above, the use of DISORT provides a means
to compute the spectral albedo value of the snowpack from
the SSA and soot content. The broadband albedo value cor-
responding to the actual ground irradiance (hereafter called
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Table 3. Description of the DISORT Look-Up-Tables used to in-
fer SSA and soot content from spectral albedo values. The SSA
range chosen for snow is the maximum range found in the literature
(Domine et al., 2007). The soot content is based on the one de-
scribed in Gardner and Sharp (2010). The parameters for ice were
chosen so that the range of spectral albedo corresponds to the mea-
sured ice albedo range found in the literature (Gardner and Sharp,
2010).

Snow

θ 0 to 88◦ with 2◦ sampling
SSA 5 to 160 m2 kg−1 with 5 m2 kg−1 sampling
Soot content 0, 0.002, 0.004, 0.006, 0.01, 0.015, 0.02, 0.04,

0.06, 0.08, 0.1, 0.2, 0.3, 0.5, 1, 2 ng g−1

Ice

θ 0 to 88◦ with 2◦ sampling
SSA 5, 10, 15, 20 m2 kg−1

Soot content 4 to 8 ng g−1 with 0.5 ng g−1 sampling,
9 to 19 ng g−1 with 0.5 ng g−1 sampling,
21, 23 and 25 ng g−1 with 0.5 ng g−1 sampling

clear sky albedo) can thus be obtained. In addition, it be-
comes possible to estimate a value of the diffuse albedo
(albedo of the same surface under diffuse illumination only).
Such a diffuse albedo value is useful since it allows the evo-
lution of the surface to be studied independently of the sea-
sonal variations of the solar zenith angle. This diffuse albedo
will be referred as white sky albedo in the following.

Alternative conversion methods have been tested to assess
the relevance of the algorithm described above. Greuell and
Oerlemans (2004) proposed two quadratic combinations of
MODIS spectral bands 1, 2 and 4 to estimate the broadband
albedo value. From their work we selected only Eq. (4) below
as it proved to provide the best results in our case study:

AV 1 = 0.734αMODIS,1 − 0.717α2
MODIS,1 + 0.428αMODIS,2

+0.458α2
MODIS,4 + 0.011αMODIS,4 ln(

u

uref
) (4)

whereu is the water column vapour anduref its reference
value. The former was estimated directly from the MODIS
image as explained in Sirguey et al. (2009).

4 Evaluation of the method and discussions

The method described above has been applied to MODIS im-
ages acquired during summers 2008 and 2009. They were
selected to match the dates when ground measurements were
available and cloud cover was minimal.

4.1 Accuracy assessment using field measurements

Albedo values retrieved from MODIS level 1B images at the
location of the AWS were compared to field measurements
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Fig. 2.Measured broadband albedo values versus MODIS retrieved
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zone, summer 2008, 2/circles, ablation zone, summer 2008 and
3/crosses, ablation zone, summer 2009. The colours correspond to
the method used to retrieve the albedo value and the determination
coefficient,r2, for each of the methods is also given in the legend
of the figure. The 1: 1 ratio line is indicated in grey.

in 2008 and 2009 under several scenarios. These scenarios
come from different options at the different steps of the re-
trieval method: (i) assuming that snow and ice are lambertian
or not lambertian surfaces (hereafter called “Iso” and “Ani”,
respectively); (ii) assuming that there is no terrain reflection
or correcting from the terrain reflections (hereafter called
“no topo” and “topo”, respectively); and (iii) using Eq. (4)
or DISORT LUTs for spectral conversion (hereafter called
“Eq4” and “Disort”, respectively). In addition, the albedo
values provided by MOD10A1 products were also compared
to field measurements.

Table 4 provides the statistics of the differences between
the MODIS derived albedo based on the different methods
and values measured at the AWSs. Figure 2 illustrates the dis-
persion between measured and MODIS-derived albedo val-
ues for the selected methods. From these results, the effect of
the different hypotheses (e.g. lambertian vs. non lambertian
surfaces, topographic vs. non topographic correction) on the
retrieved albedo values can be characterised.

In every case, accounting for the anisotropy of the radia-
tion reflected by snow provides better performance (i.e. ani
versus iso in Table 4). This sole correction made the RMSD
decrease by 10 % all other things being equal. The correc-
tion of multiple reflections due to surrounding slopes (i.e.
topo versus no topo in Table 4) also noticeably improved
the retrieved value. The topographic correction appeared to
have a greater impact under the Lambertian assumption (the
RMSD improved 8.5 % in the case of Eq. (4) and 19 % in
the case of DISORT). When accounting for the anisotropy of
the reflected radiation, the topographic correction improved
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Table 4.Comparison between albedo values retrieved from MODIS
and field measured albedo values for summers 2008 and 2009. In
the methods, “Iso” means that snow and ice were considered as
lambertian, whereas “Ani” means that an anisotropy correction was
applied. “topo” vs “no topo” is relative to the correction of the mul-
tiples reflections due to surrounding slopes. “Eq4” is relative to
the use of Eq. (4) for the narrow-to-broadband conversion, whereas
“disort” refers to the method describes in Sect. 3.2.2. The statistics
given in this table areb for the mean difference between MODIS
albedo values and the measured values, rmsd stands for the root
mean square deviation between both values andn is the mean abso-
lute relative error in percent. The last two lines of the table indicate
the number of pixels used in the statistics for MOD10A1 and for
all the other methods based on MOD02. This number is lower for
MOD10 since in many cases the glacier pixels were misclassified
as land or cloud.

Method Summer 2008 Summer 2009 All

Iso b = −0.085 −0.066 −0.076
Eq4 rmsd = 0.145 0.073 0.118
no topo n = 28.0% 23.6 29.4

Ani −0.062 −0.048 −0.056
Eq4 0.130 0.056 0.103
no topo 23.9 17.7 25.6

Iso −0.035 −0.039 −0.037
Eq4 0.138 0.051 0.108
topo 24.5 15.9 20.6

Ani −0.017 −0.024 −0.020
Eq4 0.129 0.035 0.099
topo 21.7 11.1 16.9

Iso −0.017 0.018 −0.000
Disort 0.056 0.061 0.058
topo 10.8 15.9 13.2

Ani −0.000 0.030 0.014
Disort 0.050 0.054 0.052
topo 10.4 12.2 11.2

Iso −0.055 −0.006 −0.03
Disort 0.079 0.057 0.069
no topo 15.7 16.5 16.1

Ani −0.034 0.007 −0.015
Disort 0.063 0.041 0.054
no topo 12.9 11.0 12.1

0.131 0.095 0.117
MOD10 0.219 0.102 0.184

26.8 28.6 27.5

N, mod10 17 10 27
N, mod02 24 21 45

the RMSD by 3.9 % in the case of Eq. (4) and 3.8 % using
DISORT .

From Fig. 2, the coefficient of determinationr2 for each
method is significant. It culminates for the methods us-

ing Eq. (4), relying on spectral albedo being corrected for
anisotropic reflectance. Ignoring the increased radiation due
to the surrounding slopes introduced a positive bias since the
retrieved radiance and in turn the corresponding albedo val-
ues are higher. Notwithstanding the better correlations ob-
tained from Eq. (4), Table 4 reveals that these lesser disper-
sion in comparison with methods based on DISORT are ob-
tained at the cost of a considerable loss of accuracy. Indeed,
all other things being equal, the use of the DISORT-based
method yielded a decrease of the RMSD by over 45 %.

Finally, the albedo provided in the MOD10 data product
exhibited the largest RMSD value (Table 4). The positive bias
of 0.117 although substantial could have been expected due
to the type of albedo being retrieved in this global product.
In considering the directional-hemispheric reflectance only,
Klein and Stroeve (2002) ignored the additional diffuse ra-
diation. The underestimation of irradiance logically results
in an overestimation of the albedo value when compared to
the bi-hemispherical albedo being measured at the AWS and
used as a reference in this comparison.

From these results, the method based on DISORT and
combining topographic and anisotropy corrections provided
the better agreement with albedo values measured in the
field. Therefore, this method was preferred and is the basis
of all the results presented hereafter.

4.2 Comparison between MODIS and terrestrial
photographs albedo maps

The maps of albedo retrieved from MODIS data were com-
pared with the corresponding maps of albedo derived from
terrestrial photographs (Dumont et al., 2011). This allowed
the robustness and the spatial distribution of the computed
broadband albedo to be evaluated. The original broadband
albedo values from terrestrial photographs at a spatial reso-
lution of 10 m were first interpolated to fill missing values
and then re-sampled using a true mean at 250 m. The terres-
trial photographs having an accuracy on the albedo values
estimated at 10 % at 10 m spatial resolution, the accuracy of
the maps resampled at 250 m is around 1 %. Thus, these maps
provide an almost true reference to evaluated MODIS data.

Differences between maps of albedo derived from MODIS
and terrestrial photographs are illustrated in Fig. 3 which
presents for each 250 m pixel of the glacier the mean differ-
ence and the RMSD for 13 dates over the summers 2008 and
2009. The RMSD over Saint Sorlin Glacier is 0.088, which
is comparable to the accuracy of the albedo retrieved from
terrestrial photographs (Dumont et al., 2011). In addition, the
mean difference between MODIS and terrestrial photographs
is 0.03, demonstrating that the difference between the both
datasets is barely biased.

However, those differences exhibit some spatial pattern
worth discussing (Fig. 3). The differences between the
albedo on MODIS and terrestrial photo maps are generally
higher on the edges of the glacier than in the central parts
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(a)฀Pixel฀RMSD฀-฀MODIS฀vs฀photos (b)฀Pixel฀mean฀difference฀-฀MODIS฀vs฀photos

0.05 ฀0.1 0.15 ฀฀0. ฀0.1 ฀0.2

Fig. 3.Comparison between albedo retrieved from MODIS and ter-
restrial photographs.(a) RMSD for each pixel of the glacier for
13 epochs over summer 2008 and summer 2009.(b) Mean differ-
ence for each pixel for the same 13 epochs. RMSD and difference
are indicated in albedo values. The contour of the glacier as it was
measured in 2003 is also indicated with the thick black line on the
two charts.

of the glacier. We believe that this may be due to artefacts
associated with the spatial resolution of the DEMs used dur-
ing the topographic correction. For the terrestrial photos, the
original resolution was 10 m, much finer than the 250 m pixel
size obtained from MODIS images. In turn, a pixel of the
DEM at 250 m fails to represent the spatial variability of the
slope within its area (6.25 ha) while the pixel of the 10 m
DEM used for the topographic corrections in the method
using terrestrial photographs achieves such representation
down to 0.1 ha. In conjunction, the standard deviation of the
slope is higher on the edges of the glacier than in the centre.
As the slope has an influence on the amount of both reflected
and incident radiation, depending on the illumination geom-
etry (sun elevation, azimuth and terrain aspect), the loss of
accuracy in the slope within a 250 m pixel propagates to the
estimated albedo, thereby increasing its variance. Such varia-
tion being nonlinear with respect to the slope can explain that
the mean slope is not adequate to yield a mean albedo, thus
increasing the discrepancies on the edges, where the slope
varies substantially. A second and not less significant ex-
planation for the loss of accuracy close to the edges of the
glacier may be that such pixels are often mixture of several
materials (i.e. snow/ice and rock). For instance, at the end of
the ablation season, the standard deviation of the albedo val-
ues derived from the photographs within each 250 m MODIS
pixel at the edge of the glacier is typically twice larger at
the edge of the glacier than the standard deviation computed
from pixels in the central area (from 0.02 to 0.04). As the
method presented to retrieve the albedo does not take into
account the presence of rock, the accuracy of the method
is expected to decrease when the glacier surface comprises
an important debris cover. To address the problem of mixed
pixels, it would be interesting to apply the albedo retrieval

method only to the part of the pixel reflectance which is at-
tributed to snow and ice by the linear unmixing technique.

4.3 Error sources

4.3.1 Cloud detection

Before processing MODIS images, only those with a limited
cloud cover were used. An automatic cloud detection based
on MODIS reflective and emissive bands was implemented
in the algorithm (Sirguey et al., 2009), before proceeding to
the topographic correction of MODIS bands one to seven.
Pixels identified as cloudy were not included in the computa-
tion of spectral albedos. In their visual inspection of MODIS
images, Sirguey et al. (2009) reported that some problem of
classifications sometimes happen between snow and clouds
at the edges of the snow cover. The conclusion about the ef-
ficiency of the cloud detection method in the present study is
the same.

4.3.2 Atmospheric correction

The atmospheric model used in this study is an adaptation of
the single layer SPCTRAL2 model (Bird and Riordan, 1986),
and is described in more details by Sirguey et al. (2009).
To assess its performance at estimating the different irradi-
ance contributions, Sirguey et al. (2009) conducted a thor-
ough comparison with outputs from the more comprehensive
6S model (Vermote et al., 1997). RMSEs were computed be-
tween the two datasets for direct and diffuse solar irradiance,
diffuse environmental irradiance, and atmospheric intrinsic
radiance. Discrepancies generally less than 10 % compared
to the output of the 6S model in the seven MODIS spectral
bands justified implementing the much simpler SPCTRAL2
model in this study. Further testing with data collected on
Saint Sorlin Glacier confirmed the good agreement of this
irradiance model (Dumont et al., 2011).

4.3.3 Geolocation and gridding artefacts

The albedo retrieved from MODIS images is sensitive to the
good registration between the satellite image and the DEM.
Aster DEM is known to have a±30 m planimetric accu-
racy (http://asterweb.jpl.nasa.gov/gdem.asp), while MODIS
images are registered with a±50 m planimetric accuracy
(Wolfe et al., 2002). To evaluate the impact of DEM and/or
image misregistration on the retrieved albedo, the Aster
DEM was translated horizontally by 100 m. This yielded dif-
ferences in the accumulation area up to RMSD≤ 0.06, where
the albedo is higher and the terrain is more rugged. In the
ablation area, where the slope is less variable and ice re-
places snow during the summer, values are less sensitive
to the misregistration (RMSD< 0.03). This stresses the fact
that the albedo retrieval method remains substantially sensi-
tive to misregistration between the image and the DEM espe-
cially where the slope is important and/or in highly irregular
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terrain. In addition to the geolocation error, MODIS data are
subject to mismatch between the location on the ground from
which MODIS observations are derived and the predefined
grid cells used for storing observations (Tan et al., 2006).
This pixel shift is particularly problematic at high view zenith
angles (at the edge of the scan line) for example and can also
affect the retrieval especially in highly irregular terrain.

4.3.4 On the grain size retrieval and the anisotropy
correction

The anisotropy correction used in this work remains based
on measurements and does not take into account variations
of anisotropy factors due to grains size and shape. More so-
phisticated models accounting for the shape of grains (Zege
et al., 2011) have been used for snow grain size, impurity
content, and albedo retrieval. Nevertheless, it was believed
unnecessary to implement a more comprehensive anisotropy
correction because: (i) due to the accuracy of our method,
considering the shape of the grains would not bring signif-
icant improvements; and (ii) despite the effect of surface
roughness on the albedo (Hudson and Warren, 2007; Zhu-
ravlela and Kokhanovsky, 2011), this parameter is ignored
by Zege et al. (2011). The fact that the surface roughness
generally produces opposite anisotropic effects compared to
smooth ice or snow surfaces (Hudson and Warren, 2007) may
explain why the benefit of the anisotropy correction was of
lower magnitude than that attributed to the topographical cor-
rection. Indeed, the BRDF associated with the surface con-
sidered at the granular scale can depart significantly from
that of the surface observed at a macroscopic scale and af-
fected by the surface roughness. Accounting for this depar-
ture could further improve the impact of the anisotropy cor-
rection (e.g. Li and Strahler, 1985).

5 Application to Saint Sorlin Glacier from 2000 to 2009

Ten years (2000–2009) of MODIS data have been processed
on Saint Sorlin Glacier using the algorithm presented and
assessed in the previous sections, namely using topographic
and anisotropy corrections and DISORT. Cloud-free images
were selected over the period from May to October in order
to cover the whole ablation period. This represents a total of
405 maps of albedo over ten years.

Figure 4 shows an example of albedo map obtained on
16 July 2007. All the coloured pixels are the ones used here-
after for computing the average glacier albedo. Values of the
pixel indicated by a cross in Fig. 4 were used to monitor the
albedo relative to the ablation zone.

5.1 The albedo of the ablation zone

Figure 5 shows the evolution of surface albedo for the pixel
in the centre of the ablation zone of the glacier represented
with a plus on Fig. 4, from July to mid-September, when
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Fig. 4. Clear sky albedo retrieved from MODIS on 16 July 2007.
This map has been retrieved using anisotropic/topographic correc-
tions and DISORT. The pixel indicated by the plus is the pixel
used for the monitoring of the albedo in the ablation zone. All the
coloured pixels are used to compute the mean albedo of the glacier.

the glacier surface is generally comprised of bare ice. The
albedo presented here is the white sky albedo as explained in
Sect. 3.2.2. Consequently, this albedo is not affected by the
illumination conditions and only reflects the evolution of the
surface. Since maps of albedo are produced on an irregular
temporal basis resulting from possible cloud cover, averag-
ing maps over time makes little physical sense. In addition,
to grasp the evolution of the albedo of ice, the effect of snow-
fall during the period must be avoid. Figure 5 therefore plots
the minimum value of the albedo for a ten-day moving win-
dow calculated every fifth day.

Figure 5 suggests that there was no obvious trend of de-
crease in the typical albedo of ice during this decade. This
was similar for all other pixels of the ablation zone. This
contrasts with a study on Morteratsch Glacier (Swiss Alps)
whereby Oerlemans et al. (2009) reported a decrease in the
albedo of ice from 0.32 to 0.15 over the period 2001 to 2006.
This decrease was believed to be caused by an enhanced de-
position of dust from lateral moraines on the glacier surface.
In this context, the topography of the ablation zone of Saint
Sorlin glacier is different as the terminus is quite wide re-
garding to the length of the glacier, and lateral moraines are
smaller compared to those of the Morteratsch Glacier. This
difference could explain the contrasting trends in the evolu-
tion of the albedo for both glaciers.

5.2 Albedo and mass balance

We now consider the evolution of the albedo averaged over
the whole glacier surface. The pixels chosen for averaging
are coloured in Fig. 4 and entirely included within the glacier
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Fig. 5. Minimum white sky albedo retrieved from MODIS data in
the ablation zone for summers 2000–2009. This figure shows the
evolution of the minimum albedo of one pixel of the ablation zone,
the crossed pixel in Fig. 4. It shows minimum value of albedo over
10 days each 5 days.

outlines, 29 pixels in total. Potentially mixed pixels on the
right hand side of the ablation zone were ignored to reduce
biases. In this section, only images for which none of the
selected pixels were cloudy were considered.

Figure 6a shows the measured annual mass balance versus
of the annual minimum value of this mean surface albedo
(clear sky and white sky) for each year of the 2000–2009
period. The annual mass balance values were obtained
from field measurements and are reported with a RMSD of
200 kg m−2 (Cogley and Adams, 1998). The RMSD of the
mean albedo values, computed as 0.052/

√
29, are also indi-

cated in Fig. 6a as error bars. The red crosses are for the
clear sky albedo value, whereas the blue diamonds are for
the white sky albedo. The coefficient of determination be-
tween the albedo and the mass balance is 91.6 % for the clear
sky albedo and 94.6 % for the white sky albedo. When disre-
garding the year 2001, the only positive mass balance value,
the coefficient of determination is 89.3 % for the clear sky
albedo and 89.6 % for the white sky albedo. The minimum
albedo for year 2002 is the one with the poorest fit to the
regression line calculated using the method from York et al.
(2004), i.e. taking into account the error for each variable

Figure 6b also illustrates a significant and strong anti-
correlation between the annual mass balance and the ELA
(Rabatel et al., 2005). To facilitate the identification of the
ELA on Landsat and SPOT satellite images, a spectral bands
combination has been used (5, 4, 2 for Landsat and 4, 3, 1
for SPOT). Then, the ELA has been delineated manually and
its average altitude computed using the ASTER DEM. The
error on the ELA calculation results from the accuracy of
the DEM, the pixel size of the images (ranging between 10
and 30 m), the slope of the glacier at the level of the ELA,
and the standard deviation of the calculation of the average

ELA along its delineation. The latter is the most important
contributor. The RMSD for the ELA and the mass balance
are reported on the graph. The coefficient of determination
between the ELA and the mass balance is 94.7 %. All the
correlation coefficients in Fig. 6 are significant at the 95 %
confidence level.

The strong correlation shown in Fig. 6 is physically based.
Indeed, the date of the minimum albedo matches the date
when the snow line has reached its uppermost position and
so to the date when the snow line can be considered as a good
indicator of the equilibrium line (Rabatel et al., 2005, 2008).
For each year, this date ranges between mid-August and mid-
September. At this date the mean albedo of the glacier is then
representative of the relative share of areas between the abla-
tion zone (made of ice) and the accumulation zone (covered
with snow). The best correlation is obtained for the white
sky albedo which confirms our choice to use this variable in-
stead of the clear sky albedo to monitor the glacier surface
conditions. The departure of year 2002 from the regression
line may be explained by the snowy end of the summer on
this year. Indeed as shown in Fig. 4, the albedo of the ab-
lation zone reaches minimum values higher than 0.5 in Au-
gust. This indicates that there were several periods of snowy
weather. Most of the MODIS data from this period were not
usable due to clouds. This may also have prevented satellite
observation to be obtained for the day where the snow line
is the highest. This illustrates one of the limitations of the
methods which is inherent to the use of visible images.

While the correlation obtained between the albedo and the
mass balance compares to that with the ELA, we believe that
the albedo contains more information about the surface of
the glacier than the ELA does. In addition, the configuration
of the glacier, with several orientations in the accumulation
zone may complicate the determination of the mean ELA.

These results further stress the significance of the albedo
on the mass balance of this kind of alpine glaciers (Dumont
et al., 2012). The strong linear correlation shown in Fig. 6
proves that mass balance variations may be inferred from the
minimum albedo of the glacier during the ablation season.
This hypothesis would however benefit from being tested on
several glaciers under different climates and this work should
be pursued in this direction. The method proposed here for
retrieving interannual variations of mass balance is compara-
ble to the study made by Greuell et al. (2007) on the Svalbard
glaciers and on the method proposed by Rabatel et al. (2005,
2008) to retrieve the mass balance variations from the ELA.

6 Conclusions

This study presents a new method to retrieve glacier
broadband albedo from MODIS images at 250 m resolu-
tion under clear-sky conditions based on previous work
of Sirguey et al. (2009) and Dumont et al. (2011). Broad-
band albedo over the entire solar spectrum is computed by
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Fig. 6. Measured annual mass balance versus(a) the minimum of the mean glacier albedo and(b) the equilibrium line altitude for years 2000
to 2009. The RMSDs associated with each data points, the coefficients of determinationr2 and the regression lines calculated with the method
described in York et al. (2004) are indicated on the charts. On the left panel the clear sky albedo is plotted in red crosses, whereas the white
sky albedo is the blue diamonds.

taking into account rugged topography, as well as snow and
ice anisotropy. The narrow-to-broadband conversion is per-
formed by minimizing the distance to spectral forms com-
puted by the DISORT radiative model and is shown to be
more efficient than other existing equations (Greuell and Oer-
lemans, 2004). RMSD between measured and MODIS re-
trieved albedo is±0.052 or about 10 % relative error. In com-
parison, the RMSD found for the MOD10 snow albedo prod-
uct is about three times higher. Comparison between MODIS
and terrestrial photographs albedo maps also revealed a good
temporal consistence between the two datasets. The main
source of errors may stem from a misregistration between
the satellite image and the DEM used for topographic cor-
rection, the presence of mixed pixels (including ice/snow and
rocks/debris), and/or the presence of undetected clouds.

This method has been applied over ten years of MODIS
data (2000–2009) on Saint Sorlin Glacier. No obvious de-
creasing trend could be detected relative to the typical sum-
mer surface albedo in the ablation zone. This contrasts with
results reported byOerlemans et al. (2009) on Morteratsch
Glacier whereby the surface albedo exhibited a significant
decrease over the period 2001–2006. In addition, the an-
nual mass balance of Saint Sorlin Glacier was compared with
the minimum albedo value (spatial averaged over the whole
glacier) observed with MODIS during the ablation season.
A strong linear correlation exists between the two variables.
Furthermore, the period when the albedo reaches a minimum
over the glacier closely corresponds to the time at which the
snow line is found to be at its highest elevation and is thus
considered as a good indicator of the glacier equilibrium line.
This suggests that the strong correlation can be explained by
the fact that this minimal albedo contains a high degree of
information regarding the relative share of areal surfaces be-

tween the ablation zone (i.e. bare ice with a generally lower
albedo) and the accumulation zone (i.e. snow covered with
a relatively high albedo).

This work has to be extended to other glaciers and climates
and it could therefore be of great use to monitor and under-
stand the energy balance of several glaciers over the ablation
season and its sensitivity to climate change. One of the lim-
itations of the method is that it may not work on debris cov-
ered glaciers, at least to compute the mass balance of glaciers
with a debris-covered terminus. The high linear correlation
between the minimum albedo and the annual mass balance
can be used to retrieve interannual variations of the glacier
mass balance. Many other possible uses of these albedo maps
exist. For instance they can be useful to investigate the mid-
term temporal trends of the glacier albedo in relationship
with climate trends or for the assimilation of albedo values
in surface energy balance models to improve the simulation
of spatially distributed glacier mass balance (Dumont et al.,
2012).
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