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Noisy classification with boundary assumptions

Sébastien Loustau
∗
and Clément Marteau

†

Abstract

We address the problem of classification when data are collected from two samples with
measurement errors. This problem turns to be an inverse problem and requires a specific
treatment. In this context, we investigate the minimax rates of convergence using both a
margin assumption, and a smoothness condition on the boundary of the set associated to the
Bayes classifier. We establish lower and upper bounds (based on a deconvolution classifier)
on these rates.

1 Introduction

Assume that we have at our disposal two noisy learning samples S1 = (Z
(1)
1 , . . . , Z

(1)
n ) and

S2 = (Z
(2)
1 , . . . , Z

(2)
n ) satisfying:

Z
(1)
i = X

(1)
i + ǫ

(1)
i , ∀i ∈ {1, . . . , n}, and Z(2)

j = X
(2)
j + ǫ

(2)
j , ∀j ∈ {1, . . . ,m}, (1.1)

where the X
(1)
i (resp. X

(2)
j ) denote independent identically distributed (i.i.d) random variables

from unknown distribution F1 (resp. F2) and the ǫ
(k)
i denote random errors, independent of the

X
(k)
i . For the sake of simplicity, F1 (resp. F2) admits a density f (resp. g) w.r.t. the Lebesgue

measure on R
d. Moreover, we assume that the random errors are i.i.d. with known density η

with respect to the Lebesgue measure.
The goal is to classify a new incoming observation X, assumed to have a density f or g (and

independent of S1 and S2). In other words, one wants to determine whether the density of X is
f or g. Remark that in this model, two independent random sources are involved. The first one
corresponds to the fluctuations of the variable of interest which is governed by the distribution
F1 or F2 following the corresponding label. The second one corresponds to measurement errors
(or imprecisions) during the data collection process. This problem corresponds to a nonpara-
metric measurement error model, or errors-in-variables model (see the monograph of [24] for
an introduction). We are in fact faced to the so-called discrimination with errors in variables
problem.

The free noise case has already been widely studied in the literature. We refer for instance to
[11] for a complete survey. When the variables ǫji are equal to zero in (1.1), fast rates of conver-
gence were obtain for the first time in [22], using both a complexity and a margin assumption.
Similar results where obtained in [26, 23, 2] in slightly different settings. The previous papers
were focused on empirical risk minimisation (ERM) algorithm and used margin assumptions (see
Section for more details). Similar conditions were investigated in the last decades for instance
in [3], [4] or [16] among other.

Concerning the error-in-variables model of classification, few results have been published.
Up to our knowledge, the only minimax result is [21], where minimax fast rates were obtained
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using a regularity assumption on the class of densities f and g in model (1.1) (see also [19] in the
general context of statistical learning). In a slightly different setting, we can however mention [9]
where boundary estimation in a deconvolution framework was considered, or [14] for a study of
empirical risk minimization (ERM) algorithm in inverse problem models. Finally, [15] proposes
an empirical minimization based on a deconvolution approach for the problem of estimating
geometric characters of a multivariate distribution in the presence of noisy measurements.

The aim of this paper is to provide a classifier in the error-in-variables model and to study
the related minimax performances in terms of fast rates. For this purpose, we will use two
different kind of assumptions on the model: a margin assumption and a complexity assumption.
The margin assumption will traduce the difficulty to discriminate an observation from another.
It has been introduced for the first time in [22]. The second assumption concerns the regularity
of the boundary of the set

G⋆
K =

{

x ∈ K ⊂ R
d, f(x) ≥ g(x)

}

,

where we restrict the study to a compact subset K ⊂ R
d. It is widely known in classification

that the decision set G∗
K minimizes the so-called Bayes risk:

RK(G) =
1

2

(

∫

K\G
f(x)dx+

∫

G
g(x)dx

)

.

Hence, the construction of a good classifier is more or less related to provide a good estimation
(in a sense which will be precised later on) of G⋆

K . Remark that, contrary to [2] or [21], minimax
results are investigated with no restriction over the regularity of f and g.

The structure of this paper is as follows. In Section 2, we present in detail our model and
assumptions. Then, we construct a deconvolution classifier. Lower bounds are provided in
Section 3. The performances of our classifier are studied in Section 4. Section 5 concludes the
paper whereas Section 6 proposes to highlight the main ideas used in the proofs. Section 7 is
dedicated to the proofs of the main results, whereas Section 8 adds some useful materials about
noisy empirical processes.

2 A deconvolution classifier

2.1 Model

In this paper, a classifier is related to a subset G ⊂ R
d which traduces some hint on the places

where there may be a greater probability to find an observation having distribution F1. In the
sequel, we restrict our investigations to a compact set K ⊂ R

d. Using a slight abuse of notation,
a classifier will be denoted by a measurable subset of the observations Ĝ = Ĝ(S1,S2). In other
words, the new incoming observation X will be associated to the first (resp. second) label if it
belongs to the set Ĝ (resp. K \ Ĝ).

In order to measure the performances of a given classifier Ĝ ⊂ K, we will use the Bayes risk
defined as:

R(Ĝ) =
1

2

(

∫

K\Ĝ
f(x)dx+

∫

Ĝ
g(x)dx

)

.

The best possible classifier G⋆
K then satisfies

G⋆
K = arg min

G⊂K
RK(G) = {x ∈ K, f(x) ≥ g(x)} ,
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where the infimum is taken over all possible subset of K ⊂ R
d. In some sense, a good classifier

should mimic (at least asymptotically) the behavior of G⋆
K . Hence, the excess risk

RK(Ĝ)−RK(G∗
K),

will be of first interest all along the paper.

For all G ⊂ K, using simple algebra, we get,

RK(G) −RK(G⋆
K) =

1

2

∫

K
(f − g)(x)(1G⋆

K
(x)− 1G(x))dx,

=
1

2

∫

K
|f(x)− g(x)||1G⋆

K
(x)− 1G(x)|dx,

since the product (f(x)− g(x)).(1G⋆
K
(x)− 1G(x)) is nonnegative for all x ∈ K. Then,

RK(Ĝ)−RK(G⋆
K) =

1

2

∫

K
|f(x)− g(x)|1G∆G⋆

K
(x)dx :=

1

2
df,g(G,G

⋆
K),

where for all G1, G2 ⊂ K, G1∆G2 = {K \G1 ∩G2} ∪ {G1 ∩K \G2}. The term df,g is a pseudo
distance on the subsets of K. The excess risk corresponds to a measure of the difference between
Ĝ and the Bayes risk G⋆

K , where the symmetric difference is balanced by the value of f − g.
This term is avoided when using for instance the pseudo-distance d∆, defined as

d∆(G1, G2) = Q(G1∆G2) ∀G1, G2 ⊂ K,

where Q denotes the Lebesgue measure on R
d.

Remark 1. The pseudo-distance df,g is related to the densities f and g whereas d∆ is en-
tirely determined by the symmetric difference between G1 and G2. In some sense, df,g is more
related with the prediction task whereas d∆ is a more related with a set estimation problem. In
some favorable cases, i.e. when Q(|f − g| ≤ t0) = 0 for some t0 > 0, it is clear that these two
pseudo-distance are equivalent (see the margin assumption below and Lemma 2 in [22]). This
particular case is known as the strong margin assumption case.

Remark 2. Our goal is to provide the best possible estimation of the set G⋆
K from two noisy

learning samples. From the prediction point of view, we are in fact interested in the estimation
of the class of a new incoming observation X. We could also address the following problem: given
a new noisy incoming observation, try to guess the corresponding label. These two problems
are rather close but a precise comparison is beyond the scope of the present paper. We refer for
instance to [18] where a similar problem was addressed in a goodness-of-fit testing framework,
or to [21] for a related discussion.

In this paper, our aim is to establish minimax rates of convergence for both df,g and d∆. In
order to get these rates, we will need some assumptions on the model.

2.2 Assumptions

Following for instance [22], we will use two different conditions in order to obtain minimax rates
of convergence. The first one is related to the behavior of the function f − g at the boundary of
G⋆

K . Recall that Q denotes the Lebesgue measure on R
d.

Margin Assumption: There exist constant t0, c2 ∈ R+ and α ∈ R̄+ such that ∀0 < t < t0,

Q{x ∈ K : |f(x)− g(x)| ≤ t}
{

≤ c2t
α if α ∈ R+,

= 0 if α = +∞.
(2.1)
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This condition expresses the difficulty of distinguishing a distribution from another at the bound-
ary of G⋆

K . It has been explicitly introduced for the first time in [22]. The case α = +∞ corre-
sponds to the best situation when f − g does not hit or cross the frontier of the Bayes set. It
is the so-called strong margin assumption. In this case, it is well-known from [22] that d∆ and
df,g are equivalent. If α ∈ R, the most favorable cases corresponds to large values for α: the
distributions F1 and F2 are rather different of each side of G⋆

K . Small values for α correspond
to more difficult situations where fast rates can not be expected.

Regularity Assumption. The second condition is related to the complexity of the prob-
lem. Since we are dealing with a nonparametric set estimation problem, it seems natural to use
an assumption on the regularity of the boundary of G⋆

K . More precisely, we will deal with the
family of boundary fragments on K. All along the paper, we state K = [0, 1]d without loss of
generality. A set G ⊂ [0, 1]d belongs to a class of boundary fragments (see [17]) if there exists
b : [0, 1]d−1 → [0, 1] such that:

G = {x = (x1, . . . xd) ∈ [0, 1]d : xd ≤ b(x1, . . . , xd−1)} := Gb.

For given γ, L > 0 the class of Hölder boundary fragments is then defined as:

G(γ, L) = {Gb, b ∈ Σ(γ, L)}, (2.2)

where Σ(γ, L) is the class of isotropic Hölder continuous functions b(x1, . . . , xd−1) having con-
tinuous partial derivatives up to order ⌊γ⌋, the maximal integer strictly less than γ and such
that:

|b(y)− pb,x(y)| ≤ L|x− y|γ ,∀x, y ∈ R
d−1,

where pb,x is the Taylor polynomial of b at order ⌊γ⌋ at point x.

In the sequel, we restrict the class G of possible candidate sets G ⊂ K for which both the margin
and Hölder boundary fragment assumptions are satisfied. It requires, in turn, restrictions on
the class F of possible density couple (f, g). Our result are given in a minimax framework over
the following class F . For positive constants γ, L, c2, t0, α and c1, the class F is defined as:

F(α, γ) = {(f, g) : f and g are densities w.r.t. the Lebesgue measure, ‖f‖∞ ∨ ‖g‖∞ ≤ c1,

{x ∈ K : f(x) ≥ g(x)} ∈ G(γ, L) and (2.1) holds for α ∈ R̄}. (2.3)

In the free-noise case, [22] has proved that the rates in d∆ and df,g can be completely
characterized by both margin and boundary fragment assumptions. Remark that alternative
hypotheses can be set on the model. For instance, [2] or [21] deal with a plug-in type assumption
on the regularity of f − g.

The last hypothesis that we will introduce on the model concerns the measurement errors.

Indeed, in the model (1.1), the density of the Z
(1)
i (rep. Z

(2)
i ) is nor f (resp. g) but rather f ∗ η

(resp. g ∗ η), where ∗ denotes the convolution product between two functions and η the density

of the ǫ
(j)
i w.r.t. the Lebesgue measure. Contrary to the free-noise case, the X

(j)
i are indirectly

observed: we are faced to an inverse (deconvolution) problem.
Inverse problems have been widely investigated in the statistical literature. We mention for

instance [24] or [6] for a general review of existing models and related results. In an estima-
tion or testing framework, inverse problems are known for providing slower rates than in the
direct cases. This can be explained by the loss of information related to the regularization of
the operator. The behavior of the noise density η is hence of first importance if one want to
evaluate this decay. In particular, we will see that we can take advantage of the shape of the
Fourier transform of the noise in order to provide a precise description of the minimax rates in
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this setting. This is the purpose of the following assumption.

Noise Assumption: There exists β = (β1, . . . , βd)
′ ∈ R

d
+ such that for all i ∈ {1, . . . , d},

βi > 1/2,
|F [ηi](t)| ∼ |t|−βi , and

∣

∣F ′[ηi](t)
∣

∣ ≤ C|t|−βi as t→ +∞,

where η = Πd
i=1ηi and F [ηi] denotes the Fourier transform of ηi. Moreover, we assume that

F [ηi](t) 6= 0 for all t ∈ R and i ∈ {1, . . . , d}.

Note that the hypothesis η = Πd
i=1ηi corresponds to non-degenerated random errors ǫ, whose

coordinates are independent. This assumption could be relaxed as in [8] since we only need an
assumption over the asymptotic behavior of F [η]. In the literature, the noise assumption (NA)
corresponds to ordinary smooth or mildly ill-posed inverse problem. The parameters βi describe
the difficulty of the related problem. Higher is βi, smoother are f ∗η and g ∗η in the direction i.
As a result, harder becomes the classification problem. In the sequel, we show that these coeffi-
cients play a crucial role in the expression of the minimax rates of convergence. For the sake of
concision, we will not consider severely ill-posed problems, i.e. corresponding to exponentially
decreasing Fourier transform. However, simple applications of the main result of this paper lead
to the study of this particular case.

2.3 The classifier

We are now ready to propose a classifier in such a context. Our method is based on the empirical
risk minimization (ERM) method. The main idea is to construct an estimator for the Bayes
risk associated to each candidate G, and then to select the one associated to the lowest value.
In the free-noise case, i.e. when data are observed without measurement errors, [22] have used
the risk estimator Rn,m(.) defined as

Rn,m(G) =
1

2

[

1

n

n
∑

i=1

1{X(1)
i ∈K\G} +

1

m

m
∑

i=1

1{X(2)
i ∈G}

]

, ∀G ⊂ K.

In particular, it is easy to see that for all G ⊂ K, Rn,m(G) is an unbiased and consistent estima-
tor of RK(G). When dealing with an error-in-variables model, the methodology is completely
different. Indeed, for all i ∈ {1, . . . , n}, we get for instance

E

[

1{Z(1)
i ∈K\G}

]

=

∫

K\G
f ∗ η(x)dx.

In such a situation, Rn,m(G) is nor an unbiased neither a consistent estimator of the risk RK(G).
We are faced to an inverse (deconvolution) problem. In order to get round of this problem, we
will propose a deconvolution ERM algorithm. This algorithm is heavily related to the properties
of deconvolution kernel (see for instance [12] or [24]).

Let K =
∏d

j=1Kj : R
d → R be a d-dimensional kernel defined as the product of d unidimen-

sional kernels Kj (i.e. functions Kj : R → R satisfying
∫

Kj = 1). The properties of K leading
to satisfying upper bounds will be made precise later on. Then, if we denote by λ = (λ1, . . . , λd)
a set of (positive) bandwidths and by F [·] the Fourier transform, we define the deconvolution
kernel Kη as

Kη : R
d → R

t 7→ Kη(t) = F−1

[ F [K](·)
F [η](·/λ)

]

(t), (2.4)
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provided that K (resp. η) belongs to L2(R
d) and admits a Fourier transform. Note that in the

sequel, for the sake of concision, we note, for any λ ∈ R
d
+, z, x ∈ R

d:

1

λ
Kη

(

z − x

λ

)

:=
1

λ1 · · ·λd
Kη

(

z1 − x1
λ1

, . . . ,
zd − xd
λd

)

.

In this context, for all G ⊂ K, the risk RK(G) can be estimated by

Rλ
n,m(G) =

1

2

[

1

n

n
∑

i=1

hK\G,λ(Z
(1)
i ) +

1

m

m
∑

i=1

hG,λ(Z
(2)
i )

]

,

where for a given z ∈ R
d:

hG,λ(z) =

∫

G

1

λ
Kη

(

z − x

λ

)

dx. (2.5)

For all G ⊂ K, the function hG,λ more or less plays the role of an indicator function. In
particular, for all i ∈ {1, . . . , n}, we get for instance

E[hG,λ(Z
(1)
i )/X

(1)
i ] = Kλ ∗ 1{.∈G}(X

(1)
i ), ∀G ⊂ K, (2.6)

where Kλ ∗ 1{.∈G}(x) denotes the convolution between K and the indicator function 1{.∈G} at a
point x ∈ R. This term can then be viewed as a smoothed indicator on the set G. Remark that
due to (2.6), the estimator (2.5) will be biased. Indeed, for all G ⊂ K

ERn,m(G) =

∫

Rd

f(x)Kλ ∗ 1{.∈K/G}(x) +
∫

Rd

g(x)Kλ ∗ 1{.∈G}(x) := Rλ(G) 6= R(G).

The control of the related bias will be one of the main difficulty to establish minimax rates of
convergence for this estimator.

In the following, we study ERM estimators defined as:

Ĝλ
n,m = arg min

G∈G(γ,L)
Rλ

n,m(G), (2.7)

where G(α, γ) is defined in (2.2) and λ = (λ1, . . . , λd) ∈ R
d
+ is a parameter that has to be chosen

explicitly.

3 Lower bound

Theorem 1 states lower bounds for the minimax risks over the class F(α, γ) defined in (2.3).
The proof is postponed to Section 7.

Theorem 1 Let K = [0, 1]d and F(α, γ) defined in (2.3). Suppose that the noise assumption is
satisfied for some β. Then we have:

lim inf
n→+∞

inf
Ĝn,m

sup
(f,g)∈F(α,γ)

(n ∧m)τd(α,β,γ)Ed�(Ĝn,m, G
⋆
K) > 0,

where the infinimum is taken over all possible estimators of the set G⋆
K and

τd(α, β, γ) =











































γα

γ(2 + α) + (d− 1)α+ 2α

d−1
∑

i=1

βi + 2αβdγ

for d� = d∆

γ(α+ 1)

γ(2 + α) + (d− 1)α+ 2α

d−1
∑

i=1

βi + 2αβdγ

for d� = df,g.
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Remark 4. We obtain exactly the same lower bounds as [22] in the direct case, which yet
corresponds to the situation where βj = 0 for all j ∈ {1, . . . , d}. In this particular framework,
the minimax rate of convergence mainly depends on γ and α. The coefficient γ corresponds to
the regularity of the boundary of G⋆

K . Greater is γ, easier is the estimation. The term α is
related to the margin assumption.

Remark 5. In the presence of noise in the variables, the rates obtained in Theorem 1 are
slower. The price to pay is an additional term of the form

2α

[

d−1
∑

i=1

βi + βdγ

]

.

This term clearly connects the difficulty of the problem to the values of the coefficients β1, . . . , βd.
Moreover, the above expression highlights a connection between the margin parameter and the
ill-posedness. The role of the margin parameter over the inverse problem can be summarized
as follows. Higher is the margin, higher is the price to pay for a given degree of ill-posedness.
When the margin parameter is small, the problem is difficult at the boundary of G⋆

K and we can
only expect a non-sharp estimation of G⋆

K . In this case it is not significantly worst to add noise.
On the contrary, for large margin parameter, there is nice hope to give a sharp estimation of
G⋆

K and then perturb the inputs variables have strong consequences in the performances.

Remark 6. In the above expression, the first d− 1 components of ǫ do not have the same
impact as the last (vertical) component. This is due to the fact that we consider boundary
fragments with a given regularity γ. This regularity is expressed in a Hölder space of functions
defined on the d− 1 first directions.

Remark 7. Finally, we can compare the lower bound of Theorem 1 with the previous lower
bound stated in [21] under plug-in type conditions. The main novelty here is that no restriction
on α ∈ R̄ is necessary to get the lower bound. It could be explain as follows. Coarsely, the
case α = +∞ cannot be treated in [21] since the minimax approach is performed over a class of
densities with Hölder regularity. If the strong margin assumption holds, f − g is not continuous
at the boundary. Moreover, Theorem 1 holds for arbitrary values for α. Since we do not suppose
any assumption for the regularity of the densities f and g, the construction of the lower bound is
easier. In particular, we can take advantage of the noise assumption and mix standard arguments
from lower bounds in classification (see [1] and [22]) and inverse problems (see [5]).

4 Upper bounds

4.1 A preliminary result

For the sake of concision, in this section we propose to restrict the set G to G(γ, L), where all
possible regularities γ satisfy γ > d−1. It allows us to control the bracketing entropy of G(γ, L)
with a parameter ρ = d−1

γ < 1. We may also consider more general classes of candidates G, with
given entropy rates. This extension is presented in Section 6 using empirical processes theory
in a more general framework.

In this section, we are interested in the performances of the estimator:

Ĝn,m = arg min
G∈G(γ,L)

Rλ
n,m(G), (4.1)

where G(γ, L) is defined in (2.2) for γ > d− 1. Nevertheless, one may also define our ERM esti-
mator for γ ≤ d− 1 by considering a network in a practical purpose, without significant change
in the following results. We will also assume for clarity throughout this section that n = m. In
order to get round of the assumption on both the shape of the noise and the boundary of G⋆

K ,
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we will introduce some constraints on the kernel K.

Kernel Assumption

(K1) The kernel K is such that the associated deconvolution kernel satisfies

sup
t∈Rd

|F [Kη ](t)| ≤ C
d
∏

i=1

λ−βi
i , and ‖Kη‖2 ≤ C

d
∏

i=1

λ−2βi
i .

The assumption (K1) is necessary to control the variance of our classifier. It is satisfied for
instance if the Fourier transform of K is bounded and compactly supported.

The following theorem provides a control of the expectation of the excess risk by a bias-
variance decomposition, up to a residual term depending on the choice of the bandwidth λ.

Theorem 2 Let Ĝn the set introduced in (4.1) where γ > d − 1 and n = m. Suppose that the
noise assumption is satisfied and consider a kernel Kη defined as in (2.4) satisfying (K1). Then
we have

Edf,g(Ĝn,m, G
∗) ≤ C inf

λ∈Rd
+





(

Πd
i=1λ

−βi
i√
n

)
2γ(α+1)

γ(α+2)+(d−1)α

+ sup
G∈G

(

RK −Rλ
K

)

(G) +

d
∑

i=1

(nλi)
− γ

γ+d−1



 ,

where C is a positive constant and (RK −Rλ
K)(G) = R(G)−Rλ(G) for all G ∈ G.

This result highlights a bias-variance decomposition of the excess risk. The proof is presented
in Section 7. The main ingredient of the proof is a study of the increments of a noisy empirical
process, indexed by a set of functions which depends on the regularization parameter λ > 0. At
this step, some remarks are necessary:

Remark 9. The variance term is obtained thanks to extensions of the empirical process ma-
chinery and the peeling technique introduced by [13] in the direct case (see Section 8 for details).
This term is related to the regularity of the distribution function η in the noise assumption. We
can see coarsely that the price to pay for the inverse problem in the variance is summarized in
the term Πd

i=1λ
−βi
i . Note that in the direct case, [22] has already stated fast rates of the form

n
− γ(α+1)

γ(α+2)+(d−1)α , which corresponds to β = 0 in Theorem 2.

Remark 10. The second term in Theorem 2 is a bias term due to the estimation of the true
risk by a biased empirical risk. When dealing with a deconvolution ERM, the algebra is rather
different. We have to provide a precise control of the bias of the ERM, namely the quantity

R(G)− ERλ
n(G) =

∫

(f − g) (1GC −Kλ ∗ 1GC ) dQ.

This term has to be controlled carefully to get minimax results. This is the focus of the next
paragraph.

Remark 11. Finally, the last term in the upper bound is a residual term since we can see
coarsely that

(nλi)
− γ

γ+d−1 ≤
(

Πd
i=1λ

−βi
i√
n

)
2γ(α+1)

γ(α+2)+(d−1)α

,

provided that λi → 0 not too fast, for all i ∈ {1, . . . , d}.
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4.2 Control of the bias and related rates of convergence

The aim of this part is to investigate different available ways in order to control the bias. It is
important to note that in a previous paper dedicated to plug-in type conditions, [21] provides
a simple way to control the bias term. Indeed, under a Hölder regularity condition over the
function f − g, we can bound the bias term as follows:

Lemma 1 (Loustau and Marteau [21]) Suppose f − g ∈ Σ(γ, L), the isotropic Hölder class
of functions over R

d. Suppose that the kernel K is of order γ. Then, we have

sup
G⊂K

(Rλ
K −RK)(G) ≤ C

d
∑

i=1

λγi .

The proof is straightforward since in this case, we can write:

R(G)− ERλ
n(G) =

∫

1GC [(f − g)−Kλ ∗ (f − g)]dQ.

Then, the control of the bias term is reduced to the control of the bias term in standard non-
parametric density estimation, which gives (see for instance [25]):

sup
x0∈Rd

|(f − g)(x0)−Kλ ∗ (f − g)(x0)| ≤
d
∑

i=1

λγi .

Here, the problem is rather different since the regularity assumption deals with the boundary
of G∗

K . It is well-known (see for instance [17]) that a regularity with respect to the boundary of
a decision rule does not match with plug-in type conditions of Lemma 1. The following result
proposes an upper bound under boundary assumptions.

Corollary 1 Let Ĝn the set introduced in (4.1) where γ > d− 1. Suppose the noise assumption
is satisfied and consider a kernel Kη defined as in (2.4) satisfying (K1). Suppose moreover that
for any j ∈ {1, . . . , d},

∫

Rd |K(z)||zj | dz < ∞ and Πd−1
j=1Kj has compact support. Then, there

exists a positive constant C such that

Ed�(Ĝn,m, G
∗
K) ≤ Cn−κd(αβ,γ),

where

κd(α, β, γ) =











































γα

γ(α+ 2) + (d− 1)α+ 2γ(α + 1)

d
∑

i=1

βi

for d� = d∆

γ(α+ 1)

γ(α+ 2) + (d− 1)α+ 2γ(α + 1)

d
∑

i=1

βi

for d� = df,g.

Following Corollary 1, lower and upper bounds do not match. The prize to pay for the errors-in-
variables model is summarized in the term 2γ(α+1)

∑d
i=1 βi whereas the lower bound proposes a

smaller term 2α
∑d−1

i=1 βi+2γαβd. By the way, the corresponding error becomes negligible when
γ is close to 1 and α → ∞. The proof is provided in Section 7 and uses Theorem 2 gathering
with the following crude bound for the bias term:

sup
G∈G

(Rλ
K −RK)(G) ≤ C

d
∑

i=1

λi.
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It is based on the following scheme. For all G ⊂ K, using Fubini, we have
∫

Rd

(f − g)(x) (Kλ ∗ 1G(x)− 1G(x)) dx

=

∫

Rd

(f − g)(x)

(∫

z∈R2

K(z) [1G(x+ λz)− 1G(x)] dz

)

dx

=

∫

Rd

K(z)

(
∫

Rd

(f − g)(x) [1G(x+ λz)− 1G(x)] dx

)

dz.

Since we do not have any conditions on the smoothness of f − g, the control of the bias reduces
to the calculation of the Lebesgue measure between the sets G and G+λz, which appears to be
of order

∑

i λi. Hence, we can not take advantage on the smoothness of the boundary. In Section
5 below, we discuss several tracks to attack this problem. It appeals to different tools (such as
convexification, or additional regularity assumptions) which do not fit with the machinery of
the present paper.

5 Conclusion

Let us discuss the obtained results and highlight some open problems:

Comparison with [22] This paper can be seen as a generalization of the results of [22] to the
error-in-variables case. We highlight, in the presence of noise, fast rates of convergence
which depends on the Fourier transform of the noise distribution η. The price to pay
depends on the triplet (γ, α, β) related with the regularity, margin and noise assumptions.

Choice of λ and model selection The main drawback of the deconvolution ERM of this pa-
per is the calibration of the bandwidths λ. Under isotropic assumptions over the shape of
f and g, we have shown that it is sufficient to choose only one bandwidth. An extension to
the anisotropic case could be done easily (see for instance [20] in an unsupervised context).
However, these calibrations are non-adaptive and depend on the smoothness assumptions.
The data-driven choice of the bandwidth is a natural open problem. The bias variance
trade-off to choose λ is not the usual one in non-parametric statistics and a careful study
of this problem is necessary. In this direction, we can mention the recent work of [7].
Moreover, this problem of adaptation is compounded with the model selection of G.

Adaptation to the operator The deconvolution classifier proposed in this paper depends on
the known density of the noise ǫ. As a result, another issue would be to try to adapt
to unknown error densities η. In this direction, it can be interesting to apply the same
strategy, using for instance the estimator proposed in [10] for deconvolution with repeated
measurements. In the presence of repeated measurements, the model (1.1) becomes, for
i = 1, . . . , n and j = 1, . . . ,m:

Z
(1)
i,k = X

(1)
i + ǫik, k = 1, . . . , Ni, and Z

(2)
j,ℓ = X

(2)
j + ǫjℓ, ℓ = 1, . . . ,Mj .

In this case, the empirical risk associated to this problem can be written:

Rλ
n,m(G) =

1

2





1

nN

n
∑

i=1

hK\G,λ(Z
(1)
i,1 , . . . , Z

(1)
i,Ni

) +
1

mM

m
∑

j=1

hG,λ(Z
(2)
j,1 , . . . , Z

(2)
j,Mj

)



 ,

where N =
∑n

i=1Ni, M =
∑m

j=1Mj , and for some j ∈ {1, . . . ,m}:

hG,λ(Z
(1)
j,2 , . . . , Z

(2)
j,Mj

) =

∫

G
wj

Mj
∑

ℓ=1

1

λ
L̂





x− Z
(2)
j,ℓ

λ



 dQ(x), (5.1)
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where wj are weights satisfying
∑m

j=1wjMj =M and L̂ is a ridged deconvolution estimator
defined in [10]. An interesting open problem is to use the same methodology presented in
this paper to study the performances of the minimizer of the deconvolution ERM using
(5.1).

Direct VS inverse problem In this paper, we propose to study the rates of convergence to
the Bayes of our deconvolution classifier in term of pseudo-distance df,g and d∆. However,
as discussed inRemark 2, a direct approach seems to be tractable in some particular cases.
A systematic study of the rates of convergence of standard ERM using noisy measurements
could be interesting. For this purpose, we have to control the difference between the Bayes
risk with respect to X and the following Bayes risk:

Rη
K(G) =

1

2

[

∫

K\G
f ∗ ηdQ+

∫

G
g ∗ ηdQ

]

.

Another interesting comparison could be done in the problem of predicting a new incoming
noisy observation. This paper shows that deconvolution ERM are optimal to predict a new
X observation. Finding the more efficient rule to predict a new Z observation is also of
practical interest. To this end, a relationship between the margin assumption and the
noise assumption has to be done, which appears to be a challenging open problem.

Minimax optimality remains an open problem Lower and upper bounds of Theorem 1
and Corollary 1 do not match and the question of minimax rates in such a setting remains
an open problem. However, our intuition is the following: the lower bound is valid and on
the contrary, the estimation method of this paper suffers from a lack of optimality.

Firstly, an investigation of the upper bound above indicates that an optimal control of the
bias would require an upper bound of order

[(

d−1
∑

i=1

λi

)γ

+ λd

]1+ 1
α

instead of
d
∑

i=1

λi.

Using simple algebra (in dimension 2 for the sake of convenience), we can re-write the bias
as
∫

Rd

(f − g)(x) (Kλ ∗ 1G(x)− 1G(x)) dx

=

∫

R2

K(z)

∫

R

[

∫ (b(x1+λ1z1)−λ2z2)+

0
(f − g)(x)1{x1+λ1z1∈[0,1]}dx2 −

∫ b(x1)

0
(f − g)(x)dx2

]

dx1dz.

The exponent γ is related to the smoothness of the boundary of b. This smoothness
properties could certainly be taken into account following some additional assumptions on
the smoothness of f − g. Indeed, one may manage a Taylor expansion of b and then f − g
in the 2nd direction, up to some additional technical constraints. Concerning the exponent
1 + 1/α, one might take advantage of the behavior of f − g in the neighborhood of G⋆

K ,
but this may require an extended version of the margin assumption.

Another possibility is to use convex surrogate to deal with the bias term. Indeed, the
difficulty to control the bias term seems to be related with the 0− 1 loss approach of this
paper. Since we use the 0 − 1 loss, the bias is upper bound by the Lebesgue measure
between the sets G and G+λz, which is of order

∑

λi (see Corollary 1 and the associated
discussion). There is nice hope that a control of the bias term can be managed thanks to
a smooth loss function, without any additional smoothness assumption. However, in this
case, a precise study of the lower bound has to be performed and is out of the scope of
the present paper.
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Finally, the lack of optimality of the deconvolution ERM of this paper could be explain
as follows. In the estimation procedure, the idea is to estimate the true risk by using a
deconvolution kernel estimator of the densities f and g. As a result, the method seems
to be strongly linked with plug-in type regularities for the Bayes decision rule G∗

K , which
allows us to control easily the bias term in [21]. Here, the regularity assumption is rather
different and deals with the boundaries of G∗

K . That’s why an optimal control of the bias
term seems problematic. Another way to obtain the fast rates of the lower bound should be
to use another estimator of the true risk to deal with errors-in-variables. In classification
with smooth boundaries, the estimation task could be summarize as an estimation of the
boundary. As a result, in the presence of noisy observations, we have to study the effect
of the inverse problem on the boundary of the Bayes G∗

K (that is with respect to the
direct data). It could be a way to plug another estimator in the true risk, which allows to
estimate optimally the boundary.

6 Preliminaries to the proofs

In this section, we provide a more general point of view about the problem of classification with
noisy inputs. To be more precise, we state a generalization of Theorem 2 to study any possible
candidate set G in the ERM minimization, given its entropy rates.

More formaly, we suggest to state upper bounds for deconvolution ERM of the form:

Ĝn = argmin
G∈G

Rλ
n(G), (6.1)

where Rλ
n(·) is the empirical risk defined in Section 1 and G is a set of possible candidates

for G⋆
K . We want to study the rate of convergence of Ĝn to G⋆

K . This rate depends on the
complexity of the class G in terms of δ−entropy with bracketing. For δ > 0, the bracketing
entropy of G with respect to some distance d is denoted by H(G, d, δ) and corresponds to the
minimal number such that NB(δ) = exp (H(G, d, δ)) is an integer and such that there exists
pairs (Gj ,Hj), j = 1, . . . , NB(δ) of subsets of G satisfying

(1) Gj ⊂ Hj for all j ∈ {1, . . . , NB(δ)},

(2) d(Gj ,Hj) ≤ δ for all j ∈ {1, . . . , NB(δ)},

(3) For any G ∈ G, there exists j ∈ {1, . . . , NB(δ)} such that Gj ⊂ G ⊂ Hj.

We begin with a general upper bound when G has a given entropy rate. It allows to deduce
easily Theorem 2 in Section 4.

Proposition 1 Suppose G contains G⋆
K and satisfies, for some 0 < ρ < 1:

H(G, d∆, δ) ≤ cδ−ρ. (6.2)

Let Ĝn the set introduced in (6.1) where G satisfies (6.2). Suppose the noise assumption is
satisfied and consider a kernel Kη defined as in (2.4) satisfying the Kernel assumption. Then,
we have:

Edf,g(Ĝn,m, G
⋆
K) ≤ C inf

λ∈Rd
+





(

Πd
i=1λ

−βi
i√
n

)
2(α+1)
α+2+ρα

+ sup
G∈G

(

RK −Rλ
K

)

(G) +

d
∑

i=1

(nλ)
− 1

1+ρ



 ,

where C > 0 is a generic constant.
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Such a result is an extension of Theorem 2 for general set G with given entropy conditions. The
main ingredient of the proof is a generalization of Lemma 5.11 in [13]. The proof is postponed
to Section 8.

Such a generality allows to deal with various constraints on the problem. In this paper,
we deal with assumptions on the smoothness of the Bayes classifier boundary. Alternative
constraints could be investigated. By the way, it may be possible to consider plug-in type
assumption as in [2] or [21], convex sets or finite Vapnik Chervonenkis classes as in [23] or [16].

7 Proofs

In this section, with a slight abuse of notations, C, c, c′ > 0 denotes generic constants that may
vary from line to line, and even in the same line. Given two real sequences (an)n∈N and (an)n∈N,
the notation an ≈ bn (resp. an . bn) means that there exists generic constants C, c > 0 such
that can ≤ bn ≤ Can (resp. an ≤ Cbn) for all n ∈ N.

7.1 Proof of Theorem 1

The proof starts as in [22] but then uses some arguments which are specific to the inverse problem
literature (see for instance [5] or [24]).

Let F1 a finite class of densities and g0 a fixed density such that (f, g0) ∈ Ffrag for all f ∈ F1.

The contain of F1 and the value of g0 will be precised later on. Then, for all estimator Ĝn,m of
the set G⋆

K , we have

sup
(f,g)∈Ffrag

Ef,g d∆(Ĝn,m, G
⋆
K) ≥ sup

(f,g0),f∈F1

Ef,gd∆(Ĝn,m, G
⋆
K),

≥ Eg0





1

♯F1

∑

f∈F1

Ef

{

d∆(Ĝn,m, G
⋆
K)|X(2)

1 , . . . ,X(2)
m

}



 . (7.1)

7.1.1 Construction of F1

Concerning the density g0, we deal with the uniform density on [0, 1]2, i.e.

g0(x) = 1{x∈[0,1]2},∀x ∈ R
2.

Now, we have to define the class F1. First, we consider a function ϕ infinitely differentiable
defined on R such that supp(ϕ) = [−1, 1], ϕ(t) ≥ 0 for all t ∈ R and ‖ϕ‖∞ = ϕ(0) = 1. Let
M ≥ 2 an integer which will be allowed to depend on n and τ > 0 a positive constant. Then,
for all j ∈ {1, . . . ,M}, we set

ϕj(t) = τM−γϕ

(

M

[

t− 2j − 1

M

])

, ∀t ∈ R.

For all ω ∈ {0, 1}M and all t ∈ R, we define

b(t, ω) =
1

2
+

M
∑

j=1

ωjϕj(t).

In the specific case where ωj = 1 for all j ∈ {1, . . . ,M}, we write b(t,1). Then, let b0 and
C⋆ positive constants which will be precised later on. We define the function f0 : R2 → R as
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f0(x) = 0 for all x 6∈ [0, 1]2 and

f0(x) =



























1 + 2η0,∀x2 ∈ [0, 1/2],

1− η0 − b0,∀x2 ∈ [b(x1,1), 1],

1 +
(

b(x,1)−x2

c2

)1/α
−C⋆M−γ/α,∀x2 ∈ [1/2, b(x1,1)],

where C⋆ = 3/2.(τ/c2)
1/α and b0 > 0 is such that

∫

f0(x)dx = 3/4. The condition on C⋆ ensures
that f0(x) < 1 for all x2 ∈ [1/2, b(x1,1)]. We will also use the function f1 defined as

f1(x) =







0,∀x ∈ [0, 1]2,

b1
(1+x2)2.(1+x1)2

,∀x 6∈ [0, 1]2,

where C1 is such that
∫

f1(x)dx = 1/4. Finally, the set F1 will be defined as

F1 =
{

fω, ω ∈ [0, 1]M
}

,

where for a given ω ∈ {0, 1}M ,

fω(x) = f0(x) + f1(x) +

M
∑

j=1

ωjρj(x). (7.2)

for some functions (ρj)j=1...M which are explicited below. In order to complete the construction
of the set F1, we have to provide a precise definition of the ρj and to prove that the fω define
probability density functions for all ω ∈ {0, 1}M .

We first start with the construction of the ρj . For all x ∈ R, let ρ : R → [0, 1] the function
defined as

ρ(x) =
1− cos(x)

πx2
, ∀x ∈ R,

with associate Fourier transform F [ρ](t) = (1− |t|)+. In particular, supp F [ρ] = [−1, 1]. For all
j ∈ {1, . . . ,M} and x2 ∈ R, introduce

ρ(2)(x2) = cos

(

x2 − 1/2(1 + τM−γ)

3/2π−1τM−γ

)

ρ

(

x2 − 1/2(1 + τM−γ)

3π−1τM−γ

)

. (7.3)

By the same way, for all j ∈ {1, . . . ,M}, we define

ρj,(1)(x1) = cos

[

π

3

(

x1 − j/M

M−1

)]

ρ

[

π

6

(

x1 − j/M

M−1

)]

. (7.4)

Then, for all j ∈ {1, . . . ,M} and x = (x1, x2) ∈ [0, 1]2, we set

ρj(x) = c⋆(τM−γ)1/α ρ(2)(x2)ρj,(1)(x1), (7.5)

for some constant c⋆ explicited below.

Now, we prove that the fω introduced in (7.2) define density functions. First, remark that

M
∑

j=1

|ρj(x)| ≤
{

CM−γ/α(1 + x1)
−2(1 + x2)

−2, ∀x 6∈ [0, 1]2,

CM−γ/α, ∀x ∈ [0, 1]2,
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This ensures that fω ≥ 0 for all ω ∈ {0, 1}M , at least for M large enough. Then recall that
both f0 and f1 are designed in order to guarantee that

∫

(f0 + f1)(x)dx = 1. Hence, we only
have to show that

∫

ρj(x)dx = 0 for all j ∈ {1, . . . ,M}. In fact, it is only necessary to prove
that

∫

ρ(2)(x2)dx2 = 0. First remark that
∫

ρ(2)(x2)dx2 =
∫

ρ̃(2)(x2)dx2 where ρ̃(2)(x2) =
ρ(2)(x2 + 1/2(1 + τM−γ)) for all x2 ∈ R. Then, using simple algebra

F [ρ(2)](0) =
1

2
F
[

ρ
( .

3π−1τM−γ

)]

(

± 1

3/2π−1τM−γ

)

=
3

2
π−1τM−γF [ρ] (±2)

=0,

since the support of the Fourier transform of ρ is [−1; 1]. Hence, for all ω ∈ {0, 1}M , fω is a
density function.

In order to conclude the proof, we have to show that

(fω, g0) ∈ Ffrag ∀ω ∈ {0, 1}M , (7.6)

which allows to use the bound (7.1),

Q {x ∈ K : |fω(x)− g0(x)| ≤ η} ≤ c2η
α ∀ω ∈ {0, 1}M and ∀η ≤ η0, (7.7)

which means that the Margin assumption is satisfied for our test functions and that

Eg0Efω

{

d∆(Ĝn,m, G
⋆
K)|X(2)

1 , . . . ,X(2)
m

}

≥ Cn
− γ

γ( 2
α+1)+2β1+2β2γ+1 , (7.8)

for some positive constant C.

7.1.2 Main assumptions check

We first start with the proof of (7.6). First remark that for all j ∈ {1, . . . ,M}, the function
ρj(.) is bounded from above by CM−γ/α for some C > 0. Then, using simple algebra

x2 ∈ [1/2; b(x1,1)] ⇒ 1

2
≤ x2 ≤

1

2
+ τM−γ ,

⇒ −τM
−γ

2
≤ x2 −

1

2
− τM−γ

2
≤ τM−γ

2
,

⇒ −π
6
≤ x2 − 1/2(1 + τM−γ)

3π−1τM−γ
≤ π

6
,

⇒ ρ(2)(x2) ≥
9

4π3
.

The same kind on minoration holds for the function ρj,(1). Hence the ρj are uniformly bounded

from below on [1/2; b(x1,1)]. For all ω ∈ {0, 1}M and for all x ∈ [0, 1]2, we then have

fω(x) ≥ 1 +

(

b(x,1) − x2
c2

)1/α

≥ g0(x), ∀x2 ∈ [1/2, b(x1, ω)],

for c⋆ large enough. This ensures that

{x ∈ [0, 1]2 : fω(x) ≥ g0(x)} = {x ∈ [0, 1]2 : 0 ≤ x2 ≤ b(x1, ω)}.

In order to conclude the proof of (7.6), we only have to remark that the function b(., ω) belongs
to Σ(γ, L) for all ω ∈ {0, 1}M , at least for M small enough.
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Now, we consider the margin assumption (7.7). First, we consider the case where η <
[τc−1

2 ]1/αM−γ/α < η0. Clearly, following our choices of b0 and C⋆, we have that

|fω(x)− g0(x)| ≤ η ⇒ x2 ∈ [1/2; b(x1, ω)] ⇒ x2 ≤ b(x1, ω).

Moreover, for all x ∈ [0, 1]2 such that x2 ≤ b(x1, ω), we have

(fω − g0)(x) =

(

b(x,1) − x2
c2

)1/α

+

M
∑

j=1

ωjρj(x)− C⋆M−γ/α,

where
M
∑

j=1

ωjρj(x)− C⋆M−γ/α > 0, ∀x2 ∈
[

1

2
, b(x1, ω)

]

.

Thus

|fω(x)− g0(x)| ≤ η ⇒
(

b(x, ω)− x2
c2

)1/α

≤ η ⇒ x2 ≥ b(x1, ω)− c2η
α,

which proves the margin assumption when η < [τc−1
2 ]1/αM−γ/α. Now, in the case where η0 >

η > [τc−1
2 ]1/αM−γ/α, we have

|fω(x)− g0(x)| ≤ η ⇒ 1/2 < x2 < b(x1,1),

which entails
Q {x ∈ K : |fω(x)− g0(x)| ≤ η} ≤ τM−γ ≤ c2η

α.

This concludes this part.

7.1.3 Final minoration

Now, we can deal with the lower bound (7.8). The proof is based on classical tools which can
be found for instance in [25], [22], [5] or [24]. First remark that the shape of G⋆

K depends on the
value of ω. For the sake of convenience, we omit the dependency with respect to this quantity.
For all ω ∈ {0, 1}M , recall that

G⋆
K = {x ∈ [0, 1]2 : fω(x) ≥ g0(x)} = {x ∈ [0, 1]2 : 0 ≤ x2 ≤ b(x1, ω)}.

Using Assouad Lemma and classical tools designed for instance in [25], we get

E

[

d∆(Ĝn,m, G
⋆
K)|Y1, . . . , Ym

]

≥ M

2
‖ϕ1‖1

∫

min [dP11, dP10] , (7.9)

where P11 denotes the law of (Z
(1)
i )i=1...n when the density of the X

(1)
i is fω11 . In the following,

we will choose M in order to guarantee that the term
∫

min [dP11, dP10] is bounded from below.
Consequently, the lower bound will be determined by the corresponding value of M‖ϕ1‖1. Since
the observations are independent

∫

min [dP11, dP10] ≥ 1−
√

(1 + χ2(P1, P0))
n − 1,

where χ2(Pa, Pb) denotes the chi-square divergence between two given probability measures Pa

and Pb, and P0, P1 are the law of the variable Z
(1)
1 = X

(1)
1 + ǫ

(1)
1 when the density of the X

(1)
i

is respectively fω11 or fω10 . In the following, our aim is to find a satisfying upper bound for
χ2(P1, P0).
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First, remark that we can find c̃ > 0 such that for all x 6∈ [0, 1]2 and all ω ∈ {0, 1}M ,
fω(x) ≥ c̃f1(x). Hence, using simple algebra, we get that

fω ∗ η(x) ≥ C

(1 + x21)(1 + x22)
, ∀x ∈ R

2, (7.10)

for some C > 0. In the following, given f, η1 and η2, we denote by f ∗ η the convolution product
in dimension two, i.e.

f ∗ η(x) =
∫

R

∫

R

f(x1 − y1, x2 − y2)η1(y1)η2(y2)dy1dy2, ∀x ∈ R
2.

Then, using (7.2) and (7.10),

χ2(P1, P0) =

∫

R

∫

R

{(fω11 − fω10) ∗ η(x)}2
fω11 ∗ η(x)

dx,

≤ C

∫

R

∫

R

(1 + x21)(1 + x22){ρ1 ∗ η(x)}2dx.

Hence

χ2(P1, P0) ≤ C

∫

R

∫

R

{ρ1 ∗ η(x)}2dx+ C

∫

R

∫

R

x22{ρ1 ∗ η(x)}2dx

+C

∫

R

∫

R

x21{ρ1 ∗ η(x)}2dx+ C

∫

R

∫

R

x21x
2
2{ρ1 ∗ η(x)}2dx,

:= A1 +A2 +A3 +A4,

where the ρj are defined in (7.5). In the following, we only consider the bound of A1, the other
terms being controlled in the same way. We get

A1 = C

∫

R

∫

R

{ρ1 ∗ η(x)}2dx,

= CM−2γ/α

∫

R

∫

R

{∫

R

∫

R

ρ(2)(x2 − y2)ρj,(1)(x1 − y1)η1(y1)η2(y2)dy1dy2

}2

dx,

= CM−2γ/α

∫

R

∫

R

|F [ρ(2)](t2)|2|F [ρ1,(1)](t1)|2|F [η1](t1)|2|F [η2](t2)|2dt1dt2,

= CM−2γ/αA1,1A1,2,

where

A1,1 =

∫

R

|F [ρ(1)](t1)|2|F [η1](t1)|2dt1, A1,2 =

∫

R

∫

R

|F [ρ1,(2)](t2)|2|F [η2](t2)|2dt2,

and ρ(1), ρ1,(2) are respectively defined in (7.3),(7.4). We first deal with the term A1,2. Using
simple algebra, we get

A1,2 =

∫

R

|F [ρ
(1)
1 ](t1)|2|F [η1](t1)|2dt1,

=

∫

R

∣

∣

∣

∣

F
[

ρ
( .

3π−1τM−γ

)]

(

t1 ±
1

3/2π−1τM−γ

)∣

∣

∣

∣

2

|F [η1](t1)|2dt1,

= (3π−1)2τ2M−2γ

∫

R

∣

∣

∣

∣

F [ρ]

(

3π−1τM−γt1 ±
3

3/2

)∣

∣

∣

∣

2

|F [η1](t1)|2dt1.
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Then, setting s1 = 3π−1τM−γt1 and using the Noise assumption, we obtain

A1,2 = 3π−1τM−γ

∫

R

|F [ρ](s1 ± 2)|2
∣

∣

∣F [η1]
( s1
3π−1τM−γ

)∣

∣

∣

2
ds1,

= 3π−1τM−γ

∫ 3

1
|F [ρ](s1 ± 2)|2

∣

∣

∣
F [η1]

( s1
3π−1τM−γ

)∣

∣

∣

2
ds1,

≤ CM−γ−2β2γ

∫ 3

1
|F [ρ](s1 ± 2)|2|s1|−2β1ds1,

≤ CM−γ−2β2γ .

Using a similar algebra for the term A1,1, we obtain

A1,2 ≤ CM−1−2β1 .

Similar bounds are available for A2, A3 and A4 since F [ρ] and its weak derivative are bounded
by 1 and supported on [−1; 1]. In particular, we use the fact that for all t ∈ R

F [ρ1,(2)](t) = 3π−1τM−γF [ρ](3π−1τM−γt± 2),

and
d

dt
F [ρ1,(2)](t) = −i(3π−1τM−γ)2t.F [ρ](3π−1τM−γt± 2),

for all t in a subset of R having a Lebesgue measure equal to 1.

The above equations lead to the following upper bound:

χ2(P1, P0) ≤ CM−γ(2/α+1)−2β1γ−2β2−1.

Then, χ2(P1, P0) ≤ C/n for some constant C > 0 as soon as

M =Mn ∼ n
1

γ(2/α+1)+2β1+2β2γ+1 .

Finally, going back to equation (7.9), we obtain

E

[

d∆(Ĝn,m, G
⋆
K)|Y1, . . . , Ym

]

≥ Mn

2
‖ϕ1‖1

∫

min [dP11, dP10] ,

≥ CMn‖ϕ1‖1,

= CτM−γ
n

∫ 1

0
ϕ1(t)dt,

∼ M−γ
n = n

− γ
γ(2/α+1)+2β1+2β2γ+1 ,

which concludes the proof.

�

7.2 Proof of Proposition 1

Consider the empirical processes ν
(j)
n , for j ∈ {1, 2}, defined as:

ν(j)n (G) =
1√
n

n
∑

i=1

[

hG,λ(Z
(j)
i )− EhG,λ(Z

(j))
]

, (7.11)
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where the hG,λ(.) have been introduced in (2.5). In particular, remark that for all i ∈ {1, . . . , n},
G ⊂ K,

E

[

hG,λ(Z
(1)
i )
]

=

∫

G

1

λ
E

[

Kη

(

X
(1)
i + ǫ

(1)
i − x

λ

)]

dx,

=

∫

G

1

λ
E

[

K
(

X
(1)
i − x

λ

)]

dx =

∫

Rd

f(x)Kλ ∗ 1{.∈G}(x)dx.

Hence, using (2.7), we can write
∫

(f − g)(Kλ ∗ 1{.∈G⋆
K} −Kλ ∗ 1{.∈Ĝn})

≤ 1√
n
(ν(1)n (G⋆C)− ν(1)n (ĜλC

n )) +
1√
n
(ν(2)n (G⋆)− ν(2)n (Ĝλ

n). (7.12)

Now denoting Λ = Πd
i=1λ

−βi− 1
2

i , c(λ) = Πd
i=1λ

−βi
i and ρ = 2/γ, consider the event

Ω := {d∆(Ĝn, G
⋆
K) ≥ c(λ)−

2
1+ρn−

1
1+ρΛ

2
1+ρ }.

If the event Ω holds, using Lemma 2 of [22], we get
∫

(f − g)(Kλ ∗ 1{.∈G⋆
K} −Kλ ∗ 1{.∈Ĝn})

≤
d

1−ρ
2

∆ (Ĝλ
n,m, G

⋆)c(λ)√
n





ν
(1)
n (G⋆C)− ν

(1)
n (ĜλC

n,m)

c(λ)d
1−ρ
2

∆ (Ĝλ
n,m, G

⋆) ∨ c(λ)
2ρ

(1+ρ)n−
1−ρ
2+2ρΛ

1−ρ
1+ρ

+
ν
(2)
n (G⋆)− ν

(2)
n (Ĝλ

n,m)

c(λ)d
1−ρ
2

∆ (Ĝλ
n,m, G

⋆) ∨ c(λ)
2ρ

(1+ρ)n−
1−ρ
2+2ρΛ

1−ρ
1+ρ



 ,

≤
d

1−ρ
2

α
α+1

f,g (Ĝλ
n,m, G

⋆)c(λ)
√
n

[V (1)
n + V (2)

n ],

where for j ∈ {1, 2}, V (j)
n is the random variable defined as

V (j)
n = sup

G∈G

|ν(j)n (G⋆)− ν
(j)
n (G)|

c(λ)‖1G − 1G∗‖1−ρ

2,X(j) ∨ c(λ)
2ρ

(1+ρ)n−
1−ρ
2+2ρΛ

1−ρ
1+ρ

. (7.13)

Lemma 3 in Section 6 shows that the variable V
(1)
n + V

(2)
n has controlled moments. Indeed, the

bracketing entropy related to the set G is ρ = (d − 1)/γ = 1/γ. Using the Young’s inequality
xyr ≤ ry + (1− r)x1/(1−r) with r = 1−ρ

2
α

α+1 , we get

∫

(f − g)(Kλ ∗ 1{.∈Ĝn} −Kλ ∗ 1{.∈G⋆
K})

≤ c

(

c(λ)

τ−1
√
n
[V (1)

n + V (2)
n ]

)
2(α+1)
α+2+ρα

+ τdf,g(Ĝ,G
⋆
K). (7.14)

Note that

df,g(Ĝ,G
⋆) =

∫

(f − g)(Kλ ∗ 1{.∈Ĝn} −Kλ ∗ 1{.∈G⋆
K}) +

(

RK −Rλ
K

)

(Ĝ,G⋆)

≤
∫

(f − g)(Kλ ∗ 1{.∈Ĝn} −Kλ ∗ 1{.∈G⋆
K}) + 2 sup

G∈G

(

RK −Rλ
K

)

(Ĝ).
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From above, we have coarselly:

df,g(Ĝ,G
⋆)1Ω ≤

(

1

1− τ

)

c

(

c(λ)

τ−1
√
n
[V (1)

n + V (2)
n ]

)
2(α+1)
α+2+ρα

+ 2 sup
G∈G

(

RK −Rλ
K

)

(G).

In order to end up the proof, let us consider the following decomposition:

df,g(Ĝ,G
⋆) = df,g(Ĝ,G

⋆)1Ω + df,g(Ĝ,G
⋆)1ΩC (7.15)

Moreover, note that on the event ΩC , we have:

d∆(Ĝn, G
⋆
K) ≤ c(λ)−

2
1+ρn−

1
1+ρΛ

2
1+ρ = (nλ)−

1
1+ρ .

Hence, we can conclude that

df,g(Ĝ,G
⋆) ≤ c1

(

c(λ)√
n
[V (1)

n + V (2)
n ]

)
2(α+1)
α+2+ρα

+ c2 sup
G∈G

∣

∣

∣
RK −Rλ

K

∣

∣

∣
(G) + c3(nλ)

− 1
1+ρ . (7.16)

Integrating the last inequality, we get the result of Theorem 2.

�

7.3 Proof of Theorem 2

The proof is a direct consequence of Proposition 1 as soon as we remark that

H(G(γ, L), d∆, δ) ≤ cδ
− d−1

γ , ∀ δ > 0.

This result can be found in [27].

7.4 Proof of Corollary 1

Thanks to the previous proof, we only have to propose a bound for the term

sup
G∈G

∣

∣

∣
RK −Rλ

K

∣

∣

∣
(G).

Let G ∈ G be fixed. For the sake of convenience, we restrict ourselves to the particular case
where d = 2. The generalization to larger dimension is straightforward. Moreover, we restrict
ourselves to the control of the bias term over the compact K ′ = [ǫ, 1− ǫ]d−1 × [0, 1], where ǫ > 0
is a small positive constant chosen later on to have:

∣

∣

∣
(RK −Rλ

K)(G)− (RK ′ −Rλ
K ′)(G)

∣

∣

∣
≤ Cψn(α, γ, β), (7.17)

where ψn(α, γ, β) is the expected rate of convergence. Using (7.17), we can conduct the proof
of Corollary 1 over K ′. Then, using Fubini, remark that, provided that x1 − λ1z1 ∈ [0, 1]:

(RK ′ −Rλ
K ′)(G) =

∫

K ′

(f − g) (Kλ ∗ 1G − 1G) dλ

=

∫

K ′

(f − g)(x)

(
∫

R2

1

λ
K
(

x− z

λ

)

[1G(z)− 1G(x)] dz

)

dx

=

∫

K ′

(f − g)(x)

(∫

R2

K (z) [1G(x− λz)− 1G(x)] dz

)

dx,

=

∫

R2

K (z)

∫

K ′

(f − g)(x) [1G(x− λz)− 1G(x)] dxdz.
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Note that if K ′ = [ǫ, 1 − ǫ] × [0, 1] and suppK1 = [−M,M ], for any λ1 ≤ λmax, the choice of
ǫ =Mλmax ensures that:

x ∈ K ′ ⇒ 0 ≤ x1 − λ1z1 ≤ 1.

Moreover, since
x ∈ G⇔ 0 ≤ x2 ≤ b(x1),

we get:
x− λz ∈ G⇔ 0 ≤ x2 ≤ min(1, b(x1 − λ1z1) + λ2z2).

Finally, for all z1 ∈ R, since b ∈ Σ(γ, L):

b(x1 − λ1z1) = pb,x1(x1 − λ1z1) +O(|λ1z1|γ). (7.18)

Hence, we obtain, using the crude bound ‖f − g‖∞ ≤ 2c1 and the assumptions over the kernel
K:

(RK ′ −Rλ
K ′)(G)

=

∫

R2

K(z)

∫ 1−ǫ

ǫ

[

∫ min(1,b(x1−λ1z1)+λ2z2)

λ2z2

(f − g)(x)dx2 −
∫ b(x1)

0
(f − g)(x)dx2

]

dx1dz(7.19)

≤ 2c1

∫

R2

|K(z)|
∫ 1−ǫ

ǫ
|pb,x1(x1 − λ1z1)− b(x1) +O(|λ1z1|γ) + 2λ2z2| dx1dz

≤ C(λ1 + λ2), (7.20)

where C > 0 is a generic constant. Using (7.16) and (7.20), we obtain

df,g(Ĝ,G
⋆) ≤ c1

(

c(λ)√
n
[V (1)

n + V (2)
n ]

)
2(α+1)
α+2+ρα

+ C(λ1 + λ2) + c3(nλ)
− 1

1+ρ .

We can conclude the proof with an appropriate choice for λ1 and λ2, noting that, in dimension
d = 2 for simplicity, (7.17) holds since for any λ1 ≤ λmax:

∣

∣

∣(RK −Rλ
K)(G) − (RK ′ −Rλ

K ′)(G)
∣

∣

∣ ≤
∣

∣

∣

∣

∣

∫

K\K ′

(f − g) (1G −Kλ ∗ 1G) dλ
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

R2

K(z)

(
∫ ǫ

0
+

∫ 1

1−ǫ

)

[

∫ b(x1−λ1z1)+λ2z2

λ2z2

(f − g)(x)dx2 −
∫ b(x1)

0
(f − g)(x)dx2

]

dx1dz

∣

∣

∣

∣

∣

≤ 2ǫ ≤ C(λ1 + λ2),

for ǫ = λmaxM .

�

8 Appendix

8.1 Technical Lemmas

Lemma 2 Let Z be a random variable having density f ∗η w.r.t. the Lebesgue measure. Assume
that η satisfies the Noise assumption and that (K1) and (K2) hold. Then we have,

(i) E[hG,λ(Z)− hG′,λ(Z)]
2 ≤ Cd∆(G,G

′)
d
∏

i=1

λ−2βi
i .

(ii) sup
x∈K

|hG,λ(x)− hG′,λ(x)| ≤ C
d
∏

i=1

λ
−βi−1/2
i ,

where C > 0 is a generic constant.
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proof For the sake of convenience, we only consider the case where d = 1. We first prove (i).
We have

E[hG,λ(Z)− hG′,λ(Z)]
2 =

∫

K

[∫

R

1

λ
Kη

(

z − x

λ

)

(1{x∈G} − 1{x∈G′})1{x∈K}dQ(x)

]2

f ∗ η(z)dz,

≤ c

∫

R

1

λ2
|F [Kη(./λ)](t)|2

∣

∣F [(1{.∈G} − 1{.∈G′})1{.∈K}](t)
∣

∣

2
dt,

≤ Cλ−2β

∫

K
1{t∈G∆G′}dt,

≤ Cλ−2βd∆(G,G
′).

Indeed, for all s ∈ R, using (K3):

1

λ2
|F [Kη(./λ)](s)|2 = |F [Kη ](sλ)|2 ≤ sup

t∈R
|F [Kη](t)|2 ≤ Cλ−2β, (8.1)

By the same way,

sup
x∈R

|hG,λ(x)− hG′,λ(x)| = sup
x∈R

∫

G∆G′

1

λ

∣

∣

∣

∣

Kη

(

z − x

λ

)∣

∣

∣

∣

dx,

≤ sup
x∈R

∫

K

1

λ

∣

∣

∣

∣

Kη

(

z − x

λ

)∣

∣

∣

∣

dx,

≤ C sup
x∈R

√

∫

1

λ2
K2

η

(

z − x

λ

)

dx ≤ λ−β−1/2,

where the last line is inspired by (8.1).

�

8.2 Noisy Empirical process theory

In this paragraph, we present the main ingredient for the proof of Theorem 2 and Proposition 1.
We intend to analyze the behaviour of the increments of a noisy empirical process related with
error measurements. The framework is much more general than model (1.1) and deconvolution
classifier of Section 2. Let us fix some notations.
Given a class of functions G, we study the following risk minimization problem:

g⋆ = argmin
g∈G

R(g),

where we have at our disposal a training sample Z1, . . . , Zn of i.i.d. random variable with law
PZ . It differs from the law of X, denoted by PX and since R(g) := E[g(X)], we are faced to an
inverse problem. For this purpose, we consider a indirect ERM procedure that can be written:

ĝλn := argmin
g∈G

1

n

n
∑

i=1

gλ(Zi),

where gλ := Φλ(g) is a smoothed version of g ∈ G and λ ∈ Λ is a smoothing parameter (see the
particular case Φλ(G) = hλG in Section 2).

We are interested in the control of the variance of ĝλn, which is equivalent to the study of the
increments of the empirical process νn defined as:

νλn(g) =
1√
n

n
∑

i=1

[gλ(Zi)− Egλ(Z)]. (8.2)
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The empirical process (8.2) is indexed by the set Gλ = {gλ = Φλ(g), g ∈ G}. We are inter-
ested in the behaviour of this empirical process near some fixed function g0, and we denote a
neighbourhood of g0 ∈ G by

G(δ) = {g ∈ G : ‖g − g0‖2,PX
≤ δ}. (8.3)

It is important to note that the localization is performed on the set G since we want to estimate
g∗ ∈ G. The aim is to measure the influence of the parameter λ ∈ Λ in the behaviour of (8.2)
in the neighbourhood G(δ). If we deal with a kernel deconvolution classifier, λ ∈ R

d is a set of
bandwidths of a deconvolution kernel. However, in such a generality, λ could be any kind of
regularization parameter (see [19]).

In order to apply concentration inequalities of Bernstein’s type, we need the two following
assumptions:

(A1) for any λ ∈ Λ, there exists b(λ) : supg∈G ‖gλ‖∞ ≤ b(λ).

(A2) There exists a pseudo-distance d on G such that ∀g, g′ ∈ G, ‖gλ − g′λ‖2,Z ≤ c(λ)d(g, g′).

These assumptions are satisfied for the particular case of the paper with Lemma 2 above where

b(λ) = Πd
i=1λ

−βi−1/2
i , d = d∆ and c(λ) = Πd

i=1λ
−βi
i . The first assumption (A1) is necessary

to use standard uniform concentration inequalities in the bounded case (such as Bernstein or
Talagrand inequalities). Moreover, (A2) ensures a control of the entropy of Gλ = {gλ, g ∈ G}
thanks to standard entropy condition over the pseudo-metric space (G, d). Indeed, using for
instance [27], we have under the second asumption:

H
(

Gλ, δ, L2(PZ)
)

≤ H
(

G, δ

c(λ)
, d

)

.

Next lemma proposes a control of the increments of the noisy empirical process (8.2) when the
class Gλ satisfies the two previous assumptions.

Lemma 3 Consider a class of functions {gλ, g ∈ G} satisfying (A1)-(A2). Let g0 ∈ G and
G(δ) the set introduced in (8.3). Suppose there exists some 0 < α < 2 such that:

HB(G, δ, d) ≤ c′δ−α. (8.4)

Let us consider n0 = inf{n ∈ N
∗ : δn(λ) < 1} where

δn(λ) := c(λ)
α

2+α b(λ)
2

2+αn−
1

2+α .

• Then there exist constants c1, c
′
1 which depend on α, c′ such that ∀n ≥ n0, ∀δ ∈ [δn(λ), 1[:

P

(

sup
g∈G(δ)

|νλn(g)− νλn(g
0)| ≥ c1c(λ)δ

1−α
2

)

≤ exp
(

−c′1δ−α
)

.

• There exists constants c2, c
′
2 > 0 which depends on α, c′ such that for T ≥ c′2, for n ≥ n0:

P

(

sup
g /∈G(δn(λ))

|νλn(g)− νλn(g
0)|

c(λ)‖g − g0‖1−
α
2

≥ T

)

≤ exp

(

− T

c2

)

.

The proof is an application of [13] and consists in a noisy version of Lemma 5.13 in [13]. This
result is of pratical interest to control the variance of our deconvolution estimator. In particular,
we use in the proofs of Theorem 2 the fact that:

Vn = sup
g∈G

|νλn(g)− νλn(g
0)|

‖g − g0‖1−α/2c(λ) ∨ c(λ) 2α
2+αn

− 2−α
2(2+α) b(λ)

2−α
2+α

= 0P(1),
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as n→ +∞.
Proof From Lemma 5.7, gathering with Lemma 5.8 of [13], for any g ∈ G(δ), we have:

P(νλn(g) − νλn(g0) ≥ a) ≤ exp

(

− a2

8c(λ)2δ2

)

, ∀a ≤ √
n
c(λ)2

b(λ)
δ2.

Next step is to use the following noisy version of Theorem 5.11. For any a > 0 satisfying:

C0

[

√
2δc(λ) ∨

∫

√
2δc(λ)

a/26
√
n

√

HB(Gλ, u, L2(PZ))du

]

≤ a ≤ √
n
c(λ)2

K(λ)
δ2 ∧ 8

√
2nδc(λ), (8.5)

for some universal constant C0 > 0, we have:

P( sup
g∈G(δ)

|νλn(g) − νλn(g0)| ≥ a) ≤ exp

(

− a2

4Cδ2c(λ)2

)

,

where C > 0 depends on C0.
Hence from assumption (8.4), for n ≥ n0, we have for any δn(λ) ≤ δ < 1, by choosing a =
c1c(λ)δ

1−α
2 in (8.5):

P

(

sup
g∈G(δ)

|νλn(g)− νλn(g0)| ≥ c1c(λ)δ
1−α

2

)

≤ exp
(

−c′1δ−α
)

.

To show the second statement, we apply the peeling device as in [13]. Introduce:

S = inf{s ≥ 1 : 2−s < δn(λ)}.

Then we have, for T = 21−
α
2 c1:

P

(

sup
g /∈G(δn(λ))

|νλn(g) − νλn(g0)|
c(λ)‖g − g0‖1−

α
2

≥ T

)

≤
S
∑

s=1

P

(

sup
2−s≤‖g−g0‖≤2−s+1

|νλn(g) − νλn(g0)|
‖g − g0‖1−

α
2

≥ c(λ)T

)

≤
S
∑

s=1

P

(

sup
g∈G(2−s+1)

|νλn(g)− νλn(g0)| ≥ c(λ)c1
(

2−s+1
)1−α

2

)

≤
S
∑

s=1

exp
(

−c′1
(

2−s+1
)−α

)

= exp

(

− T

c2

)

,

where c2 > 0 is a function of α, c1 and c′1.

�
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