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Abstract

In this article, we present a numerical method to model the propagation of
a fluid-driven fracture in a poroelastic medium in the finite element frame-
work. We developed a zero-thickness finite element to model the fracture.
The fracture propagation is governed by a cohesive zone model. The fluid
flow within the crack is described by the lubrication equation and the fluid
pressure in the fracture acts as an hydraulic and mechanical boundary condi-
tion on the lips of the crack. The bi-dimensional pressure diffusion equation
and the equilibrium equation in the surrounding porous medium are fully
solved numerically. We compare the results of our numerical model with
asymptotic analytical solutions. Our numerical model captures very well the
analytical solutions in all the asymptotic propagation regimes. In addition,
our zero-thickness element method gives access to a finer description of the
fluid diffusion in the porous medium and of its coupled mechanical response.

1 Introduction

Fluid-driven fractures in porous media play a significant role in many im-
portant geotechnical problems. For instance, hydraulic fracture is commonly



used to stimulate the productivity of oil or gas wells. On the contrary, near
the sites of underground storage of pollutants such as radioactive waste or
carbon dioxide, the propagation of fractures under gas pressure has to be
avoided. However, modeling fluid-driven fractures remains a challenging
problem because it involves several coupled phenomena and a singularity
at the fracture tip.

In this paper we present a finite element model to compute the prop-
agation of a fluid-driven fracture and the hydro-mechanical evolution of
the surrounding porous medium. We developed a zero thickness finite el-
ement to discretize the fracture [Carrier, 2012]. Several recent contributions
adopted interface elements to model fluid-driven fractures in impermeable
[Chen, 2009] and permeable [Lobao, 2010, Sarris, 2001] media. In this work
we extend the use of interface elements to a large range of viscosities of the
fluid which fills the crack and of permeabilities of the surrounding medium.
Moreover, we compare the results of our numerical model with analytical
models in all asymptotic regimes of propagation to demonstrate the ability
of our model to capture the fracture propagation for a wide range of param-
eters.

2 Finite element model

We consider the propagation of a fluid-driven fracture in a saturated porous
medium. The porous medium is assumed to be governed by the usual equa-
tions of poroelasticity [Coussy, 2004]. In the fracture, the fluid flow is de-
scribed by the lubrication equation
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where ρ is the fluid density, w the fracture aperture, µ the fluid viscosity
and pf the fluid pressure. The hydraulic fracture aperture is equal to the
normal displacement jump across the fracture. A constraint of continuity of
fluid pressure across the fracture is enforced. The fracture is filled with a
fluid at pressure pf and we define the effective normal stress τ ′ across the
interface

τ ′n = τn + pf .



where τn is the normal tension across the interface. The propagation of
the fracture is governed by a cohesive zone model [Barenblatt, 1962, Dugdale, 1960].
The linear cohesive law used in this work is displayed on Figure 1-a. As long
as the stress across the crack path is lower than the critical stress τc, there is
a perfect bonding. When the stress reaches τc, the interface damages. During
this stage, cohesive forces act against the opening stress. When the fracture
energy Gc has been dissipated, the crack lips are then stress free. Figure 1-b
shows the stress profile along the interface.
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Figure 1: a) Linear cohesive law in the direction normal to the fracture. b)
Fracture profile and effective stress along the fracture path.

To model the fracture propagation, we develop a zero-thickness cohesive
element. This element can be easily incorporated in a finite element mesh
along a postulated fracture path. This zero-thickness element is a degen-
erated quadrangle and is displayed in Figure 2. The element has both me-
chanical and hydraulic degrees of freedom. The outer segments (nodes 1,5,2
and 3,7,4) are linked to bulk P2/P1 hydro-mechanical elements. The middle
segment carries the fluid pressure in the fracture degrees of freedom. q on
node 5 and 7 is a Lagrange multiplier to ensure the constraint of continuity
of the pressure between the middle segment and the outer segments.

3 Benchmark

With our zero-thickness finite element method, we solve the KGD plane
strain fracture problem [Khristianovic, 1955, Geertsma, 1969] (Figure 3). An
incompressible fluid is injected at the rate Q0 at the mouth of a fracture.
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Figure 2: Zero-thickness element for fracture with hydro-mechanical cou-
pling.

The surrounding medium is assumed to be elastic and infinite. Due to the
symmetry of the problem, we consider only half of the space. The material
parameters used in the numerical simulations are given in Table 1. The
confining stress is always chosen large enough to ensure that the fluid lag at
the fracture tip is equal to zero [Adachi, 2008].
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Figure 3: Propagation of an hydraulic fracture of length l due to the injection
of a viscous fluid at a rate Q0/2.

Figure 4 shows the fluid diffusion pattern around the fracture for various
permeabilities. As expected, the higher the permeability is, the greater is
the amount of fluid diffusing in the surrounding medium and the shorter is
the fracture.



Table 1: Material parameters
Q0 Injection rate 0.001 m2.s−1

σ0 Confining stress 3.7/5.0/7.2 MPa
E Young’s modulus 17 GPa
ν Poisson’s ratio 0.2
Gc Fracturation energy 120 Pa.m
τc Critical stress 1.25 MPa
M Biot modulus 68.7 MPa
b Biot coefficient 0.75
Φ0 Porosity 0.2

Figure 4: Fluid pressure distributions (in Pa) at t = 30 s for µ = 0.001 Pa.s
and for several permeabilities κ of the porous medium. We show only the
part of the mesh in the vicinity of the fracture. The side of each square
pressure map is 18 m long.

In order to validate the numerical model, we compare the results of our
simulations with the available analytical solutions of the KGD fracture prob-
lem. The analytical analysis of fluid-driven fractures in permeable media
showed that during fracture propagation two energy dissipation processes
and two fluid storage processes compete [Detournay, 2004, Adachi, 2008].
Energy can be dissipated either by fracturation or by fluid viscous flow. The
two fluid storage processes are fluid storage in the fracture and fluid leak-off
in the surrounding porous medium. When the energy dissipated by viscosity
is negligible compared to the energy dissipated by fracturation, the fracture



propagates in the toughness dominated regime. In contrast, it propagates in
the viscosity dominated regime when viscosity is preponderant. In addition,
at short times the fracture propagates in the storage dominated regime and
evolves to the leak-off dominated regime at long times. The characteristic
time of the evolution depends on the material parameters. By combining the
dissipation and storage mechanisms, four asymptotic propagation regimes
can be identified: Storage-toughness (so-called K-vertex regime), leak-off-
toughness (K̃-vertex regime), storage-viscosity (M -vertex regime) and leak-
off-viscosity (M̃ -vertex regime).

First, we choose a viscosity µ = 10−4 Pa.s so that the fracture propagates
in the toughness regime. Figure 5 displays the fracture length in function of
time for a permeability κ = 10−16 m2. With this permeability, the charac-
teristic time of leak-off is ∼ 107 s and is orders of magnitude greater than
the simulation time. Therefore, we compare the numerical fracture length
with the analytical near-K solution [Bunger, 2005] and note a very good
agreement between the two solutions.
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Figure 5: Fracture length evolution in the near-K regime. The parameters
are κ = 10−16 m2, µ = 10−4 Pa.s and σ0 = 3.7 MPa.

Figure 6 shows the fracture length in function of time for a permeability
κ = 5 × 10−15 m2. In that case, the characteristic time of leak-off is ∼ 1 s
and the fracture propagation reaches very quickly the leak-off regime. We
compare the results of the simulations with the analytical near-K̃ solution
[Bunger, 2005]. In the analytical model, the fluid leak-off is assumed to be
unidimensional. The monitoring of the leak-off during the numerical simu-



lation shows that this assumption is not valid for the considered parameters
and the computed fracture length is shorter than the prediction of the anal-
ysis solution. However, we show the result of another simulation in which we
impose an unidimensional fluid diffusion. With 1D diffusion, the agreement
between the numerical and the analytical solution is very good in the leak-off
toughness regime.
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Figure 6: Fracture length evolution in the near-K̃ regime. The parameters
are κ = 5× 10−15 m2, µ = 10−4 Pa.s and σ0 = 5.0 MPa. We show both the
results of a simulation in which the full bi-dimensional diffusion equation is
solved in the surrounding medium and of a simulation in which the diffusion
is constrained to be one dimensional.

For a viscosity µ = 0.1 Pa.s, the fracture propagates in the viscosity
regime. Figure 7 displays the evolution in the fracture length for a perme-
ability κ = 10−15 m2. For this choice of parameters, the fracture propagates
in the storage-toughness regime and we compare our numerical results to the
M analytical solution [Adachi, 2008]. We note a small discrepancy between
the analytical solution and the fully coupled numerical solution. The small
fluid leak-off indeed induces a so-called back-stress [Vandamme, 1990], due to
the increase of pore pressure in the vicinity of the fracture. This back-stress
generates an increase of the injection pressure and of the fracture length and
a decrease of the fracture aperture. When we remove the hydro-mechanical
coupling in the porous medium by taking a Biot coefficient b = 0 (uncoupled
case on Figure 7), the discrepancy disappears.

We now increase the leak-off coefficient by increasing the permeability to
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Figure 7: Fracture length evolution in the M regime. The parameters are
κ = 10−15 m2, µ = 0.1 Pa.s and σ0 = 3.7 MPa. We show both the results of
a simulation in which the hydro-mechanical in the surrounding medium are
fully coupled and of the results a simulation in which the hydro-mechanical
coupling is removed by imposing a Biot coefficient equal to zero to remove
any back-stress.

κ = 5 × 10−12 m2. Figure 8 shows the analytical solution in the M̃ regime
[Adachi, 2008] and the results of three simulations. The first simulation
(diamonds on Figure 8) is the complete resolution of the coupled hydro-
mechanical equations and of the 2D diffusion equation. In the two other
simulations, we impose an unidimensional diffusion. The hydro-mechanical
equations are coupled in the second simulation (circles) while they are un-
coupled in the third (squares). The 1D diffusion uncoupled simulation is in
very good agreement with the analytical solution. Both the back-stress and
the diffusion pattern have indeed a crucial impact on the propagation of the
crack.

4 Conclusion

In this work, we present a numerical method based on a zero-thickness fi-
nite element to model the propagation of a fluid-driven fracture. We com-
pare the results of our numerical models with analytical solutions in the
four asymptotic propagation regimes: Storage-toughness, leak-off-toughness,
storage-viscosity and leak-off-viscosity. When we impose an unidimensional
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Figure 8: Fracture length evolution in the M̃ regime. The parameters are
κ = 5 × 10−12 m2, µ = 0.1 Pa.s and σ0 = 7.2 MPa. We show the results
of three simulations with various assumptions regarding hydro-mechanical
coupling and fluid diffusion in the surrounding medium.

leak-off and remove any back-stress from our numerical model, the numerical
solutions are in very good agreement in all propagation regimes.
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