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We study a Lie Transform method for a charged beam under the action of a radial external electric field. The aim of the Lie transform method that is used here is to construct a change of variable which transforms the 2D kinetic problem into a 1D problem. This reduces the dimensionality of the problem and make it easier to solve numerically. After applying the Lie transform method, we truncate the expression of the characteristics of the Vlasov equation and the expression of the Poisson equation in the Lie coordinate system and we develop a numerical method for solving the truncated model and we study its efficiency for the simulation of long time beam evolution.

Introduction

In the same spirit of [START_REF] Frénod | Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method[END_REF], we will consider non-relativistic long and thin beams. Within the general framework, if we neglect the collisions between particles, the particle density is obtained by solving a Vlasov Maxwell system of equations. Here, in addition to consider a long and thin beam, we will consider a beam satisfying the following assumptions :

• The beam is steady-state: all partial derivatives with respect to time vanish.

• The beam is long and thin.

• The beam is propagating at constant velocity v b along the propagation axis z.

• The beam is sufficiently long so that longitudinal self-consistent forces can be neglected.

• The external electric field is supposed to be independent of the time.

• The beam is axisymmetric.

• The initial distribution f 0 is concentrated in angular momentum.

Under the five first assumptions, the 3D Vlasov-Maxwell system reduces itself to a 2D Vlasov-Poisson system in which the variable t does not represent, from a physical point of view, a time variable, but rather the longitudinal coordinate. The details about the derivation of this model can be found in [START_REF] Filbet | Modeling and numerical simulation of space charge dominated beams in the paraxial approximation[END_REF]. Moreover, under all these assumptions it reduces even to a 1D axisymmetric Vlasov-Poisson system of the form

∂f ε ∂t + v r ε ∂f ε ∂r + E ε - r ε ∂f ε ∂v r = 0, (1.1) 
- 1 r ∂ ∂r r ∂φ ε ∂r = ρ ε (t, r) , E ε = - ∂φ ε ∂r , (1.2) 
ρ ε (t, r) = R f ε (t, r, v r ) dv r , (1.3) 
E ε (t, r = 0) = 0, φ ε (t, r = 0) = 0, (1.4)

f ε (t = 0, r, v r ) = f 0 (r, v r ) , (1.5) 
where r ≥ 0 is the radial component of the projection of the position vector in the transverse plane to the propagation direction, v r ∈ R is the projection of the transverse velocity in the transverse plan to the propagation direction, ε is the ratio between the characteristic transverse radius of the beam and the characteristic longitudinal length of the beam,

f ε = f ε (t, r, v r )
is the distribution function of the particles, E ε = E ε (r, t) is the radial part of the transverse self-consistent electric field, andr ε is the strong transverse external electric field. This system is naturally defined for r ≥ 0 but we can extend it to r ∈ R by using the conventions f ε (t, r, v r ) = f ε (t, -r, -v r ) and E ε (t, r) = -E ε (t, -r). Details about the derivation of this model can be found in [START_REF] Frénod | Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method[END_REF]. Moreover, in the same way as in [START_REF] Frénod | Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method[END_REF] we will consider initial conditions for which the beam is confined. Such initial conditions can be found by solving envelope equations (see [START_REF] Filbet | Modeling and numerical simulation of space charge dominated beams in the paraxial approximation[END_REF] for details about the obtention of such initial conditions).

The characteristics of (1.1) are given by

∂R ε ∂t = V ε r ε , R ε (0, r, v r ) = r, (1.6) 
∂V ε r ∂t = - R ε ε + E ε (R ε , t) , V r ε (0, r, v r ) = v r . (1.7) 
Setting

H ε (r, v r , t) = v 2 r + r 2 2ε + φ ε (r, t), (1.8) 
dynamical system (1.6)-(1.7) becomes:

∂R ε ∂t = ∂ vr H ε (R ε , V ε r , t) , R ε (0, r, v r ) = r, (1.9 
)

∂V ε r ∂t = -∂ r H ε (R ε , V ε r , t) , V r ε (0, r, v r ) = v r .
(1.10)

Consequently the dynamical system that gives the characteristics is Hamiltonian. Furthermore, dynamical system (1.6)-(1.7) corresponds to a perturbation of dynamical system

∂R ε Un ∂t = V ε r,Un ε , R ε Un (0, r, v r ) = r, (1.11) 
∂V ε r,Un ∂t = - R ε Un ε , V ε r,Un (0, r, v r ) = v r .
(1.12)

In other words the Hamiltonian function (1.8) is a perturbation of the Hamiltonian function

H Un ε (r, v r , t) = v 2 r + r 2 2ε , (1.13) 
associated to the dynamical system (1.11)-(1.12).

A well adapted coordinate system for the study of the dynamical system (1.11)-(1.12) is the (µ, θ) coordinate system defined by

µ = r 2 + v 2 r 2 . (1.14) 
and

r = 2µ cos (θ) , (1.15) 
v r = 2µ sin (θ) .

(1.16) Indeed, in this coordinate system the dynamical system (1.11)-(1.12) reads:

∂Mu ε Un ∂t = 0, Mu ε Un (0, µ, θ) = µ, (1.17 
)

∂Θ ε Un ∂t = - 1 ε , Θ ε Un (0, µ, θ) = θ. (1.18) 
As a consequence, solving this dynamical system in the new system of coordinates, reduces to find a trajectory in R, in place of a trajectory in R 2 when it is solved in the original system of coordinates.

Under the same change of coordinates, the Hamiltonian function associated to dynamical system (1.6)-(1.7) becomes:

Hε (µ, θ, t) = µ ε + φ ε 2µ cos (θ) , t , (1.19) 
and the dynamical system (1.6)-(1.7) reads:

∂Mu ε ∂t = √ 2Mu ε sin (Θ ε ) E ε √ 2Mu ε cos (Θ ε ) , t , Mu ε (0, µ, θ) = µ, (1.20) 
∂Θ ε ∂t = - 1 ε + cos (Θ ε ) √ 2Mu ε E ε √ 2Mu ε cos (Θ ε ) , t , Θ ε (0, µ, θ) = θ, (1.21) 
and we observe that Mu ε is no longer an invariant.

This kind of situation is very similar to the situation encountered in the Geometrical Gyrokinetic theory that was introduced by Littlejohn [START_REF] Littlejohn | A guiding center Hamiltonian: A new approach[END_REF][START_REF] Littlejohn | Hamiltonian formulation of guiding center motion[END_REF][START_REF] Littlejohn | Hamiltonian perturbation theory in noncanonical coordinates[END_REF], Brizard [START_REF] Brizard | Nonlinear gyrokinetic Vlasov equation for toroidally rotating axisymmetric tokamaks[END_REF], Dubin et al. [START_REF] Dubin | Nonlinear gyrokinetic equations[END_REF], Frieman & Chen [START_REF] Frieman | Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria[END_REF], Hahm [START_REF] Hahm | Nonlinear gyrokinetic equations for tokamak microturbulence[END_REF], Hahm, Lee & Brizard [START_REF] Hahm | Nonlinear gyrokinetic theory for finite-beta plasmas[END_REF], Parra & Catto [15,[START_REF] Parra | Gyrokinetic equivalence[END_REF][START_REF] Parra | Turbulent transport of toroidal angular momentum in low flow gyrokinetics[END_REF] and Quin et al [START_REF] Qin | General gyrokinetic equations for edge plasmas[END_REF]. In order to study this kind of situation, the idea is to make an infinitesimal change of coordinate (µ, θ) → μ, θ = L t ε (µ, θ) bringing the characteristics independent of θ and in which the characteristic associated with μ is an invariant.

The infinitesimal change of coordinates that we will construct belongs to the class of the Lie change of coordinates that are defined as follow: Definition 1.1. A Lie Change of Coordinates is a formal change of coordinates of the form

L ε : (µ, θ, t) → L ε (µ, θ, t) = . . . • φn ε n • . . . • φ1 ε (µ, θ, t) (1.22) = (PL ε (µ, θ, t) , t) (1.23)
where for each n ∈ N , φn λ is the flow of a vector field

Zn = Zn 1 ∂ µ + Zn 2 ∂ θ , (1.24) 
i.e., the solution of In this paper we will always denote by Pϕ = (ϕ 1 , ϕ 2 ) the projection of a function ϕ = (ϕ 1 , ϕ 2 , ϕ 3 ) . In section 3, starting from the Hilbert expansions of the electric field E ε and the electric potential φ ε

E ε = E 0 + εE 1 + ε 2 E 2 + . . . , (1.28) 
φ ε = φ 0 + εφ 1 + ε 2 φ 2 + . . . , (1.29) 
we will develop and use a Lie Transform algorithm, based on the utilization of the Poincaré-Cartan one form, in order to give a constructive proof of the following Theorem:

Theorem 1.1. There exists a Lie change of coordinates L ε such that in the yielding μ, θ coordinate system, given by (r, v r ) → μ, θ = PL ε (Pol (r, v r ) , t) where

Pol : R 2 → R + ×] -π, π] ; (r, v r ) → (µ, θ) (1.30)
with θ and µ given by formulas (1.15)-(1.16), the system of equations (1.1)-(1.5) reads:

∂ fε ∂t μ, θ, t + a ε (μ, t) ∂ fε ∂ θ μ, θ, t = 0, (1.31) - 1 r ∂ ∂r r ∂φ ε ∂r = ρ ε (t, r) , E ε = - ∂φ ε ∂r ,
(1.32)

ρ ε (t, r) = D t ε h r PL -1 ε μ , θ , t fε μ , θ , t J PL -1 ε μ , θ , t dμ d θ , (1.33) E ε (t, r = 0) = 0, φ ε (t, r = 0) = 0, (1.34) fε μ, θ, t = 0 = f 0 Pol -1 • PL -1 ε μ, θ, t = 0 , (1.35)
where fε is the particle density expressed in the μ, θ coordinate system, a ε is defined by

(3.90), h r = h r (µ , θ ) is given by h r (µ , θ ) = δ r - √ 2µ cos (θ ) , J PL -1 ε μ , θ , t is the jacobian associated with PL -1 ε and D t ε = PL ε (R + ×] -π, π], t) . Moreover, up to the second order, L ε , L -1
ε and a ε admit the following expansions:

μ = µ + ε Z1 1 (µ, θ, t) + O ε 2 , θ = θ + ε Z1 2 (µ, θ, t) + O ε 2 , (1.36) 
µ = μ -ε Z1 1 μ, θ, t + O ε 2 , θ = θ -ε Z1 2 μ, θ, t + O ε 2 , (1.37)
and

a ε (μ, t) = - 1 ε + 1 2π √ 2μ π -π cos θ E 0 2μ cos θ , t d θ + O (ε) , (1.38) 
where Z1 1 and Z1 2 are given by formula (3.41) and (3.49).

Remark 1.1. In formulas (1.36), (1.37) and (1.38), we have only given the second order expansions of the direct and the reciprocal Lie change of coordinates and the first order expansion of a ε . Nevertheless the algorithm developed in the proof of Theorem 1.1 allows us to obtain these expansions at any order.

The change of coordinates L ε is formal in the sense that L ε corresponds to a composition of an infinite number of flows. Moreover the construction of L ε is based on Lie series expansions of each of these flows; i.e., for any n ∈ N we will use the formal expansion

φn ε n = n≥0 ε n n! Z n • .
See [START_REF] Olver | Applications of Lie groups to differential equations[END_REF] (page 31) for more precisions about these series.

Making first order approximations in the characteristics and in the change of coordinates, we will use (1.31)- (1.35) in order to simulate the solution f ε of (1.1)-(1.5). More precisely, approximating the change of coordinates by

μ = µ + O (ε) , (1.39) θ = θ + O (ε) , (1.40) 
the electric field and the electric potential by

E ε = E 0 + O (ε) , (1.41) 
φ ε = φ 0 + O (ε) , (1.42) 
the charge density as follow:

D t ε = PL ε (R + ×] -π, π], t) PL 0 (R + ×] -π, π], t) = R + ×] -π, π], h r PL -1 ε μ , θ , t h r PL -1 0 μ , θ , t = h r μ , θ , J PL -1 ε μ , θ , t J PL -1 0 μ , θ , t = 1, ρ ε (t, r) R + ×]-π,π] h r μ , θ fε μ , θ , t dμ d θ , (1.43) that is ρ ε (t, r) R + ×]-π,π]
δ r -2μ cos θ fε μ , θ , t dμ d θ .

(1.44) and a ε by

a ε (μ, t) - 1 ε + 1 2π √ 2μ π -π cos θ E 0 2μ cos θ , t d θ, (1.45) 
we obtain:

∂ fε ∂t + - 1 ε + 1 2π √ 2μ π -π cos θ E ε 2μ cos θ , t d θ ∂ fε ∂ θ = 0, (1.46) - 1 r ∂ ∂r r ∂φ ε ∂r = R + ×]-π,π] δ r -2μ cos θ fε μ , θ , t dμ d θ , (1.47) 
E ε = - ∂φ ε ∂r ,
(1.48)

E ε (t, r = 0) = 0, φ ε (t, r = 0) = 0, (1.49) fε μ, θ, t = 0 = f 0 2μ cos θ , 2μ sin θ . (1.50)
We will give some remarks about this approximation in Subsection 3.5.

In the last section we will simulate (1.46)-(1.50) and then we will obtain an approximation of f ε through:

f ε (r, v r , t)
fε (µ, θ, t) .

(1.51)

The numerical method that we will use to simulate (1.46)-(1.50) will be a Particle in Cell (PIC) method. I recall that a PIC method consists in the coupling of a particle method for Vlasov, and a mesh method for Poisson. The principle of the method is to discretize the distribution function by a set of macro-particles and to advance them in time by numerically solving the dynamical system giving the characteristics. As a consequence, solving this dynamical system in the new system of coordinates, reduces to find a trajectory in R, in place of a trajectory in R 2 when it is solved in the original system of coordinates.

The paper is organized as follows: in Section 2 we will construct an odd dimensional differential manifold well adapted to the study of (1.6)-(1.7) and we will give the mathematical tools necessary for the comprehension of the Lie Transform method we develop then. As a by product of this section we obtain that the non autonomous dynamical system we work with is characterized intrinsically by an autonomous dynamical system on the odd differential manifold we work within. Moreover, we will see that this autonomous dynamical system can also be characterized by the equivalence class of a differential one form called the Poincaré Cartan one form. Furthermore, we will introduce the Noether Theorem within this framework. This Theorem gives essentially an intuitive help for the comprehension of the Lie Transform method. In the third section, we will set out the Lie transform method and we will use it in order to derive the Lie Coordinate System and to prove Theorem 1.1. Finally, in the fourth and fifth section, we will implement and test the previously described numerical method based on the Lie transform method analysis. In the present subsection we will characterize intrinsically on an odd dimensional manifold differential systems of the form

Geometrical Tools

∂R ε G ∂t = ∂ vr G ε R ε G , V ε r,G , t , R ε G (0, r, v r ) = r, (2.1) 
∂V ε r,G ∂t = -∂ r G ε R ε G , V ε r,G , t , V ε r,G (0, r, v r ) = v r , (2.2) 
where

G ε = G ε (r, v r , t
) is a smooth function, and PDEs

∂f G ε ∂t (r, v r , t) + ∂ vr G ε (r, v r , t) ∂f G ε ∂r (r, v r , t) -∂ r G ε (r, v r , t) ∂f G ε ∂v r (r, v r , t) = 0 (2.3) of unknown f G ε , through a vector field τ ε G . Notice that if G ε = H ε ,
where H ε is given by formula (1.8), dynamical system (2.1)-(2.2) and PDE (2.3) coincide with dynamical system (1.9)-(1.10) and PDE (1.1). The principal results are given in theorem 2.1 and 2.2.

Firstly, we need to build the manifold on which we will work. As a topological space we take M = R 2 ×R + endowed with the (r, v r , t) coordinate system and with its usual topology. Concerning the differential structure, we choose the differential atlas A which contains all the coordinate charts of type (U, ϕ) , where ϕ : U → R 3 ; (r, v r , t) → (Pϕ (r, v r , t) , t) , which are compatible with the global coordinate chart (M, G) , where G : M → R 3 ; (r, v r , t) → G (r, v r , t) = (r, v r , t) , and which leave the last coordinate t unchanged.

Defining the vector field X ε G by:

X ε G = ∂ vr G ε ∂ r -∂ r G ε ∂ vr + ∂ t , (2.4) 
and denoting by F ε λ,G its flow; i.e., the solution of

∂F ε,1 λ,G ∂λ = ∂ vr G ε F ε λ,G , F ε,1 0,G (r, v r , t) = r, (2.5 
)

∂F ε,2 λ,G ∂λ = -∂ r G ε F ε λ,G , F ε,2 0,G (r, v r , t) = v r , (2.6 
)

∂F ε,3 λ,G ∂λ = 1, F ε,3 0,G (r, v r , t) = t, (2.7) 
we conclude that the trajectory associated with (2.1)-(2.2) corresponds to

F 1,ε t,G (r, v r , 0) , F 2,ε t,G (r, v r , 0) . (2.8) 
Now, we have enough material to characterize intrinsically the solution of (2.1)-(2.2).

Theorem 2.1. Let τ ε G : M → T M be the vector field whose principal part in the (r, v r , t) coordinate system is given by X ε G , defined by formula (2.4), and let F ε λ,G be its flow. Then, in every coordinate system (r, ṽr , t) belonging to A the trajectory associated with the dynamical system (1.6)-(1.7) is given by F1,ε t,G (r, ṽr , 0) , F2,ε t,G (r, ṽr , 0) , where Fε λ,G corresponds to the representative of F ε λ,G in the (r, ṽr , t) coordinate system, or equivalently to the flow of Xε G , where Xε G corresponds to the representative of the principal part of τ ε G in the (r, ṽr , t) coordinate system.

Proof. Let F ε λ,G be the flow of X ε G , where X ε G is given by (2.4). We denote by R ≡ R (λ, r, v r , t) , V r ≡ V r (λ, r, v r , t) and T ≡ T (λ, r, v r , t) its components. Notice that R and V r depends on the small parameter ε. But since this dependency does not play a role in this proof, we do not precise it in the notation. Then, (2.8) reads:

R (t, r, v r , 0) = R G (r, v r , t) , V r (t, r, v r , 0) = V r,G (r, v r , t) , T (t, r, v r , 0) = t.
(2.9) Let ψ : (r, v r , t) → r, ṽr , t = (Pψ (r, v r , t) , t) be a change of coordinates such that t = t. We denote by R ≡ R λ, r, ṽr , t , Ṽ r ≡ Ṽ r λ, r, ṽr , t and T ≡ T λ, r, ṽr , t the components of Fε λ,G ; i.e., the components of the expression of the flow in the r, ṽr , t coordinate system. Then, the usual change of coordinates rules yield: R λ, r, ṽr , t = ψ 1 R λ, Pψ -1 r, ṽr , t , t , V r λ, Pψ -1 r, ṽr , t , t , T λ, Pψ -1 r, ṽr , t , t , Ṽ r λ, r, ṽr , t = ψ 2 R λ, Pψ -1 r, ṽr , t , t , V r λ, Pψ -1 r, ṽr , t , t , T λ, Pψ -1 r, ṽr , t , t , T λ, r, ṽr , t = T λ, Pψ -1 r, ṽr , t , t .

(2.10)

On the other hand, let RG ≡ RG (r, ṽr , t) and Ṽr,G ≡ Ṽr,G (r, ṽr , t) be the components of the trajectory whose range by Pψ -1 is the trajectory associate with R G (r, v r , t) and V r,G (r, v r , t) ; i.e., such that RG (r, ṽr , t) , Ṽr,G (r, ṽr , t)

=(ψ 1 R G Pψ -1 (r, ṽr , 0) , t , V r,G Pψ -1 (r, ṽr , 0) , t , t , ψ 2 R G Pψ -1 (r, ṽr , 0) , t , V r,G Pψ -1 (r, ṽr , 0) , t , t ).
To finish the proof, we have to show that R (t, r, ṽr , 0) , Ṽ r (t, r, ṽr , 0) = RG (r, ṽr , t) , Ṽr,G (r, ṽr , t) .

(2.11) Differentiating T λ, r, ṽr , t = T λ, Pψ -1 r, ṽr , t , t with respect to λ yields:

∂ T ∂λ = 1
and consequently T t, r, v r , 0 = t. Hence, we obtain: R t, r, ṽr , 0 , Ṽ r t, r, ṽr , 0

=(ψ 1 R t, Pψ -1 (r, ṽr , 0) , 0 , V r t, Pψ -1 (r, ṽr , 0) , 0 , t , ψ 2 R t, Pψ -1 (r, ṽr , 0) , 0 , V r t, Pψ -1 (r, ṽr , 0) , 0 , t ).
(2.12)

Finally, using (2.9) we obtain: R t, r, ṽr , 0 , Ṽ r t, r, ṽr , 0

=(ψ 1 R G Pψ -1 (r, ṽr , 0) , t , V r,G Pψ -1 (r, ṽr , 0) , t , t , ψ 2 R G Pψ -1 (r, ṽr , 0) , t , V r,G Pψ -1 (r, ṽr , 0) , t , t ) = RG r, ṽr , t , Ṽr,G r, ṽr , t (2.13) 
This ends the proof of Theorem 2.1.

Theorem 2.2. Let τ ε G : M → T M be the vector field whose principal part in the (r, v r , t) coordinate system is given by X ε G , defined by formula (2.4). Then, in every coordinate system (r, ṽr , t) belonging to A the PDE (2.3) is given by

i Xε G d f G ε = 0, (2.14) 
where Xε G and f G ε correspond respectively to the representative of the principal part of τ ε G and the representative of f G ε in the (r, ṽr , t) coordinate system.

Proof. Firstly in the (r, v r , t)

coordinate system i X ε G df G ε reads: i X ε G df G ε = ∇ (r,vr,t) f G ε T X ε G = ∂f G ε ∂t + X ε,1 G ∂f G ε ∂r + X ε,2 G ∂f G ε ∂v r = ∂f G ε ∂t + ∂ vr G ε ∂f G ε ∂r -∂ r G ε ∂f G ε ∂v r = 0,
and (2.14) is satisfied. Now, let (r, ṽr , t) be a coordinate system belonging to A and (U, ψ) ∈ A the corresponding coordinate chart. Then, the expression of τ ε G is given by: Xε G (r, ṽr , t) = ∇ (r,vr,t) ψ ψ -1 (r, ṽr , t) X ε G ψ -1 (r, ṽr , t) , (2.15) and the expression of the particle distribution is given by:

f G ε (r, ṽr , t) = f G ε ψ -1 (r, ṽr , t) .
(2.16) Since the last coordinates of Xε G is always equal to 1, equation (2.14) reads also:

Consequently i Xε G d f G ε reads: i Xε G d f G ε = ∇ (r,ṽr,t) f G ε T Xε G = ∇ (r,vr,t) ψ ψ -1 (r, ṽr , t) -T ∇ (r,ṽr,t) f G ε ψ -1 (r, ṽr , t) T ∇ (r,vr,t) ψ ψ -1 (r, ṽr , t) X ε G ψ -1 (r, ṽr , t) = ∇ (r,ṽr,t) f G ε ψ -1 (r, ṽr , t) T X ε G ψ -1 (r, ṽr , t) =0, (2.17 
∂ f G ε ∂t + Xε,1 G ∂ f G ε ∂ r + Xε,2 G ∂ f G ε ∂ṽ r = 0. (2.18)

The Poincaré Cartan one-form

Theorems 2.1 and 2.2 allow us to characterize intrinsically the differential system (2.1)-(2.2) and the PDE (2.3). More precisely, these Theorems ensure us that the differential system (2.1)-(2.2) and the PDE (2.3) are characterized intrinsically through the vector field τ ε G . Now, we will see that τ ε G can also be characterized by an equation that involves a differential one form γ ε G called the Poincaré-Cartan one-form. We will essentially see that τ ε G can be characterized as the direction vector of the eigenspace of dγ ε G associated with the eigenvalue 0 and whose last component is 1. In other words we will see that

τ ε G is the unique solution of i τ ε G dγ ε G = 0 satisfying τ ε G,3 = 1.
Afterwards, we will introduce the following equivalence relation on the one forms space : "α ∼ β if and only if αβ is exact", and we will see that

∀β ε G ∈ [γ ε G ] , where [γ ε G ] stands for the equivalence class of γ ε G , the vector field τ ε G is characterized by i τ ε G dβ ε G = 0 and τ ε G,3 = 1.
The main results are summarized in theorem 2.3.

Definition 2.1. The Poincaré-Cartan 1-form γ ε G associated with the dynamical system (2.1)-(2.2) is the one-form whose expression in the (r, v r , t) coordinate system is given by:

Γ ε G (r, v r , t) = v r dr -G ε dt. (2.19) 
The matrix associated with the differential two-form dΓ ε G is given by

M ε G (r, v r , t) =   0 -1 -∂ r G ε 1 0 -∂ vr G ε ∂ r G ε ∂ vr G ε 0   (2.20)
Lemma 2.1. Let (r, ṽr , t) be a coordinate system belonging to A and M ε G the matrix associated with the representative of dγ ε G in this coordinate system. Then,

Ker M ε G (r, ṽr , t) = vect XG (r, ṽr , t) . (2.21) Proof. Let M ε G be the matrix defined by (2.20). Since M ε G is antisymmetric, its maximal rank is 2. As 0 -1 1 0 is of rank 2, the rank of M ε G is exactly 2. Moreover, i X ε G dΓ ε G (r, v r , t) = (X ε G (r, v r , t)) T M ε G (r, v r , t) = 0. (2.22) Since, ∀ (r, v r , t) , X ε G (r, v r , t) = 0 (the last component is 1)
we have:

Ker (M ε G (r, v r , t)) = vect (X ε G (r, v r , t)) . (2.23) Let ψ : (r, v r , t) → r, ṽr , t = (Pψ (r, v r , t) , t)
be a change of coordinates belonging in A and dΓ ε G be the expression of dγ ε G in the (r, ṽr , t) coordinate system. Then, the usual change of coordinates rules for differential two-forms yield:

dΓ ε G (r, ṽr , t) ; ũ, ṽ = dΓ ε G ψ -1 (r, ṽr , t) , t ; dψ -1 (r,ṽr,t) • ũ, dψ -1 (r,ṽr,t) • ṽ , (2.24) 
and consequently the expression of

M ε G is given by M ε G (r, ṽr , t) = ∇ (r,ṽr,t) ψ -1 (r, ṽr , t) T M ε G ψ -1 (r, ṽr , t) ∇ (r,ṽr,t) ψ -1 (r, ṽr , t) . (2.25)
Notice that formula (2.25) implies that M ε G is of rank 2. On an other hand the usual change of coordinates rule for vector fields yields that the representative of τ ε G in the (r, ṽr , t) coordinate system is given by:

Xε G (r, ṽr , t) = ∇ (r,vr,t) ψ ψ -1 (r, ṽr , t) X ε G ψ -1 (r, ṽr , t) . (2.26)
Consequently, the last component of Xε G is 1 and

i Xε G d Γε = Xε G (r, ṽr , t) T M ε G (r, ṽr , t) = X ε G ψ -1 (r, ṽr , t) T M ε G ψ -1 (r, ṽr , t) ∇ (r,ṽr,t) ψ -1 (r, ṽr , t) = 0. (2.27) Hence, Ker M ε G (r, ṽr , t) = vect Xε G (r, ṽr , t) .
(2.28)

This ends the proof of Lemma 2.1.

In particular, lemma 2.1 implies that in every coordinate system the dimension of the kernel of M ε G is equal to 1. Now, these kernels can be characterize intrinsically on the manifold as follow: Definition 2.2. The subspace V (r,vr,t) = cξ (r,vr,t) /c ∈ R ⊂ T (r,vr,t) M, where ξ (r,vr,t) ∈ T (r,vr,t) M is a vector satisfying ξ (r,vr,t) = 0 and

i ξ (r,vr ,t) (dγ ε G ) (r, v r , t) = 0, (2.29) is called the vortex line of γ ε G at (r, v r , t
). Easy computations lead that the vortex line is well defined; i.e., compatible with the differential structure. Moreover, Lemma 2.1 means that ∀ (r, v r , t) ∈ M, τ ε G (r, v r , t) is the unique generator of V (r,vr,t) whose last component is 1.

Proposition 2.1. Let (r, ṽr , t) be local coordinates on M and let Xε G be the representative of τ ε G in this coordinates system. Then, Xε G is the unique solution of the equation of unknown Ỹε

i Ỹε d Γε G = 0 (2.30) that satisfies Ỹε 3 = 1.
Proposition 2.1 allows us to characterize intrinsically τ ε G by using γ ε G . In fact, as

d•d = 0, replacing in (2.29) γ ε G by γ ε G + dS ε ,
where S ε is a smooth function, yields the same result. As a consequence, we will introduce the following equivalence relation: Definition 2.3. Let α and β be two differential one forms. We say that α and β are equivalent if there exists a smooth function S such that αβ = dS. We will denote by [α] the equivalence class of α.

Then we can generalize Proposition 2.1.

Theorem 2.3. Let (r, ṽr , t) be local coordinates on M, Xε G the representative of τ ε G in this coordinate system, and

β ε G ∈ [γ ε G ] .
Then, Xε G is the unique solution of the equation of unknown Ỹε :

i Ỹε d βε G = 0, (2.31) 
that satisfies Ỹε 3 = 1, where βε G corresponds to the expression of β ε G in the (r, ṽr , t) coordinate system.

Noether's Theorem within this framework

As already said in the introduction, the dynamical system (1.6)-(1.7) is a perturbation of the dynamical system (1.11)-(1.12) and the (µ, θ) coordinate system is well adapted for the study of the dynamical system (1.11)-(1.12). The main argument discussed in the introduction was that in this coordinate system µ is an invariant of the trajectory. We will see in the next subsection that the Poincaré Cartan one-form associated with the dynamical system (1.6)-(1.7) is also a perturbation of the Poincaré Cartan one form associated with the dynamical system (1.11)-(1.12). Moreover, we will see that the non-exact part of the Poincaré Cartan one form associated with the dynamical system (1.11)-(1.12) does not depend on θ and consequently that it is invariant under the action of the flow of ∂ ∂θ . Such flows are called symmetries of the Poincaré Cartan one form. The Noether's theorem connects such symmetries with invariants of the trajectory. Applying this Theorem in our case gives that -µ is the invariant corresponding to the flow of ∂ ∂θ . Since the Poincaré Cartan oneform associated with the dynamical system (1.6)-(1.7) is a perturbation of the Poincaré Cartan one form associated with the dynamical system (1.11)-(1.12), the lowest order (in ε) of this one form, expressed in the (µ, θ) coordinate system, does not depend on θ. As a consequence, the flow of ∂ ∂θ is close to a symmetry. The goal of the Lie transform method, that we will introduce in the next section, is to find a coordinate system (μ, θ) close to the (µ, θ) coordinate system in which the flow of ∂ ∂ θ is a symmetry and in which -μ is the corresponding invariant. The aim of this part is to introduce rigorously, within the framework of the Poincaré Cartan one form, these notions of symmetries, invariants and Noether's Theorem. The notions of symmetries and Noether's theorem can be written under a lot of forms. Indeed, there exists a lot of mathematical frameworks to study an Hamiltonian differential system and each of them provides an other formulation of the Noether's theorem. Nevertheless, in each of these mathematical frameworks a symmetry is a diffeomorphism, or a group of diffeomorphisms, leaving unchanged the principal object of the theory and the Noether's theorem connects these symmetries with the invariants of the trajectory. In this paper, according to Theorem 2.3, the principal object of the theory is the Poincaré-Cartan one form's equivalence class. Consequently, we will give the following definition of symmetries: Definition 2.4. Let Y be a vector field, G λ its flow, and γ ε G the Poincaré Cartan one form associated with the dynamical system (2.1)-(2.2). We will say that

(G λ ) is a symmetry of [γ ε G ] if for any λ for which G λ is defined, G λ γ ε G ∈ [γ ε G ] ; i.e., if G λ γ ε G -γ ε G is exact.
This definition is well-posed with respect to the equivalence relation. Indeed, if

β ε G ∈ [γ ε G ],
then there exists a smooth function S ε such that

β ε G = γ ε G + dS ε and consequently if G λ is a symmetry G λ β ε G = G λ (β ε G + dS ε ) = G λ γ ε G + dG λ S ε ∈ [γ ε G ] .
(2.32)

Remark 2.1. Easy computations lead to the fact that this definition of symmetry is well posed with respect to differential structure.

On an other hand, a symmetry can be characterized by using directly the vector field that generates it. Proposition 2.2. Let Y be a vector field and G λ its flow. Then,

G λ is a symmetry of [γ ε G ] if and only if L Y γ ε G is exact. Proof. Assume that G λ is a symmetry of [γ ε G ] .
Then, there exists a smooth function

P ε λ such that G λ γ ε G -γ ε G = dP ε λ . As G 0 γ ε G = γ ε G , there exists a smooth function Q ε λ such that G λ γ ε G -γ ε G = λdQ ε λ . By definition of the Lie derivative, L Y γ ε G = ∂G λ γ ε G ∂λ | λ=0 = dQ ε 0 and consequently L Y γ ε G is exact. Reciprocally, if L Y γ ε G is exact; i.e. if there exists a smooth function R ε such that L Y γ ε G = dR ε , then, the usual formula ∂ ∂λ G λ γ ε G | λ=λ 0 = G λ 0 (di Y γ ε G + i Y dγ ε G ) (2.33)
and the Cartan formula

L Y γ ε G = di Y γ ε G + i Y dγ ε G (2.34) yield: ∂ ∂λ G λ γ ε G = G λ (L Y γ ε G ) = G λ (dR ε ) = d (G λ R ε ) . (2.35)
Finally an integration yields the result. Now, we turn back to the notion of invariant. Definition 2.5. Let I be a smooth function on M. We say that I is an invariant of (2.1)-(2.2) if and only if i τ ε G dI = 0. Remark 2.2. Easy computations lead to the fact that this definition of invariant is well posed with respect to the differential structure.

Having this material in hands, we can easily derive the Noether theorem within this framework.

Theorem 2.4. Let Y be a smooth vector field whose flow is a symmetry of

[γ ε G ]. Let S ε be a smooth function such that L Y γ ε G = dS ε . Then, i Y γ ε G -S ε is an invariant. Proof. The Cartan formula yields that L Y γ ε G = dS ε is equivalent to i Y dγ ε G + di Y γ ε G = dS ε . (2.36) Moreover, as i τ ε G dγ ε G = 0 we obtain: i τ ε G i Y dγ ε G = dγ ε G ; Y, τ ε G = -dγ ε G ; τ ε G , Y = -i τ ε G dγ ε G ; Y = 0.
(2.37)

Consequently, applying i τ ε G at the both sides of (2.36

) yields i τ ε G d (i Y γ ε G -S ε ) = 0; i.e., i Y γ ε G -S ε is an invariant. Remark 2.3. Notice that Theorem 2.4 is compatible with the relation of equivalence. Indeed, if L Y γ ε G = dS ε , then for any smooth function σ ε , L Y (γ ε G + dσ ε ) = d (S ε + L Y σ ε ). In other words Y generates a symmetry of γ ε G + dσ ε . Moreover, the associated invariant is (γ ε G + dσ ε ) • Y -(S + L Y σ ε ) = γ ε G • Y -S ε ; i.e.
the same invariant as the invariant associated to γ ε . Remark 2.4. Easy computations lead to the fact that this Theorem is well posed with respect to the differential structure.

Remark 2.5. Definition 2.4 is a non-standard formulation of symmetry. A more popular approach, in cases where G ε does not depend on t, is via momentum map (see for instance [START_REF] Marsden | Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems[END_REF] or [START_REF] Meyer | Introduction to hamiltonian dynamical systems and the N-Body Problem[END_REF]). Within such framework, taking place on the symplectic manifold R 2 , dr ∧ dv r , a symmetry associated with dynamical system (2.1)

-(2.2) is a flow ψ F t of an Hamiltonian vector field X F satisfying G ε ψ F t (r, v r ) = G ε (r, v r ) for any (r, v r ) ∈ R 2 . Constructing the vector field X F on M by setting X F = X F + 0 • ∂ t ; i.e., X F = ∂ vr F ∂ r -∂ r F ∂ vr , we observe that L X F γ ε G = d (-F + i X F γ ε G )
. Hence, the flow of X F is also a symmetry in the sense of definition 2.4. Notice that the corresponding invariant is well the momentum map F. Consequently definition 2.4 is well an extension of the classical definition of symmetry in cases where dynamical system (2.1)-(2.2) is non autonomous.

Application at the differential system (1.6)-(1.7)

The non perturbed case (Dynamical system (1.11)-(1.12))

The solution of (1.11)-(1.12) is given by

R ε Un V ε r,Un = e tN ε r v r , (2.38) 
where

N ε = 0 -1 ε 1 ε 0 and e tN ε = cos t ε -sin t ε sin t ε cos t ε .
According to formula (2.38), the trajectories are circle of radius r 2 + v 2 r . Under the change of coordinates (1.15)-(1.16) dynamical system (1.11)-(1.12) reads:

∂Mu ε Un ∂t = 0, Mu ε Un (0, µ, θ) = µ, (2.39 
) given by (1.13), yields:

∂Θ ε Un ∂t = - 1 ε , Θ ε Un (0, µ, θ) = θ. ( 2 
Γε H Un = sin (θ) cos (θ) dµ -2µ sin 2 (θ) dθ - µ ε dt = -µdθ - µ ε dt + d (µ sin (θ) cos (θ)) = βε H Un + d (µ sin (θ) cos (θ)) .
(2.41)

The flow of ∂ ∂θ reads: Ḡλ (µ, θ, t) = (µ, λ + θ, t) .

(2.42)

As L ∂ ∂θ βε H Un = 0, proposition 2.2 yields that G λ is a symmetry and Noether Theorem (Theorem 2.4 ) yields that -µ is the corresponding invariant. 

Γε Hε = sin (θ) cos (θ) dµ -2µ sin 2 (θ) dθ - µ ε + φ ε 2µ cos (θ), t dt = -µdθ - µ ε + φ ε 2µ cos (θ), t dt + d (µ sin (θ) cos (θ)) = βε Hε + d (µ sin (θ) cos (θ)) .
(2.43)

We remark that βε H defined by (2.43) is a perturbation of βε H Un defined by (2.41). Moreover, in this case the symmetry is broken; i.e., Ḡλ defined by (2.42) is no longer a symmetry.

Change of coordinates as the flow of a vector field

Change of coordinates in a one form

Let ω be a one form defined on M and Ω its expression in the (r, v r , t) coordinate system. If (r, v r , t) ∈ M and u ∈ T M (r,vr,t) , we will use the following notation for ω evaluated at (r, v r , t) and applied at u:

ω (r,vr,t) • u =< ω(r, v r , t); u > .
(2.44)

Let ψ : (r, v r , t) → (r, ṽr , t) = (Pψ(r, v r , t), t) be a change of coordinates belonging in A and Ω the expression of ω in the (r, ṽr , t) coordinate system. Then, Ω is given by (ψ -1 ) Ω, where (ψ -1 ) Ω is called the pullback of Ω by ψ -1 and is computed as follow:

< Ω(r, ṽr , t); ũ >=< Ω(ψ -1 (r, ṽr , t)); (dψ -1 ) (r,ṽr,t) • ũ > .

(2.45)

In term of coordinates, formula (2.45) means that Ω(r, ṽr , t) corresponds to the line vector Ω1 (r, ṽr , t), Ω2 (r, ṽr , t), Ω3 (r, ṽr , t)

= Ω 1 (ψ -1 (r, ṽr , t)), Ω 2 (ψ -1 (r, ṽr , t)), Ω 3 (ψ -1 (r, ṽr , t)) ∇ (r,ṽr,t) ψ -1 (r, ṽr , t).

(2.46)

Usually, we also use the notation:

Ω(r, ṽr , t) = (ψ -1 ) Ω(r, ṽr , t) = Ω1 (r, ṽr , t)dr + Ω2 (r, ṽr , t)d ṽr + Ω3 (r, ṽr , t)dt, (2.47) 
where Ω1 (r, ṽr , t), Ω2 (r, ṽr , t) and Ω3 (r, ṽr , t) are given by formula (2.46).

Change of coordinates as the flow of a vector field.

Theorem 2.5. Let (r, vr , t) be local coordinates on M, Z a vector field on M and ω a one form on M. Let Z and Ω be their expressions in the (r, vr , t) coordinate system. Assume that the last coordinates of Z is 0; i.e. that Z (r, ṽr , t) = Z1 (r, ṽr , t) ∂ r + Z2 (r, ṽr , t) ∂ vr .

(2.48)

Let φε be its flow; i.e. the solution of

∂ φ1 ε ∂ε = Z1 ( φε ), (2.49) 
∂ φ2 ε ∂ε = Z2 ( φε ), φ0 (r, vr , t) = (r, vr , t), (2.50) 
∂ φ3 ε ∂ε = 0. (2.51)
Then, under the change of coordinates (r, vr , t) → (r, ṽr , t) = φε (r, vr , t), the expression Ωε of ω in the (r, ṽr , t) coordinate system admits the following expansion:

Ωε (r, ṽr , t) = Ω(r, ṽr , t) -εLZ Ω(r, ṽr , t)

+ . . . + (-1) n ε n n! L n Z Ω(r, ṽr , t) + ε n+1 n! 1 0 (1 -u) n ∂ n+1 Ωε ∂ε n+1 | εu (r, ṽr , t)du, (2.52) 
where L k Z Ω is defined recursively for k ≥ 1 by

LZ Ω = ∂ ∂ε ( φε ) Ω | ε=0 (2.53)
and

L k+1 Z Ω = LZ L k Z Ω . (2.54)
Moreover, the change of coordinates admits the following expansion in power of ε :

r =r + ε Z1 (r, vr , t) + . . . + ε n n! L n-1 Z Z1 (r, vr , t) + ε n+1 n! 1 0 (1 -u) n ∂ n+1 φ1 ε ∂ε n+1 | εu (r, vr , t) du, ṽr =v r + ε Z2 (r, vr , t) + . . . + ε n n! L n-1 Z Z2 (r, vr , t) + ε n+1 n! 1 0 (1 -u) n ∂ n+1 φ2 ε ∂ε n+1 | εu (r, vr , t) du, (2.55) 
and the reciprocal change of coordinates admits the following expansion:

r =r -ε Z1 (r, ṽr , t) + . . . + (-1) n ε n n! L n-1 Z Z1 (r, ṽr , t) + ε n+1 n! 1 0 (1 -u) n ∂ n+1 ∂ε n+1 φ1 -ε | εu (r, ṽr , t) du,
vr =ṽ r -ε Z2 (r, ṽr , t)

+ . . . + (-1) n ε n n! L n-1 Z Z2 (r, ṽr , t) + ε n+1 n! 1 0 (1 -u) n ∂ n+1 ∂ε n+1 φ2 -ε | εu (r, ṽr , t) du. 
(2.56)

Proof. Let (r, vr , t) be local coordinates on M, Z a vector field on M, and ω a one form on M. Let Z and Ω be their expressions in the (r, vr , t) coordinates. We assume that the last coordinates of Z is 0; i.e. that

Z = Z1 ∂ r + Z2 ∂ vr .
(2.57)

Let φε be its flow; i.e. the solution of (2.49)-(2.51). According to formula (2.47), under the change of coordinates (r, vr , t) → (r, ṽr , t) = φε (r, vr , t), the expression of ω in the (r, ṽr , t) coordinates is given by Ωε = ( φ-1 ε ) Ω. A Taylor expansion in power of ε yields:

Ωε (r, ṽr , t) = Ω0 (r, ṽr , t) + ε ∂ Ωε ∂ε | ε=0 (r, ṽr , t) + . . . + ε n n! ∂ n Ωε ∂ε n | ε=0 (r, ṽr , t) + ε n+1 n! 1 0 (1 -u) n ∂ n+1
Ωε ∂ε n+1 | εu (r, ṽr , t)du.

(2.58)

Notice that for each k ∈ {1, . . . , n + 1} we have use the following notation:

∂ k Ωε ∂ε k = ∂ k Ω1 ε ∂ε k , ∂ k Ω2 ε ∂ε k . (2.59) As Ωε = ( φ-1 ε ) Ω, we have for each k ∈ {1, . . . , n + 1} ∂ k Ωε ∂ε k | ε=0 = ∂ k ∂ε k ( φ-1 ε ) Ω | ε=0 . (2.60)
By definition, the Lie derivative of Ω with respect to -Z is given by

L - Z Ω = ∂ ∂ε ( φ-1 ε ) Ω | ε=0 (2.61)
and easy computations lead to

(-1) k L k Z Ω = L k - Z Ω = ∂ k ∂ε k ( φ-1 ε ) Ω | ε=0 , (2.62) 
where L k Z Ω is defined recursively by formulas (2.53)-(2.54). Injecting formulas (2.62) in (2.58) leads to formula (2.52).

In the same way, Taylor's expansions of the inverse of the flow; i.e. of φ-ε , and of the flow; i.e. φε , lead to formulas (2.55) and (2.56).

This ends the proof of Theorem 2.5.

Lie Transform Method

The Lie Change of Coordinates

Subsequently, we will denote by γ ε the Poicarré-Cartan one form associated with the dynamical system (1.9)-(1.10). We will also denote by β ε ∈ [γ ε ] the one form whose expression in the (µ, θ, t) coordinate system, defined by (1.15)-(1.16), is given by (2.43);i.e., by

βε = -µdθ - µ ε + φ ε 2µ cos (θ), t dt. (3.1)
Injecting the Hilbert expansions the electric potential, given by (1.29), in (3.1) leads to the following Hilbert expansion of βε :

βε = 1 ε β0 + ε β1 + ε 2 β2 + . . . , (3.2) 
where β0 (µ, θ, t) = -µdt,

β1 (µ, θ, t) = -µdθ -φ 0 2µ cos (θ) , t dt, β2 (µ, θ, t) = -φ 1 2µ cos (θ) , t dt, . . . (3.3) 
According to definition 1.1, a Lie change of coordinate is a composite of flows of vector fields . . . , Z3 , Z2 , Z1 parametrized by . . . ε 3 , ε 2 , ε. In the same way as in Theorem 2.5 we will give in the following Theorem an Hilbert expansion of the expression of β ε in the Lie coordinate system. Notice that the expression of the Hilbert expansion of βε involves only the expressions of the vector fields Z1 , Z2 , Z3 , . . . and the expressions of the terms of the Hilbert expansion of βε .

Theorem 3.1. Let γ ε be the one form whose expression in the (r, v r , t 

)
βε μ, θ, t = 1 ε m≥0 m k=0 W k βm-k μ, θ, t ε m , (3.4) 
where for each k ∈ N , W k is defined by

W k = n 1 +2n 2 +...+kn k =k (-1) n 1 . . . (-1) n k n 1 ! . . . n k ! L n k Zk . . . L n 1 Z1 (3.5) 
and W 0 = id. Moreover, the change of coordinates admits the following expansion in power of ε :

μ, θ, t = L ε (µ, θ, t) =   k≥0 ε k   n 1 +2n 2 +...+kn k =k Z1 n 1 . . . Zk n k n 1 ! . . . n k !   (id)   (µ, θ, t) , (3.6) 
and the reciprocal change of coordinates admits the following expansion:

(µ, θ, t) = L -1 ε μ, θ, t =   k≥0 ε k   n 1 +2n 2 +...+kn k =k -Z1 n 1 . . . -Zk n k n 1 ! . . . n k !   (id)   μ, θ, t . (3.7) 
Proof. We will start the proof by proving formulas (3.6) and (3.7). Let g = g(µ, θ, t) be a smooth function,

v = ξ 1 ∂ µ + ξ 2 ∂ θ + ξ 3 ∂ t (3.8)
a smooth vector field and ϕ v ε its flow. Then, (ϕ v ε ) g = g • ϕ v ε admits the following Taylor expansion:

((ϕ v ε ) g) (µ, θ, t) = g (µ, θ, t) + ε (v • g) (µ, θ, t) + . . . + ε n n! (v n • g) (µ, θ, t) (3.9) 
+ ε n+1 n! 1 0 (1 -u) n ∂ n+1 ∂ε n+1 (g (ϕ v ε (µ, θ, t))) | εu du, (3.10) 
where v

• g = ξ 1 ∂ µ g + ξ 2 ∂ θ g + ξ 3 ∂ t g and v k+1 • g = v • (v k • g).
Writing formally the entire Taylor series in ε, we obtain:

((ϕ v ε ) g) (µ, θ, t) =     n≥0 ε n n! v k •   g   (µ, θ, t) . (3.11)
The right hand side of (3.11) is usually called the Lie series for the action of the flow on g. The same result hold for vector valued function

G : M → R m , G = (G 1 , . . . , G m ), where we let v act component-wise on G : v • G = (v • G 1 , . . . , v • G m ).
In our case, the change of coordinates reads:

μ, θ, t = L ε (µ, θ, t) = . . . • φn ε n • . . . • φ1 ε 1 (µ, θ, t) = . . . • φn ε n • . . . • φ1 ε 1 (id) (µ, θ, t) = φ1 ε 1 • . . . • ( φn ε n ) • . . . (id) (µ, θ, t) . (3.12) 
According to formula (3.11), we have for each n ∈ N and for each vector valued function G :

φk ε k G (µ, θ, t) =     n k ≥0 ε kn k n k ! ( Zk ) n k •   G   (µ, θ, t) . (3.13) 
As a consequence, formula (3.12) can be rewritten:

L ε (µ, θ, t) =       n 1 ≥0 ε n 1 n 1 ! Z1 n 1   •   n 1 ≥0 ε 2n 2 n 2 ! Z2 n 2   • . . .   (id)   (µ, θ, t) =     n 1 ,n 2 ,n 3 ,...≥0 ε n 1 +2n 2 +... Z1 n 1 Z2 n 2 . . . n 1 !n 2 ! . . . •   (id)   (µ, θ, t) . (3.14)
Grouping together the terms with the same power of ε leads to formula (3.6). In the same way we obtain formula (3.7). Now, we will prove formula (3.4). Let Ω = Ω(µ, θ, t) be a differential one-form,

w = w 1 ∂ µ + w 2 ∂ θ (3.15)
a smooth vector field, and ϕ w ε its flow. Then, according to Theorem 2.5, (ϕ v ε ) -1 Ω admits the following Taylor expansion:

(ϕ w ε ) -1 Ω μ, θ, t = Ω μ, θ, t -εL w Ω μ, θ, t + . . . + (-1) n ε n n! L n w Ω μ, θ, t + ε n+1 n! 1 0 (1 -u) n ∂ n+1 Ωε ∂ε n+1 | εu μ, θ, t du (3.16)
Writing formally the entire Taylor series in ε, we obtain:

(ϕ w ε ) -1 Ω μ, θ, t =     n≥0 (-1) n ε n n! L n w   Ω  μ, θ, t . (3.17) 
The right hand side of (3.17) is usually called the Lie series for the action of the flow on Ω. Now, according to formula (2.47), the expression of β ε in the Lie coordinate system is given by

βε = L -1 ε βε . (3.18)
Injecting (3.2) in (3.18) leads to:

βε = p≥0 ε p-1 L -1 ε βp . (3.19) 
Consequently we obtain for each p ∈ N :

L -1 ε βp μ, θ, t = . . . • φn ε n • . . . • φ1 ε 1 -1 βp μ, θ, t = . . . • ( φn ε n ) -1 • . . . • φ1 ε 1 -1 βp μ, θ, t =     . . .   n 2 ≥0 (-1) n 2 ε n 2 n 2 ! L n 2 Z2     n 1 ≥0 (-1) n 1 ε n 1 n 1 ! L n 1 Z1     βp   μ, θ, t =   k≥0 ε k   n 1 +2n 2 +...+kn k =k (-1) n 1 +...+n k L n k Zk . . . L n 1 Z1 n 1 ! . . . n k !   βp   μ, θ, t . (3.20) 
Injecting (3.20) in (3.19) and grouping together the terms with the same power of ε leads to formula (3.4).

This ends the proof of Theorem 3.1.

We will denote by βn the (n -1)th order of the Hilbert expansion (3.4); i.e., βn μ, θ, t = n k=0 W k βn-k μ, θ, t .

(3.21)

The Lie Transform Method

The Lie Transform method consists to find a differential one form αε ∈ [γ ε ] and a Lie change of coordinates L ε such that αε is under a normal form. We will precise immediately our definition of normal forms. For this purpose, we will introduce the following linear spaces of smooth functions:

C ∞ 2π = {f ∈ C ∞ (R + × R; R) ; f is 2π periodic with respect to θ} , (3.22) D = f ∈ C 2π ; ∂f ∂θ = 0 , (3.23) R = f ∈ C ∞ 2π ; f = 1 2π 2π 0 f (µ, θ) dθ = 0 . (3.24) Notice also that C ∞ 2π = D ⊕ R.
Definition 3.1. Let L ε : (µ, θ, t) → μ, θ, t be a Lie change of coordinates, αε = αε μ, θ, t be a differential one form admitting a Hilbert expansion of the form:

αε = 1 ε n≥0 α1 n dμ + α2 n d θ + α3 n dt ε n , (3.25) 
and α ε = α ε (µ, θ, t) the differential one form defined by α ε (µ, θ, t) = αε (µ, θ, t) . We say that αε is under a normal form if This definition is made in order to have the following theorem:

∀n ∈ N, α 1 n ∈ D, ( 3 
Theorem 3.2. Let L ε : (µ, θ, t) → μ, θ, t be a Lie change of coordinates and Xε H the expression of τ ε in the Lie coordinate system. Assume that there exists αε ∈ [γ ε ] which is under a normal form. Then, the first component of Xε H vanish, the second component is θ independent and it is given by

Xε H 2 = ∂ α3 ε ∂ μ - ∂ α1 ε ∂t , (3.29)
and the expression of the particle distribution in the Lie coordinate system satisfies: = 1. Since all the components of αε belong to D, its differential is given by:

∂ fε ∂t μ, θ, t + Xε H 2 (μ, t) ∂ fε ∂t μ, θ, t = 0. ( 3 
d αε = ∂ α1 ε ∂t dt ∧ dμ -dμ ∧ d θ + ∂ α3 ε ∂ μ dμ ∧ dt, (3.32) 
and consequently

i Xε H d αε = ∂ α1 ε ∂t - ∂ α3 ε ∂ μ + Xε H 2 dμ -Xε H 1 d θ + Xε H 1 ∂ α3 ε ∂ μ -Xε H 1 dt (3.33)
Since Xε H satisfies (3.31), we obtain: Having this material in hand we can precise the objectives of the Lie Transform method. The Lie transform method consists to find a sequence Zn n∈N of vector fields and a sequence ( αn ) n∈N of differential one forms such that under the Lie change of coordinates L ε associated with this sequence of vector field the differential one form αε defined by

Xε H 1 = 0, (3.34) ∂ α1 ε ∂t - ∂ α3 ε ∂ μ + Xε H 2 = 0. ( 3 
αε = 1 ε n≥0 αn ε n (3.37)
is under a normal form and belongs to [γ ε ] . More precisely, let β ε ∈ [γ ε ] be the one form whose expression in the (µ, θ, t) coordinate system, defined by (1.15)- (1.16), is given by formula (3.1) and whose formal expansion in power of ε is given by (3.3). Let L ε : (µ, θ, t) → μ, θ, t be the unknown Lie Change of Coordinates and βε the expression of β ε in this unknown Lie coordinate system. According to Proposition 3.1, βε admits the expansion in power of ε given by (3.4). The Lie Transform method consists to construct by induction the sequences of vector fields and differential one forms such that for each n ∈ N

1 ε ( α0 + ε α1 + . . . + ε n αn ) ∈ 1 ε β0 + ε β1 + . . . + ε n βn (3.38)
and such that the differential one form

αn ε = 1 ε n k=0 αk ε k (3.39)
is under a normal form. Notice that by construction a Lie change of coordinate is infinitesimal and consequently the first term of the sequence defining αε is given by α0 = -μdt.

(3.40)

Now, the constructive proof of the following Theorem constitutes the Lie Transform algorithm.

Theorem 3.3. There exists a Lie change of coordinates L ε and a differential one form αε such that αε belongs to [γ ε ] and is under a normal form. Moreover the proof of this Theorem constitutes a constructive algorithm to build L ε and αε .

The Lie Transform Algorithm

: proof of Theorem 3.3 Lemma 3.1. For any Zn n≥2 ∈ C ∞ 2π and Z1 2 ∈ C ∞ 2π , setting Z1 (µ, θ, t) = φ 0 2µ cos (θ) , t - 1 2π π -π φ 0 2µ cos (θ) , t dθ ∂ µ + Z1 2 ∂ θ (3.41) and α1 = -μd θ - 1 2π π -π φ 0 2μ cos θ , t d θ dt (3.42) yields that α1 ε = 1 ε ( α0 + ε α1 ) ∈ 1 ε β0 + ε β1 (3.43)
and that α1 ε is under a normal form.

Proof. Applying formula (3.21) with n = 1 yields:

β1 μ, θ, t = W 0 β1 μ, θ, t + W 1 β0 μ, θ, t . (3.44)
Computing W 1 with formula (3.5) and using Cartan Formula yields:

W 1 = -iZ1d -diZ1. (3.45)
According to (3.45), the only non-exact contribution of W 1 is given by -iZ1d. Consequently, we just have to find α1 , S 1 and Z1 such that:

α1 μ, θ, t = β1 μ, θ, t -iZ1d β0 μ, θ, t + (dS 1 ) μ, θ, t , (3.46) 
and such that α1 ε = 1 ε ( α0 + ε α1 ) is under a normal form. Writing formula (3.46) in coordinates yields:

∂S 1 ∂ μ -α1 1 dμ + ∂S 1 ∂ θ -α2 1 -μ d θ+ ∂S 1 ∂t + Z1 1 -φ 0 2μ cos θ , t -α3 1 dt = 0. (3.47) Setting α1 1 = 0, α2 1 = -μ, , α3 1 = -1 2π π -π φ 0 √ 2μ cos θ , t d θ, Z1 1 μ, θ, t = φ 0 2μ cos θ , t - 1 2π π -π φ 0 2μ cos θ , t d θ (3.48)
and S 1 = 0 yields the result. This ends the proof of Lemma 3.1.

Theorem 3.4. For any Zn n≥3 ∈ C ∞ 2π , Z2,D 1 ∈ D and Z2 2 ∈ C ∞ 2π , setting Z1 2 = 1 √ 2µ θ 0 cos θ E 0 2µ cos θ , t dθ - θ 2π √ 2µ π -π cos θ E 0 2µ cos θ , t dθ , (3.49) Z2,R 1 μ, θ, t = 2 μ, θ, t - 1 2π π -π 2 μ, θ, t d θ, (3.50)
where 2 is defined by formula (3.65), and

α2 = Z2,D 1 - 1 2π π -π 2 μ, θ, t d θ dt (3.51) yields that α2 ε = 1 ε α0 + ε α1 + ε 2 α2 ∈ 1 ε β0 + ε β1 + ε 2 β2 (3.52)
and that α2 ε is under a normal form.

Proof. Applying formula (3.21) with n = 2 yields:

β2 μ, θ, t = W 0 β2 μ, θ, t + W 1 β1 μ, θ, t + W 2 β0 μ, θ, t . (3.53) 
Computing W 2 with formula (3.5) and using Cartan Formula yields:

W 2 = -iZ2d -diZ2 + 1 2 (iZ1diZ1d + diZ1LZ1) . (3.54) 
According to (3.54), the only non-exact contribution of W 2 is given by

-iZ2d + 1 2 iZ1diZ1d.
Consequently, we just have to find S 2 , Z1 2 and Z2 such that:

α2 μ, θ, t = β2 μ, θ, t -iZ2d β0 μ, θ, t -iZ1d β1 μ, θ, t + 1 2 iZ1diZ1d β0 μ, θ, t + (dS 2 ) μ, θ, t . (3.55) 
Writing the terms of formula (3.55) in coordinates yields:

iZ2d β0 = -Z2 1 dt, iZ1d β1 = Z1 2 dμ -Z1 1 d θ + ∂φ 0 ∂r 2μ cos θ , t   Z1 2 2μ sin θ -Z1 1 cos θ √ 2μ   dt, iZ1diZ1d β0 = -Z1 1 ∂ Z1 1 ∂ μ + Z1 2 ∂ Z1 1 ∂ θ dt. (3.56) 
Consequently, (3.55) reads:

∂S 2 ∂ μ -Z1 2 -α1 2 = 0, (3.57) 
∂S 2 ∂ θ + Z1 1 -α2 2 = 0, (3.58) 
and

Z2 1 -α3 2 + ∂S 2 ∂t -φ 1 2μ cos θ , t -   Z1 2 2μ sin θ -Z1 1 cos θ √ 2μ   ∂φ 0 ∂r 2μ cos θ , t - 1 2 Z1 1 ∂ Z1 1 ∂ μ + Z1 2 ∂ Z1 1 ∂ θ = 0 (3.59)
Since C ∞ 2π = D ⊕ R, we make the following decompositions:

S 2 = S D 2 + S R 2 , (3.60) Z1 2 = Z1,D 2 + Z1,R 2 , (3.61) Z2 1 = Z2,D 1 + Z2,R 1 . (3.62) Setting α2 2 = 0 in (3.58) implies ∂S R 2 ∂ θ = -Z1 1 . (3.63) 
Since Z1 1 ∈ R, equation (3.63) has a solution in R and it is given by

S R 2 = - θ 0 φ 0 2µ cos θ , t dθ + θ 2π π -π φ 0 2µ cos θ , t dθ . (3.64) Afterwards, setting Z1 2 = ∂S R 2 ∂ μ (notice that this choice implies Z1 2 = Z1,R 2 ) and S D 2 = 0 in (3.57) implies α1 2 = 0.
Finally, let 2 be the function defined by

2 μ, θ, t = - ∂S R 2 ∂t + φ 1 2μ cos θ , t +   Z1 2 2μ sin θ -Z1 1 cos θ √ 2μ   ∂φ 0 ∂r 2μ cos θ , t + 1 2 Z1 1 ∂ Z1 1 ∂ μ + Z1 2 ∂ Z1 1 ∂ θ . (3.65) 
Then, equation (3.59) reads:

Z2 1 -α3 2 -2 μ, θ, t = 0. (3.66) Setting Z2,R 1 μ, θ, t = 2 μ, θ, t - 1 2π π -π 2 μ, θ, t d θ (3.67)
remove the θ dependency in α3 2 .

Remark 3.1. Notice that at this level Z2,D 1 is not fixed. But as soon as it will be fixed, α3

2
will also be fixed and will be equal to 

α3 2 = Z2,D 1 - 1 2π π -π 2 μ, θ, t d θ ∈ D.
2 ∈ C ∞ 2π , there exists Zk k≤n-1 ∈ C ∞ 2π , Zn,R 1 ∈ R and (α k ) 0≤k≤n such that αn ε = 1 ε ( α0 + ε α1 + . . . + ε n αn ) ∈ 1 ε β0 + ε β1 + . . . + ε n βn (3.68)
and such that αn ε is under a normal form.

Proof. We will prove Theorem 3.5 by induction. The case n = 2 was treated in Theorem 3.4. Consequently, we pass directly to the induction step.

Let

n ≥ 3. Assume that Z1 , Z2 , . . . , Zn-2 ∈ C ∞ 2π and Zn-1,R 1 ∈ R are fixed in such a way that αn-1 ε = 1 ε α0 + ε α1 + . . . + ε n-1 αn-1 ∈ 1 ε β0 + ε β1 + . . . + ε n-1 βn-1 (3.69) 
and αn-1 ε is under a normal form. We will find Zn-1

2 ∈ C ∞ 2π , Zn-1,D 1 ∈ D and Zn,R 1 ∈ R such that: αn ε = 1 ε ( α0 + ε α1 + . . . + ε n αn ) ∈ 1 ε β0 + ε β1 + . . . + ε n βn , (3.70) 
and such that αn ε is under a normal form. Formula (3.21) yields:

βn μ, θ, t = n k=0 W k βn-k μ, θ, t ,
where W n is given by (3.5). As in formula (3.5) (with k = n) n 1 + 2n 2 + . . . + nn n = n, the only term depending on Zn in W n β0 is -LZn β0 , and the only term depending on Zn-1 is LZn-1LZ1 β0 , and as in formula (3.5) (with k = n -1)

n 1 + 2n 2 + . . . + (n -1)n n-1 = n -1,
the only term depending on Zn-1 in W n-1 β1 is -LZn-1 β1 . Consequently, the only terms in formula (3.21) depending on Zn-1 and Zn are -LZn β0 , LZn-1LZ1 β0 and -LZn-1 β1 . Hence βn reads:

βn = βn -i Zn d β0 -i Zn-1 d β1 + i Zn-1 di Z1 d β0 + ψ n Z1 , . . . , Zn-2 + something exact. (3.71) 
Consequently, we just have to find S n , Zn-1

2 ∈ C ∞ 2π , Zn-1,D 1 ∈ D and Zn,R 1 ∈ R such that: αn = βn -i Zn d β0 -i Zn-1 d β1 + i Zn-1 di Z1 d β0 + ψ n Z1 , . . . , Zn-2 + dS n (3.72)
Writing formula (3.72) in coordinates yields:

i Zn d β0 = -Zn 1 dt, i Zn-1 d β1 = Zn-1 2 dμ -Zn-1 1 d θ + ∂φ 0 ∂r 2μ cos θ , t   Zn-1 2 2μ sin θ -Zn-1 1 cos θ √ 2μ   dt, i Zn-1 di Z1 d β0 = -Zn-1 1 ∂ Z1 1 ∂ μ + Zn-1 2 ∂ Z1 1 ∂ θ dt. (3.73) 
Consequently, (3.72) reads:

∂S n ∂ μ -Zn-1 2 + ψ n 1 Z1 , . . . , Zn-2 -α1 n = 0, (3.74) 
∂S n ∂ θ + Zn-1 1 + ψ n 2 Z1 , . . . , Zn-2 -α2 n = 0, (3.75) 
and

Zn 1 + ∂S n ∂t -α3 n -φ n-1 2μ cos θ , t -   Zn-1 2 2μ sin θ -Zn-1 1 cos θ √ 2μ   ∂φ 0 ∂r 2μ cos θ , t + ψ n 3 Z1 , . . . , Zn-2 -Zn-1 1 ∂ Z1 1 ∂ μ + Zn-1 2 ∂ Z1 1 ∂ θ = 0 (3.76) 
Since C ∞ 2π = D ⊕ R, we make the following decompositions:

S n = S D n + S R n , (3.77 
) Zn-1 2 = Zn-1,D 2 + Zn-1,R 2 , (3.78) 
ψ n 2 Z1 , . . . , Zn-2 = ψ n,D 2 Z1 , . . . , Zn-2 + ψ n,R 2 Z1 , . . . , Zn-2 . (3.79) Setting α2 n = 0 in (3.75) implies ∂S n ∂ θ + Zn-1 1 + ψ n 2 Z1 , . . . , Zn-2 = 0, (3.80) 
and consequently we set:

∂S R n ∂ θ = -Zn-1,R 1 -ψ n,R 2 Z1 , . . . , Zn-2 , (3.81) 
Zn-1,D 1 = -ψ n,D 2 Z1 , . . . , Zn-2 . (3.82) Since Zn-1,R 1 + ψ n,R 2 Z1 , . . . , Zn-2 ∈ R, equation (3.81) has a solution in R. Afterwards, setting S D n = 0, Zn-1 2 = ∂S R n ∂ μ -ψ n,R 1 Z1 , . . . , Zn-2 , (3.83) 
α1 n = ψ n,D 1 Z1 , . . . , Zn-2 , (3.84) 
solve equation (3.74).

Finally, let n be the function defined by

n μ, θ, t = - ∂S n ∂t + φ n-1 2μ cos θ , t +   Zn-1 2 2μ sin θ -Zn-1 1 cos θ √ 2μ   ∂φ 0 ∂r 2μ cos θ , t -ψ n 3 Z1 , . . . , Zn-2 -Zn-1 1 ∂ Z1 1 ∂ μ + Zn-1 2 ∂ Z1 1 ∂ θ (3.85)
Then, equation (3.86) reads:

Zn 1 -α3 n -n = 0. (3.86) Setting Zn,R 1 = R n , (3.87) 
α 3 n = -D n + Zn,D 1 (3.88) 
remove the θ dependency in α3 n . This ends the induction step and the proof of Theorem 3.5.

Proof of Theorem 1.1

Let L ε and αε be the Lie change of coordinates and the normal form of γ ε constructed in the proof of Theorem 3.3. According to Theorem (3.2) the expression of the particle distribution in the Lie coordinate system is given by:

∂ fε ∂t + ∂ α3 ε ∂ μ - ∂ α1 ε ∂t ∂ fε ∂t = 0. (3.89) Setting a ε (μ, t) = ∂ α3 ε ∂ μ (μ, t) - ∂ α1 ε ∂t (μ, t) (3.90) 
yields formula (1.31). Moreover, the Hilbert expansion of a ε is given by

a ε (μ, t) = 1 ε n≥0 ∂ α3 n ∂ μ (μ, t) - ∂ α1 n ∂t (μ, t) ε n . (3.91)
According to formula 3.40, the first term of this Hilbert expansion is given by

a 0 (μ, t) = -1, (3.92) 
and according to formula (3.42), the second term of the Hilbert expansion is given by The Poisson equation expressed in the (r, v r , t) coordinate system is given by (1.2) and the charge density by (1.3). In order to solve the Vlasov Equation (3.89) we need to express the charge density ρ ε in terms of the particle density expressed in the Lie coordinate system. Let fε the particle density expressed in the (µ, θ) coordinate system; i.e., fε (µ, θ, t) = f ε Pol -1 (µ, θ) , t , or equivalently (3.94)

a 1 (μ, t) = 1 2π √ 2μ π -π cos θ E 0 2μ cos θ , t d θ. ( 3 
f ε (r, v r , t) = fε (Pol (r, v r ) , t) . (3.95) 
Then, the charge density ρ ε , given by (1.3), can be rewritten as follow:

ρ ε (t, r) = R f ε r, v r , t dv r = R 2 f ε r , v r , t δ r -r dr dv r = R + ×]-π,π]
fε µ , θ , t h r µ , θ dµ dθ , where h r = h r (µ , θ ) is defined by 

h r µ , θ = δ r -2µ cos θ . ( 3 
D t ε = L ε (R + ×] -π, π], t) and J L -1 ε μ , θ , t
the jacobian associated with L -1 ε . Then the charge density can be rewritten as follow:

ρ ε (t, r) = L -1 ε (D t ε )
fε µ , θ , t h r µ , θ dµ dθ

= D t ε fε μ , θ , t h r PL -1 ε μ , θ , t J L -1 ε μ , θ , t dμ d θ .
Finally, Lemma 3.1 and Theorem 3.4 yields that:

Z1 (µ, θ, t) = (φ 0 2µ cos (θ) , t - 1 2π π -π φ 0 2µ cos (θ) , t dθ)∂ µ + ( 1 √ 2µ θ 0 cos θ E 0 2µ cos θ , t dθ - θ 2π √ 2µ π -π
cos θ E 0 2µ cos θ , t dθ )∂ θ .

(3.99)

Applying formulas (3.6) and (3.7) and truncating at the second order yields formulas (1.36) and (1.37). This ends the proof of Theorem 1.1.

Truncated models and some remarks about their efficiency

As we saw in the previous Subsection, for a given N ∈ N the vector fields Z1 , . . . , ZN allow us to construct the N first terms α0 , . . . , αN of the normal form αε . Hence, defining the partial Lie change of coordinates of order N by Consequently, Proposition 2.1 and Theorem 2.2 yield that the characteristics associated with the Vlasov equation (1.1) expressed in the partial Lie coordinate system of order N are given by

L N ε = φN ε N • . . . • φ1 ε 1 (3.
∂ Mu ε T,N ∂t μ, θ, t = O ε N , (3.102) ∂ Θε T,N ∂t μ, θ, t = 1 ε N n=0 a n Mu ε T,N , t ε n + O ε N , (3.103) 
provided with the initial conditions Mu ε T,N μ, θ, 0 = μ and Θε T,N μ, θ, 0 = θ.

Remark 3.2. Notice that the reminders (the O ε N ) depend to μ, θ and t and that they are evaluated at the characteristics. By construction the vector fields Z1 , . . . , ZN are 2π periodic with respect to θ. Consequently we can easily deduce that the first component of L N ε is 2π periodic with respect to θ and that the second component satisfies

L N ε 2 μ, θ + 2π, t = L N ε 2 μ, θ, t + 2π. (3.104)
On the other hand, let τ ε H be the vector field whose principal part in the (r, v r , t) coordinate system is given by (2.4) (with G = H ε ). Then, its expression in the polar coordinate system (µ, θ, t) is given by

Xε H (µ, θ, t) = 2µ sin (θ) E ε 2µ cos (θ) , t ∂ µ + - 1 ε + cos (θ) √ 2µ E ε 2µ cos (θ) , t ∂ µ + ∂ t (3.105)
and it is consequently 2π periodic. Hence, the expression of τ ε H in the μ, θ, t coordinate system is 2π periodic with respect to θ. This implies that the O ε N in (3.102)-(3.103) are 2π periodic with respect to θ and consequently bounded with respect to this variable. Remark 3.3. Since we deal with confined beams; i.e., the initial condition f 0 is chosen in such a way that the beam is bounded, the characteristic Mu ε , which corresponds for a given particle to the evolution of the half of the square of the modulus between the origin and the particle position in the phase space, is bounded. Hence if we observe the evolution of the beam up to a given time T ∈ (0, +∞) , the usual change of coordinate rules for the characteristics yield that Mu ε , the error term in the characteristics is bounded by C 1 (ν, T )εT for any positive real numbers T and ν, and for any ε ∈ (0, ν) and t ∈ (0, T ). Hence, for small time T of simulation the accuracy is of order ε. For longer times the accuracy is rather 1. Nevertheless, we will observe numerically in Subsection 5 that for longer times of simulation the dynamics (fast rotation+slow filamentation) characterizing the evolution of the shape of the beam is close, but that the filaments are longer and wider. We will give more explanations in Subsection 5.

L N ε =   N k=0 ε k   n 1 +2n 2 +...+kn k =k Z1 n 1 . . . Zk n k n 1 ! . . . n k !   (id)   + O ε N +1 . ( 3 

Description of the numerical method

In this section, we will describe the PIC method that we will use in order to simulate equations (1.46)-(1.50) with the initial condition

f 0 (r, v r ) = n 0 √ 2πv th exp - v 2 r 2v 2 
th χ [-0,75;0,75] (r) .

As usual in a PIC method, fε will be approximated by the following Dirac mass sum:

f N ε μ, θ, t = N k=1 ω k δ μ -Mu ε k (t) δ θ -Θε k (t) (4.2) 
where Mu ε k (t) , Θε k (t) is the position in the μ, θ, t coordinate system of macro-particle k which moves along a characteristic curve of the first order PDE (1.46). Hence the job is reduced to compute the macro-particle positions Mu 

(t) = 0, Mu ε k (t l ) = Mu ε,l k , (4.3) 
d Θε k dt (t) = - 1 ε + 1 2π 2 Mu ε k (t) π -π cos θ E ε 2 Mu ε k (t) cos θ , t d θ , (4. 
(t) = - 1 ε + 1 2π 2μ 0 k π -π cos θ E ε 2μ 0 k cos θ , t d θ , (4.6) 
Θε k (t l ) = Θε,l k . (4.7) 
Notice also that as θ → E ε √ 2μ cos θ , t is an even function, the above integral can be replaced by

4 π 2 0 cos θ E ε 2μ cos θ , t d θ . (4.8)
The first step of the computation of Θε,l+1 k consists in replacing the integral above by p-node quadrature formula. As we approximate the integral of a periodic function over one period, the trapezoidal rule is optimal and will yield very accurate results for as few quadrature points as are needed to resolve the oscillations of the function.

Then, the equation for Θε,l+1

k become d Θε k dt (t) = - 1 ε + 2 π 2μ 0 k p m=1 Λ m cos (σ m ) E ε 2μ 0 k cos (σ m ) , t . (4.9) Θε k (t l ) = Θε,l k , (4.10) 
where (σ m ) p m=0 is a grid of [0, π 2 ].

Expression of the initial condition in the Lie coordinates

The first step consists to replace the initial condition (4.1) by

f N 0 (r, v r ) = N k=1 ω k δ r -R 0 k δ v r -V 0 r,k , (4.11) 
where (R 0 k ) 1≤k≤N are uniformly distributed in [-0, 75; 0, 75] and (V 0 r,k ) 1≤k≤N are normally distributed.

Using the following expression for θ

θ =                arctan vr r if r > 0 arctan vr r + π if r < 0 and v r ≥ 0 arctan vr r -π if r < 0 and v r < 0 π 2 if r = 0 and v r > 0 -π 2 if r = 0 and v r < 0 (4.12)
and formula (1.14) for µ (Notice that formula (4.12) works only for µ = 0. If µ = 0 we set θ = 0) we obtain the expression of the initial condition in the (µ, θ, t) coordinate system

f N 0 (µ, θ) = N k=1 ω k δ µ -Mu 0 k δ θ -Θ 0 k . (4.13) 
Finally, using for each 1 ≤ k ≤ N the first order approximation (1.39)-(1.40) of the Lie change of coordinates, we obtain:

μ0 k = Mu 0 k , Θ0 k = Θ 0 k . (4.14)
Consequently, the expression of initial condition in the Lie coordinate system is given by:

f N 0 μ, θ = N k=1 ω k δ μ -μ0 k δ θ -Θ0 k . (4.15)
4.2 Numerical Resolution of (1.47)

Because of the form of the right hand side in (4.9) all along the algorithm, we need to compute values of the electric field E ε generated by a given macro-particle distribution

μ0 k , Θε k (t) k=1,...,N . 
Firstly, in order to solve (1.47) on [-L, L] (L will be precise afterwards) we will proceed as follow. Injecting (4.2) in the right hand side of (1.47), and denoting by ρ N ε the yielding expression, we obtain:

ρ N ε (t, r) = N k=1 ω k δ r -2μ 0 k cos Θε k (t) . (4.16) 
Now, let (r k ) k=0,...,m P be a uniform one-dimensional mesh of [0, L]. In order to obtain an expression of the right hand side of (1.47) on the grid, we will regularize (4.16) with first order spline

ρ h ε (t, r) = N k=1 ω k S 1 r -2μ 0 k cos Θε k (t) . (4.17) 
Afterwards, solving

∂ ∂r rE ε = rρ h ε (4.18)
on (r k ) k=0,...,m P by integrating this equation with the trapezoidal rule yields the expression of the electric field E ε on the grid. We denote by E k ε k=1,...,mp these values. Notice that according to (1.4), E 0 ε = 0. On the other hand, using the fact that E ε is even we obtain the following expression for the electric field on [-L, L] :

E h ε (r, t) = dr P m P k=0 E k ε S 1 (r -r k ) -S 1 (r + r k ) , (4.19) 
where dr P = (r 1 -r 0 )/m P . At the end, in order to obtain the electric field E ε on the macro particle μ0 k , Θε k (t) we just have to evaluate the above expression at 2μ 0 k cos Θε k (t) .

4.3 Numerical Resolution of (4.9)-(4.10)

We solve (4.9)-(4.10) using the classical Runge-Kutta 4 method which gives the following scheme when applied to the computation of the approximation y l+1 of the value of y solution to dy dt = K(t, y) at time t l + ∆t knowing its approximation y l at time t l : t l,1 = t l , y l,1 = y l , t l,2 = t l + ∆t 2 , y l,2 = y l + 1 2 I 1 , with I 1 = ∆tK(t l,1 , y l,1 ), t l,3 = t l + ∆t 2 , y l,3 = y l + 1 2 I 2 , with I 2 = ∆tK(t l,2 , y l,2 ), t l,4 = t l + ∆t, y l,4 = y l + I 3 , with I 3 = ∆tK(t l,3 , y l,3 ),

y l+1 = y l + 1 6 I 1 + 1 3 I 2 + 1 3 I 3 + 1 6 I 4
, with I 4 = ∆tK(t l,4 , y l,4 ). 

I 1 = ∆t   - 1 ε + 2 π 2μ 0 k p m=1 Λ m cos (σ m ) E ε 2μ 0 k cos (σ m ) , t l,1   , (4.21) 
where the value of E ε 2μ 0 k cos (σ m ) , t l,1 has been computed solving equation (1.47) associated with the particle distribution Θ ε,l k k=1,...,N by the procedure described in subsection where I 1 , I 2 and I 3 are defined above and where E ε 2μ 0 k cos (σ m ) , t l+1 is computed from particle positions Θ ε,l,4 k k=1,...,N .

4.4 Expression of the particle density in the (r, v r , t) coordinate system

Finally, using the previous algorithm, when we come to the desired time t f = m f ∆t of simulation we need to go back in the (r, v r , t) coordinate system. Firstly, we go back in the (µ, θ, t) coordinate system. Applying for each 1 ≤ k ≤ N the first order approximation (1.39)-(1.40) of the Lie change of coordinates we obtain:

Mu ε,m f k = μ0 k , Θ ε,m f k = Θε,m f k . (4.25) 
Afterwards, using formula (1.15)-(1.16) we obtain the particle density expressed in the (r, v r , t) coordinate system.

Numerical simulations

For the numerical simulations we take a thermal velocity v th = 0.0727518214392, an initial mass density n 0 = 1, a number N = 1 • 10 4 of macro particles, constant weights ω k = ω = 1 N in 4.2, a 18-node composed trapezoidal quadrature formula for the computation of (4.8), L = 1.5 and m P = 128 for the Poisson mesh, a small parameter ε = 10 -3 , a time step ∆t = ε √ ε and a Box-Muller method in order to generate the initial condition. As no analytical solution is available, we will compare our result with a standard PIC method (see [START_REF] Frénod | Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method[END_REF]). The simulation results are given in figures 1, 2 and 3.

Remark 5.1. From Figure 1 one can see the announced property of accuracy for small times of simulations. Remark 5.2. From Figure 2 one can see the evolution of µ for two given particles: one close to the center of the beam and the other close to the extremity of the beam.

Remark 5.3. In Figure 3 we observe that for longer times of simulation the dynamics characterizing the evolution of the shape of the beam (fast rotation+slow filamentation) is close to the reference solution but that the filaments are longer and wider. The reason is the following: we have made first order truncations in the dynamical system giving the characteristics and in the change of coordinates. Within the framework of these first order truncations, the electric field is truncated at the first order and the square of the modulus between the origin and the particles position in the phase space become constant. The filamentation is due to the fact that the electric field is larger at the extremity of the beam as at the center. Moreover, without these truncations the particles of the extremity move toward the center of the beam. With these truncations the distance between the particles and the origin remain constant and consequently since the electric field is larger when one moves away from the center of the beam the phenomena of filamentation begins earlier and the filaments are wider.

Conclusions and perspectives

In this paper we have shown that we can adapt the geometrical techniques used for the derivation of the gyrokinetic coordinates to the case of a charged particle beam under the paraxial axisymetric approximation. In particular, these geometrical techniques are compatible with our way of doing the scaling. This paper is a first step in the application of these geometrical method, within our way to do the scaling (see Frénod & Sonnendrucker [START_REF] Frénod | The Finite Larmor Radius Approximation[END_REF]), to the Vlasov Poisson equations modeling strongly magnetized plasmas. In particular, the derivation and the numerical simulations of these equations within our way to do the scaling, will allow us to compare the efficiently of this method with the other techniques of homogenization like the two scale methods. Probably, in order to eliminate a variable and to increase the time step, it will also be possible to combine the both methods. The numerical results are not only accurate but also promising, if one consider that they are only based on lowest order approximation of the electric field.
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 1 Characterization of the differential system (1.6)-(1.7) and of the Vlasov equation on an odd dimensional manifold
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 214 is satisfied.

  The perturbed case(Dynamical system (1.6)-(1.7)) Making the change of coordinates (1.15)-(1.16) in the Poincaré-Cartan one form, defined by (2.19) and with G ε = H ε , where H ε is defined by (1.8), yields:

.26) α 2 1 =

 1 -µ, and ∀n ∈ N \ {1} , α 2 n
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 351 For any n ≥ 2, for any sequence Zk k≥n+1 ∈ C ∞ 2π , for any Zn,D

  .93) Formulas (3.92) and (3.93) yield formula (1.38).

  100) and making the change of coordinates μ, θ, t = L N ε (µ, θ, t) lead to a differential one form αT,N ε ∈ βε which is up to order N under the normal form; i.e.,

  is also bounded for t ∈ [0, T ]. Finally, since the reminders of (3.102)-(3.103) are 2π periodic with respect to θ and since Mu ε T,N is bounded for t ∈ [0, T ] we obtain for any positive real number ν and for any ε ∈ (0, ν) an estimation O ε N ≤ C N (T, ν)ε N for the reminders. Integrating these estimations yields error terms bounded by C N (T, ν)ε N T. Remark 3.4. L N ε admits the following expansion in power of ε:

Remark 3 . 5 .

 35 .106) Hence, the partial Lie change of coordinates L N ε is an approximation of order N + 1 of the Lie change of coordinates. Moreover, since the change of coordinates μ, θ, t = L N ε (µ, θ, t) produces a O ε N error term in the right hand side of (3.102)-(3.103), it produces a O ε N error term in the characteristics. Hence, for numerical simulations it is sufficient to truncate (3.106) at order N . That is what we do in our simulations for N = 1. As a consequence of the previous Remarks and since approximation (1.46) is obtained by making the change of coordinates L 1

,

  Θε,l+1 k at time t l+1 = t l + ∆t from their positions Mu ε,l k , Θε,l k at time t l , knowing they are solutions to d Mu ε k dt

4 )

 4 Θε k (t l ) = Θε,l k . (4.5) According to (4.3), for each t ∈ R + and for each k ∈ {1, . . . , N } , Mu ε k (t) = μ0 k and the job is also reduced to integrate for each time step the equation d Θε k dt

( 4 .

 4 20)Now, we will apply this scheme to our problem. So, the first step consists in computing Θε,l,2

( 4 .ΛΛFinallyΛ

 4 2).The second step of the Runge-Kutta method consists in computing Θε,l,3 m cos (σ m ) E ε 2μ 0 k cos (σ m ) , t l,2 of E ε 2μ 0 k cos (σ m ) , t l,2 is computed as previously from the Θ ε,lm cos (σ m ) E ε 2μ 0 k cos (σ m ) , t l,3 2μ 0 k cos (σ m ) , t l,3 is computed from particle positions Θ ε,l,3 k k=1,...,N. m cos (σ m ) E ε 2μ 0 k cos (σ m ) , t l+1

Figure 1 :

 1 Figure 1: Beam simulation with an usual PIC method and a Lie PIC method for ε = 0.001. Left: beam at time 0.001, center: beam at time 0.1, right : beam at time 1. Top : Simulation provided with the usual PIC method, bottom: Simulation provided with the Lie PIC method.

Figure 2 :

 2 Figure 2: Evolution of µ up to time 40 with an usual PIC method and a Lie PIC method for ε = 0.001. Green: with the Lie PIC method, red: with the usual PIC method. Left: with initial condition µ = 0.2948404402060960, right: with initial condition µ = 4.22461332489106316 • 10 -3

Figure 3 :

 3 Figure 3: Beam simulation at time 35 with an usual PIC method and a Lie PIC method for ε = 0.001. Left: with an usual PIC method, right : with the Lie PIC method.

  coordinate system is defined by(2.19). Let β ε ∈ [γ ε ] be the one form whose expression in the (µ, θ, t) coordinate system, defined by (1.15)-(1.16), is given by (3.1). Let L ε : (µ, θ, t) → μ, θ, t be a Lie change of coordinates. Then the expression βε of β ε in the Lie coordinates μ, θ, t is given by:

  .30) Proof. Let L ε : (µ, θ, t) → μ, θ, t be a Lie change of coordinates and αε ∈ [γ ε ] which is under a normal form. According to Theorem 2.3 the expression of τ ε in the Lie coordinate system corresponds to the solution of

		H i Xε	d αε = 0	(3.31)
	H satisfying Xε	3	

  .96) Let fε the particle density expressed in the μ, θ, t coordinate system; i.e.,

	fε μ, θ, t = fε L -1 ε	μ, θ, t , or equivalently	(3.97)
	fε (µ, θ, t) = fε (L ε (µ, θ, t)) ,	(3.98)
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