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Abstract

5-axis high speed machine tools are widely used in industry.Most of the time, the tool path is described with linear segments (G1)
which leads to tangency discontinuities between blocks. The aim of this paper is to smooth the tool path geometry using a 5-axis
corner rounding method suitable for acceleration and jerk limited feedrate interpolation.
Several methods have been developed in 3-axis but 5-axis corner rounding is still a challenge due to the difficulties linked to the
smoothing of the orientation. The proposed corner roundingmodel allows to control precisely the contour and orientation tolerances
in the workpiece coordinate system for 3 and 5-axis tool path. To smooth the tool tip position and the tool orientation in the corner,
5-axis tool paths are represented by two B-Spline curves.
The main difficulty is the connection between the initial tool path and thenewly inserted smoothing portion. To obtain a smooth
connection of the orientation a parametrization spline is required to link the bottom and top B-Spline parameters. Thisalgorithm is
integrated to a feedrate interpolator which controls a 5-axis milling machine equipped with an Open CNC.

Keywords: 5-axis, G1 discontinuity, smoothing, feedrate, jerk, CNC,corner rounding

1. Introduction

Whilst major improvements in Computer Aided Manufactur-
ing (CAM) and machine tools design have been observed, ad-
vances in the design of Computer Numerical Control (CNC)
have been limited. Even if polynomial and B-Spline represen-
tations of the tool paths have been introduced in the industrial
CNCs, most of the milling tool paths are still defined by G1
blocks (linear interpolation). However, this descriptiongen-
erates tangential discontinuities at each transition between the
linear segments. Considering that the machine tool axes have
acceleration and jerk limitations, the only solution to avoid a
full stop at each transition is to smooth the geometry to obtain
a continuous tool path. That means that the CNC has to mod-
ify the geometry given in the part program using user tolerance
parameters.

The feedrate interpolation is closely linked to the geometry
of the tool path. It is possible to use a decoupled approach [1]
which will first design a continuous tool path geometry and then
find an admissible motion law along this fixed geometry. The
other solution is to treat the problem globally with a combined
approach which will compute both the geometry and the motion
law at once. This approach requires some hypotheses about the
feedrate and acceleration which are not always verified. The
rest of the paper will focus on the decoupled approach. Once
the geometry is smoothed, the feedrate planning can be per-
formed using, for example, the previously developed Velocity
Profile Optimization [2].
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Depending on the context, two main methods are available to
smooth the tool path geometry, respectively the global smooth-
ing and the local smoothing. If a portion of the tool path is
composed of a high density of short segments, it is possible to
approximate all the segments by a curve. On the other hand, if
the tool path is composed of long segments, it is important to
follow precisely these segments and thus each transition has to
be locally smoothed. This paper focuses on the latter problem
which has been studied by several authors for 3-axis tool paths
but which is still a challenge in 5-axis milling.

Global smoothing has been studied in 3-axis where the main
difficulty is to respect a given contour tolerance around the pro-
grammed segments, see Siemens compressor [3] and other pub-
lications like [4–6].
In 5-axis, global smoothing techniques are also widely stud-
ied. Different solutions can be used to smooth the orientation:
quaternions [7, 8], spherical B-Splines [9, 10], position and ori-
entation curves [11, 12], drive movement smoothing [13–15].

Global smoothing techniques cannot be applied for local cor-
ner rounding because several requirements cannot be fulfilled.
First the contour and orientation modifications have to be con-
trolled locally and precisely avoiding oscillations. Second, the
corner rounding curve has to be connected to the initial tool
path. Thus our research not only brings new contribution for
5-axis local tolerance management but also for the orientation
connection of two portions of 5-axis tool path defined by B-
Spline curves.

Local smoothing has been widely studied in 3-axis. Indeed,
different methods which give similar results are detailed in the
literature. They all give a satisfying corner rounding curve in

Preprint submitted to International Journal of Machine Tools and Manufacture December 13, 2012



terms of contour error and continuity management. IndeedG2

continuity is assured to allow jerk limited feedrate interpola-
tion. Yutkowitz and Chester [16] registered a Siemens patent
describing a 3-axis corner rounding method based on two 4th

order polynomial curves. Erkorkmaz et al. [17] use a 5th order
polynomial curve to round the corner. A cubic B-Spline with 8
control points is used by Pateloup et al. [18] whereas a cubicB-
Spline with 5 control points is used by Zhao et al. [19]. Ernesto
and Farouki [20] employed a Bezier conic and optimized the
feedrate along the curve under acceleration bounds. Bi et al.
[21] used two cubic Bezier curves to round the corner. None
of these papers tried to extend their solution to 5-axis toolpath
which brings new challenges. To the best of our knowledge,
no previously published work has tackled the problem of 5-axis
corner rounding.

It is possible to broaden the context of corner rounding. In-
deed, most of the publications are focused on the need for the
CNC to round corner using generally a small tolerance of the
order of a few hundredths of a millimetre. However, as in
Pateloup et al. [18], it can also be applied in a CAM context
with a fairly large geometrical deviation. Within the frame-
work of the Step-NC standard development which is a high
level intelligent programming environment, it could be useful
to be able to locally round a CAM tool path. The solution pre-
sented in this paper is multi-scale and can be applied to both
contexts.

The aim of this paper is to propose a new 5-axis corner round-
ing method. 5-axis corners are rounded using two B-Spline
curves which define the tool tip and tool orientation. This solu-
tion is especially suited for flank milling as the contour andori-
entation tolerances are precisely controlled. The main difficulty
is coming from the orientation smoothing and more specifically
from the connection between the initial tool path and the newly
inserted smoothing portion. The orientation connection prob-
lem between two 5-axis portions is addressed in details and
solved using a third B-Spline curve for the parametrizationof
the tool orientation.

The rest of the paper is organized as follows. First, the 5-
axis corner rounding geometry is presented in section 2. Then,
the problem of the continuous variation of the orientation is ad-
dressed in section 3. Experiments and simulations are carried
out in section 4 to demonstrate the efficiency of the proposed
method. Finally, the paper is concluded in section 5.

2. 5-axis corner rounding method

After an analysis of the different orientation smoothing so-
lutions, a representation of the 5-axis tool path based on two
curves is chosen. The typical 3-axis corner rounding problem
has to be solved using a model which is then extended for the
5-axis corner rounding problem. Finally, it is shown that the
main difficulty comes from the orientation connection which is
an original problem.

2.1. Analysis of the different orientation smoothing solutions
Several solutions are available to smooth the tool orienta-

tion. The solutions based on a modification of the tool path in

the Machine Coordinate System [13–15] have two main draw-
backs. First, it is difficult to control the geometrical deviation
on the workpiece resulting from a modification of an axis move-
ment. Then, those solutions require the machine kinematical
transformation, so they are dedicated to a specific machine tool.
That is why solutions based on a modification of the tool path
in the Workpiece Coordinate System are preferred here.
Rotation smoothing can be carried out using spherical B-
Splines on the unit sphere [9, 10] or smoothing the orientation
componentsi j k. Other solutions using quaternion have also
been developed [7]. But here again, the use of these techniques
does not allow a precise control of the resulting workpiece ge-
ometry. Another important need for corner rounding is to avoid
the oscillations which could be generated by these methods.
To avoid the oscillations and to control precisely the geometri-
cal deviations, a representation of the 5-axis tool path by two
curves is chosen. The bottom curve defines the locus of the tool
tip locations and the top curve defines the locus of a second
point belonging to the tool axis [11]. Thus the corner rounding
is performed on both 3D curves which leads to apply a 3-axis
corner smoothing method twice.

2.2. 3-axis corner rounding method

As we have just seen, 5-axis corners are defined by two
curves which have to be rounded as for 3-axis corner round-
ing problems. The aim of the 3-axis corner rounding algorithm
is to obtain aG2 continuous geometry along which the jerk lim-
ited feedrate profile will further be computed, Fig. 1.
The modified geometry has to satisfy the specified contour tol-
eranceε. Many 3-axis methods have been proposed in the lit-
erature, the model presented here is simple and suitable forthe
extension to 5-axis.

By construction with 3 control points aligned, the connection
between the rounding curve and the previous and following seg-
ments isG2. The definition of the cubic B-Spline used to round
the corner is given in Eq. 1 withPi the control points,Bi3 the
basis functions andu = [0 0 0 0 0.5 1 1 1 1] the knot sequence,
see Fig. 1.

C(u) =
4

∑

i=0

Bi3(u)Pi (1)

Taking Eq. 1 and the definition of the basis functionsBi3,
Eq. 2 can be obtained (further details are given in Appendix A).
With this construction of a cubic B-Spline with 5 control points,
the pointC(u = 0.5) does not depend on the control pointsP0

andP4. The pointsP1 andP3 are positioned symmetrically so
the distanceL1 = P1P2 = P2P3 (Fig. 1). This curve definition
allows to have the maximum contour error exactly in the middle
of the rounding curve atu = 0.5.

C(u = 0.5) =
1
4

P1 +
1
2

P2 +
1
4

P3 (2)

Finally, an advantage of this model is to have a simple equa-
tion of the contour error as a function of the corner angleα and
the lengthL1, Eq. 3.
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Figure 1: 3-axis corner rounding method

ε =
1
2

L1 cos(
α

2
) (3)

The contour error constraint allows to determine the length
L1, but the lengthsL2 andL3 can still be optimized. It will be
shown later that when this model is used on the top curve, the
lengthsL2 andL3 are defined by the interpolation of orientation
on the segments.
However, in 3-axis,L2 = L3 is chosen to have a symmetrical
corner. Thus the ratio betweenL1 andL2 is the last parameter
to be optimized. To solve a similar problem, Pateloup et al. [18]
used a criterion based on the curvature. Nevertheless, the best
criterion for the optimization would be to minimize the machin-
ing time and thus it requires the use of a feedrate interpolation
algorithm. A detailed presentation of this optimization isout of
the topic of this paper. But numerical experiments have shown
that 1.4 ≤ L2

L1 ≤ 1.75 gives satisfying results in terms of ma-
chining time minimization. Indeed, ifL2

L1 is too close to 1 the
connection between the curve and the segment is not smoothed
enough. If L2

L1 = 1, P0 = P1 andP3 = P4 and a jerk limited
feedrate interpolation would lead to zero feedrate becausethe
connection would beG1 and notG2. Increasing the ratio more
than 1.75 is useless regarding the machining time reduction.
Another problem appears with small G1 segments. If the seg-
ments are too small, it is impossible to use the whole contour
error tolerance. So the ratio is set to 1.4 andL2 is chosen to use
only half of the shortest segment in order to have independent
corner rounding curves. Bi et al. [21] showed that it is possible
to avoid this restrictive approach but if many short segments are
used, a global interpolation method is probably more appropri-
ate.
Finally, as it has been said in the introduction, this 3-axismodel
is multi-scale. Thus it can be useful both for small corner
rounding carried out in the CNC or for larger corner rounding
performed in the CAM stage.
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Figure 2: 5-axis corner rounding method

2.3. 5-axis corner rounding method

Similarly to the tangency discontinuity problems encoun-
tered in 3-axis, 5-axis linear programming (G1) brings disconti-
nuity problems on the position and orientation of the tool path.
To the best of our knowledge, no extension to 5-axis corner
rounding has been presented before.

The proposed model is based on the representation of the 5-
axis tool path by a bottom curve defining the tool tip movement
and by a top curve defining the tool orientation. So the 3-axis
corner rounding model presented in previous section is applied
to both 3D curves, see Fig. 2. The entrance (in) and exit (out)
of the corner rounding portion are defined by the bottom curve.
Thus the pointsPt0 andPt4 are positioned to respect the orien-
tation interpolation on the linear segment. Then, the positions
of Pt1 andPt3 are given by the tolerance on the top curve.
This orientation toleranceεorientation is well suited for tolerance
management in flank milling. Indeed, it allows to specify the
geometrical deviation in millimetres at the top of the workpiece
with the given flank heighth. The geometry of the smooth tool
path is completely controlled in the Workpiece Coordinate Sys-
tem and the construction ensure the avoidance of oscillations.

A smooth surface containing the tool axis is thus defined by
those two curves. Both curves are connected withG2 continuity
but a degree of freedom still exists for the tool orientation. As
shown in Fig. 2 with the black dash lines, even if the surface
connection isG2, it is possible to have an important variation of
the tool orientation at the entrance and exit of the roundingpor-
tion. The interpolation of the orientation in the rounding por-
tion plays a key role for the smoothness of the tool path. This
main difficulty for 5-axis corner rounding is studied in details
in section 3.

2.4. Interpolation of the orientation

Along the linear segments, the tool path is interpolated so
that the orientation vector runs in a plane created by the start
and end vectors. The rotation angleθ between the start vec-
tor V and an intermediate orientation respects the ratio between
the angle and the linear displacement covered. The intermediate
orientation vectorVrot is given by the Rodrigues’ rotation for-
mula, Eq. 4, withk the unit vector defining the axis of rotation
(cross product of the start and end vectors).
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Vrot = V cosθ + (k × V) sinθ + k(k · V)(1− cosθ) (4)

In the rounding portion, the orientation of the tool is givenby
the difference of the top and bottom points, Eq. 5. So the orien-
tation is not only given by the geometry of the curves which are
fixed but also by the parametrization of the curves. Depending
on the parametrization, the orientation is changing insideof the
rounding portion and it can bring a severe orientation disconti-
nuity at the connections with the linear segments.

Ori (ubottom) =
Ctop(utop) − Cbottom(ubottom)

‖Ctop(utop) − Cbottom(ubottom)‖
(5)

2.5. Parametrization spline
The link between parametersutop andubottom defines the tool

orientation. For the rest of the paper, the bottom curve is
parametrized according to its arc length. This parametrization
is fixed, and the aim is to find the correspondingutop which will
allow a smooth connection at the entry and exit of the rounding
portion. Fig. 3 gives a schematic representation of the con-
nection problem. The interpolation of the orientation on the
previous segment is given by Eq. 4 so the derivatives at the end
of the previous segment are fixed. To have a smooth transition,
it is necessary to control the derivatives at the beginning of the
rounding portion which are given by the link betweenutop and
ubottom. The easiest link is a linear parametrizationutop = ubottom

but this parametrization leads to a zero feedrate at the connec-
tion as it will be demonstrated in the application. So an opti-
mized cubic B-Spline parametrization curve is used to control
the boundary conditions at the entry and exit of the rounding
portion.
As the feedrate interpolation performed along this geometry
considers the jerk limitations, it is necessary to control the con-
nection up to the third derivatives. The equations are givenand
explained in Appendix B.
The important derivative is not the derivative with respectto the
parameter of the curveu but it is the derivative with respect to
the path displacements (cumulative arc length of the tool tip
movement). Indeed, this derivative called geometrical deriva-
tive is directly linked to the feedrate as it is shown in section
3.1.

2.6. Generalization to the orientation connection problem
The problem of orientation connection presented for the

5-axis corner rounding can be generalized. Indeed, the same
problem is encountered to connect two general 5-axis B-Spline
tool paths, Fig. 4. For 5-axis machining, it is possible to use
a polynomial tool path format [3, 11] but no attention was
paid to the parametrization link between the bottom and top
curves. Hence the default linear linkutop = ubottom generates
a discontinuous variation of the tool orientation and thus a
really low feedrate at the connection even if the curves havea
good geometrical connection. Using a parametrization spline,
section 3 presents a new contribution to obtain a smooth
orientation connection.
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3. Smooth orientation connection

In the previous section, the 5-axis corner rounding model has
been presented. It has been shown that it leads to a general
problem of smooth orientation connection between two 5-axis
tool path portions, see Fig. 4. Indeed, if the evolution of tool
orientation at the connection is not smoothed enough, the jerk
limited feedrate interpolation generates an important reduction
of the feedrate. So first, it is important to understand why the
feedrate is reduced and then a criterion is constructed to find an
optimized orientation connection avoiding the feedrate slow-
down.

3.1. Approximation of the upper limit of the feedrate

The feedrate is limited by the kinematical characteristicsof
the machine drives. The velocity, acceleration and jerk of the 5
drives (̇q,q̈,

...
q ) can be expressed as a function of the axis move-

ment geometrical derivatives (qs, qss, qsss) and of the motion
law (ṡ, s̈,

...
s), see Eq. 6-8. It is interesting to point out that these

equations are valid for linear and rotary axes, which allowsto
compare the constraints on the 5 axes.q = [X Y Z A C] is a
vector containing the evolution of the geometry on the 5 axesin
the Machine Coordinate System.s is the path displacement, so
ṡ is the feedrate.

q̇ =
dq
dt
=

dq
ds

ds
dt
= qs ṡ (6)

q̈ = qss ṡ2
+ qs s̈ (7)

...
q = qsss ṡ3

+ 3qss ṡ s̈+ qs
...
s (8)

Each drive has its own kinematical limits in terms of velocity,
acceleration and jerk, respectivelyVaxis

max, Aaxis
max andJaxis

max . The
role of the feedrate interpolator is to create the motion lawre-
specting all the kinematical constraints (Eq. 9) along the tool
path and especially the axis jerk [2]. The axis jerk often limits
the actual feedrate, it is an important parameter to avoid exces-
sive vibrations in high speed machining.

|q̇| ≤ Vaxis
max ; |q̈| ≤ Aaxis

max ; |
...
q | ≤ Jaxis

max (9)

The feedrate interpolation is a complex process but with
some approximations it is possible to obtain an upper limit of
the feedrate according to the velocity, acceleration and jerk con-
straints of the machine drives. This approximate feedrate limit
is correct in the areas where the feedrate has to be decreased
which are the most interesting areas for us. Indeed, during a
feedrate slowdown, the feedrate is decreasing to a minimum
and then increasing. So when the minimum feedrate is reached,
the tangential acceleration ¨sand jerk

...
s are equal to zero which

justifies the approximations.
Finally, the feedrate ˙s has to be lower than the minimum of the
programmed feedrateFpr and of the limitations given by the
kinematical constraints of each axis of the machine tool, Eq.
10.

ṡ≤ min
i=1..5



















Fpr,
Vaxisi

max

|qs|
,

√

Aaxisi
max

|qss|
,

3

√

Jaxisi
max

|qsss|



















(10)

This upper limit of the feedrate has proven its efficiency in
predicting the feedrate slowdowns, further information about
its usefulness can be found in [13]. For a given machine, the
parametersVaxis

max, Aaxis
max and Jaxis

max are fixed so to increase the
feedrate, it is necessary to minimize the magnitude of the axis
movement geometrical derivatives. But all this is based on the
axis movement in the Machine Coordinate System which de-
pends on the geometry of the machine, workpiece setup, tool
length... To obtain a solution independent of these parameters,
a criterion based only on the Workpiece Coordinate System has
to be constructed.

3.2. Criterion based on the norm of the third geometrical
derivatives of the tool orientation

The feedrate is limited by the machine drive kinematical lim-
its in velocity, acceleration and jerk. However, the most limiting
parameter is the axis jerk. So according to Eq. 10, the main ob-
jective would be to minimize the third geometrical derivatives
qsss. As the connection problem comes from the orientation,
the tool tip is fixed and the tool orientation will be optimized.
The link between the Machine Coordinate System and the
Workpiece Coordinate System is given by the kinematical
transformation which is non-linear but which preserves thecon-
tinuity (trigonometric functions). Thus in the Workpiece Coor-
dinate System the last degree of freedom is the evolution of the
tool orientation on the surface containing the locus of toolaxis.
In the Workpiece Coordinate System, the orientation of the tool
is represented by the orientation componentsi j k. Finally, the
minimization ofqsss is linked to the minimization of the third
geometrical derivatives of the tool orientation. As no compo-
nent should be privileged, a criterion based on the norm of the
third derivatives of the tool orientation with respect to the path
displacement is constructed, Eq. 11.

Criterion =

√

(

d3i
ds3

)2

+

(

d3 j
ds3

)2

+

(

d3k
ds3

)2

(11)

3.3. Optimized orientation connection

Using the criterion previously defined, it is possible to run
the optimization of the orientation connection in the Workpiece
Coordinate System. The objective is to minimize the criterion
in order to have the smoothest connection and thus the high-
est feedrate. As it is explained in section 2.5, the last degree
of freedom is the parametrization of the top curve. As it has
been shown in Fig. 3, a parametrization spline is used to link
the bottom and top parameters. To compute the discrete third
derivative, a backward Euler method is used so the third deriva-
tive at one point is based on the three previous points. For the
5-axis corner rounding problem, to control the boundary condi-
tions the three first and last points of the parametrization spline
are optimized using a Newton-Raphson method. The procedure
starts by finding the best first point, then this point is fixed and
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the procedure is repeated for the next point. Finally, the six op-
timized points are interpolated by a cubic B-Spline, see Fig. 5.
The smoothness of the cubic B-Spline ensures to have a smooth
variation of the parametrization along the curve. Practically, the
criterion based on the third derivatives is super sensitiveto a
tiny variation of the parametrization as it is shown in the next
paragraph.

3.4. Sensitivity analysis

To demonstrate the high sensitivity of a tiny variation of
the parametrization both on the criterion and the upper limit
of the feedrate, the example detailed in section 4.1 is used.
As shown on the left plot of Fig. 6, we are focusing only on
the first orientation after the connection. So the first top point
corresponding toutop1 has to be optimized. Indeed the bottom
parametrization is fixed, so the bottom points are given (black
dots in Fig. 6).
To study the sensitivity, the effect of the modification of the
parameterutop1 on the criterion and on the upper limit of the
feedrate is presented in Fig. 6. One can see that with a linear
parametrization,utop1 = ubottom1, the criterion has a really high
value and the feedrate is limited to almost zero. An optimum
can be found which allows to increase a lot the maximum
reachable feedrate. However, a really tiny variation of the
parameter induce a huge drop of the maximum reachable
feedrate, see Fig. 6 right. Indeed, the third derivatives involved
by the jerk limitations are really sensitive to a tiny variation of
orientation. Because of this sensitivity, a special care should be
paid to the Newton-Raphson optimization. But as the variation
of the criterion is almost linear with only one minimum, this
problem can be handled.

To conclude, this section presents a solution to solve the
problem of orientation connection. Indeed, a special care
should be paid to the continuity of the orientation even if the
bottom and top curves are connected with aG2 continuity, see
Fig. 4. Using a parametrization spline linking the bottom and
top parameters, this paper presents an efficient solution to the
general problem of smooth orientation connection.

4. Application

The new algorithms for 5-axis corner rounding are applied
on two examples. First, a 5-axis corner is rounded in a CAM
context (with a large tolerance). It emphasizes the orientation
connection problem studied in section 3. In this first example,
comparisons with an industrial CNC are possible and show the
benefits of the optimized orientation parametrization. Finally,
a second example on a CNC context (with small contour toler-
ance) demonstrates that a jerk limited feedrate interpolation can
be performed on the smoothed geometry.

4.1. 5-axis pocket with large corner rounding

To demonstrate the need for the special attention paid to
the derivatives of the tool orientation, an experiment has been
carried out on a 5-axis high speed milling machine equipped
with a Siemens 840D CNC. The kinematical limits of the
drives can be found in [2]. A 5-axis corner is rounded using the
proposed method with the bottom and top B-Spline curves. For
this example, the contour and orientation tolerances are set to
3mm. This large tolerance emphasizes the problems linked to
the linear parametrization (utop = ubottom). Moreover, it makes
possible to carry out experiments on an industrial CNC while
controlling exactly the tool path with two B-Spline curves.
Indeed, the Siemens 840D allows to programme a 5-axis tool
path with a native cubic B-Spline format using the following
code [3].

BSPLINE SD=3 F
X= Y= Z= XH= YH= ZH= PL=

The parameter ”SD” gives the degree of the B-Spline
curve, ”F” gives the programmed feedrate along the curve,
”X= Y= Z=” specifies the position of the bottom control
points which defines the tool tip position. ”XH= YH= ZH=”
specifies the position of the top control points which defines
the tool orientation. Finally, ”PL=” is the node vector. In this
format, only one parameter is used for the nodal sequence
so the bottom and top curves have the same parametrization
utop = ubottom.

The 5-axis corner of an aluminium aeronautical pocket has
been machined with a flat end millφ20mmand a programmed
feedrate ofFpr = 3000mm/min, see Fig. 7. The results are
presented on the left side of Fig. 8. On the top left plot, it is
clear that the third derivatives of the orientation with respect
to the path displacement are really high at the entrance and
exit of the rounded portion. The middle left plot presents
the upper limits of the feedrate, at the entrance and exit the
measured feedrate on the 840D CNC is limited by the jerk
constraints which lead to an almost zero feedrate at these
points. Finally, the bottom left plot represents the measured
feedrate on the surface swept by the tool axis. The localized
feedrate slowdowns at the entry and exit of the transition are
harmful for the surface finish because the cutting conditions
are changing drastically along the flank of the workpiece.
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Figure 7: 5-axis machining of the large corner.

Using the optimized parametrization presented in this paper,
it is possible to avoid these slowdowns due to a poor man-
agement of the evolution of the tool orientation. On the top
right plot, one can see that the optimization procedure allows
to avoid the large peaks on the derivatives of the orientation. In
the middle right plot, a higher upper limit of the feedrate and
thus a higher feedrate along the tool path are obtained. The
VPOp feedrate presented here is computed within the context
of an Open CNC. So the Velocity Profile Optimization soft-
ware (VPOp) previously developed has been used to compute
a feedrate which respects all the kinematical constraints of the
5 drives. It has been demonstrated in [2] that this feedrate in-
terpolation algorithm is efficient and that the feedrate obtained
is very similar to the feedrate measured on an industrial CNC.
Finally, the bottom right plot shows that the programmed fee-
drate can be maintained at the entry and exit of the transition.
Of course, in the middle of the corner there is no choice but to
reduce the feedrate because the machine axes are not dynamic
enough to handle the change of direction required by the tool
path.

The optimized parametrization can reduce the machining
time by half, see Fig. 9. So the productivity is increased as
well as the surface finish as the feed marks are avoided.
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4.2. Pyramide with small corner rounding

In this example, a pyramidal shape is machined in flank
milling, see Fig. 10. Thus the tool path is described only by
four segments. The contour tolerance is 0.02 mm which is a
typical value used in the CNCs. The orientation tolerance is
also 0.02 mm. Unfortunately, with this kind of tolerance no
comparison can be made with the Siemens CNC. Indeed, defin-
ing a tiny native cubic B-Spline is not appropriate here as the
industrial CNCs are not designed to handle such a small geom-
etry due to the interpolation cycle time for example.

Similarly to the previous example, the linear and optimized
parametrization are compared in Fig. 11. A zoom is made
around one corner as the others are identical. At this scale,
the only limiting parameter is the axis jerk. One can see that
the linear parametrization creates problems at the entrance and
exit of the discontinuity both for the orientation derivatives and
for the upper limit of the feedrate. Using the parametrization
spline, it is possible to smooth the orientation connectionand
to remove these peaks.

Finally, once the geometry is optimized, it is possible to
carry out the feedrate interpolation using VPOp as described in
[2]. With a small contour tolerance, the feedrate interpolation
is more difficult and without the optimized parametrization the
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parametrization, right: optimized parametrization.

jerk limitation is difficult to meet by the feedrate interpolation.

This example demonstrates that the proposed 5-axis corner
rounding algorithms can be integrated in an industrial or Open
CNC for a precise control of the workpiece geometry in the
discontinuities.

5. Conclusion

To conclude, the most usual format used to programme 5-
axis tool path is the linear format (G1). Thus the discontinuities
created at each transition between segments have to be rounded
in order to perform the jerk limited feedrate interpolation.
After thorough study of the literature, the different tool path
smoothing techniques are presented: local smoothing tech-
niques are focused on 3-axis tool path and 5-axis tool path are
only smoothed globally. Thus, in a first part, a 5-axis local cor-
ner rounding model is proposed. This model is based on two
B-Spline curves to describe the tool path in the corner. By us-
ing this description, the contour and orientation tolerances can
be controlled precisely. In a second part of the paper, the ori-
entation connection between the linear portion and the corner
is studied. Indeed, it is shown that the connection of two 5-
axis portions is critical and can lead to zero feedrate. So to
solve the orientation connection problem, an optimized orien-
tation parametrization is obtained with a parametrizationspline.
But, as it is shown in the first application, industrial CNCs lack
the possibility to use a non-linear parametrization between the
bottom and top curves. Furthermore, the examples also demon-
strate that the proposed solution is multi-scale.
Finally, this paper brings two main contributions. First, a5-axis
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corner rounding model is proposed whereas in the literaturethis
problem was solved only in 3-axis. Second, the general prob-
lem of orientation connection of two 5-axis B-Spline tool paths
is solved using the parametrization spline.
Further work could emphasize the need for an Open CNC able
to control completely and precisely the geometry of the tool
path in 5-axis. Thus the limitations brought by the CNC de-
scription formats could be overcome.

Appendix A. Details on the 3-axis contour error

The basis functionsBi j can be defined using the Cox-de Boor
recursion formula, Eq. A.1.

Bi0(u) =











1, if u ∈ [ui , ui+1[

0, otherwise
Bi j (u) = u−ui

ui+ j−ui
Bi, j−1(u) + ui+ j+1−u

ui+ j+1−ui+1
Bi+1, j−1(u)

(A.1)

With the nodal sequence, degree and number of control
points used in the model presented in section 2.2, the follow-
ing equations are obtained.

B03(u) =

{

(1− 2u)3, if u ∈ [0, 0.5[
0, if u ∈ [0.5, 1]

B13(u) =

{

2u
[

(1− 2u)2
+ (1− u)(2− 3u)

]

, if u ∈ [0, 0.5[
2(1− u)3, if u ∈ [0.5, 1]

B23(u) =

{

2u2(3− 4u), if u ∈ [0, 0.5[
2(1− u)2(4u− 1), if u ∈ [0.5, 1]

B33(u) =

{

2u3, if u ∈ [0, 0.5[
2(1− u)

[

u(3u− 1)+ (2u− 1)2
]

, if u ∈ [0.5, 1]

B43(u) =

{

0, if u ∈ [0, 0.5[
(2u− 1)3, if u ∈ [0.5, 1]

(A.2)
B03(0.5) = 0 andB43(0.5) = 0 so Eq. 2 can be obtained and

the position of the pointsP0 andP4 does not affect the contour
error.

Without loss of generality, the pointP2 can be the origin of
the local coordinate system. Finally, the contour error is defined
as follows and Eq. 3 can be obtained. The units vectorsv and
w are in the direction ofP2P1 andP2P3, respectively.

ε = ‖
1
4

L1(v + w)‖ (A.3)

Appendix B. Geometrical derivatives of the orientation

Starting from the orientation vector defined in Eq. 5, the first
second and third geometrical derivatives are obtained.
The notation′ stands for the derivative of a function with re-
spect to its own parameter, Eq. B.1. The functionf is the
optimized parametrization which is unknown,g reprensents the
link between the parameter of the bottom curve and the path
displacement, see Eq. B.2.

C′top =
dCtop(utop)

dutop
(B.1)

utop = f (ubottom) , ubottom= g(s) (B.2)

From Eq.B.5, it is clear thatf ′′′ should be bounded because
C′top , 0. Thus, at least a cubic polynomial form is required for
the parametrization curve. Then, practical tests have shown that
none of the terms in the equation can be neglected compared to
others. So the Newton-Raphson optimization procedure pre-
sented in section 3.3 is required to obtain a smooth orientation
connection.

dOri
ds
=

1
‖Ctop − Cbottom‖

· (C′top f ′ − C′bottom)g′ (B.3)

d2Ori
ds2

=
1

‖Ctop − Cbottom‖
·

[(

C′′top f ′2 + C′top f ′′ − C′′bottom

)

· g′2

+

(

C′top f ′ − C′bottom

)

· g′′
]

(B.4)

d3Ori
ds3

=
1

‖Ctop − Cbottom‖
·

[(

C′′′top f ′3 + 3C′′top f ′ f ′′ + C′top f ′′′ − C′′′bottom

)

· g′3

+

(

C′′top f ′2 + C′top f ′′ − C′′bottom

)

· 3g′g′′

+

(

C′top f ′ − C′bottom

)

· g′′′
]

(B.5)
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