
HAL Id: hal-00843628
https://hal.science/hal-00843628v1

Preprint submitted on 11 Jul 2013 (v1), last revised 1 Sep 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Carpooling : the 2 Synchronization Points Shortest
Paths Problem

Arthur Bit-Monnot, Marie-José Huguet, Marc-Olivier Killijian, Christian
Artigues

To cite this version:
Arthur Bit-Monnot, Marie-José Huguet, Marc-Olivier Killijian, Christian Artigues. Carpooling : the
2 Synchronization Points Shortest Paths Problem. 2013. �hal-00843628v1�

https://hal.science/hal-00843628v1
https://hal.archives-ouvertes.fr

Carpooling : the 2 Synchronization Points
Shortest Paths Problem ∗

Arthur Bit-Monnot1,2, Marie-José Huguet1,3, Marc-Olivier
Killijian1,2, and Christian Artigues1,2

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2 Univ de Toulouse, LAAS, F-31400 Toulouse, France
3 Univ de Toulouse, INSA, F-31400 Toulouse, France

{bit-monnot, huguet, killijian, artigues}@laas.fr

Abstract
Carpooling is an appropriate solution to address traffic congestion and to reduce the ecological
footprint of the car use. In this paper, we address an essential problem for providing dynamic
carpooling: how to compute the shortest driver’s and passenger’s paths. Indeed, those two paths
are synchronized in the sens that they have a common subpath between two points: the location
where the passenger is picked up and the one where he is dropped off the car. The passenger
path may include time-dependent public transportation parts before or after the common subpath.
This defines the 2 Synchronization Points Shortest Path Problem (2SPSPP) and focus explicitely
on the computation of optimal itineraries for the 2SPSPP, i.e. determining the (optimal) pick-
up and drop-off points and the two synchronized paths that minimize the total traveling time.
We also define restrictions areas for reasonable pick-up and drop-off points and use them to
guide the algorithms using heuristics based on landmarks. Experiments are conducted on real
transportation network showing the efficiency of the proposed algorithms and accelerations.

1998 ACM Subject Classification "G.2.1 Combinatorics", "G.2.2 Graph Theory", "F.2.2 Nonnu-
merical Algorithms and Problems"

Keywords and phrases Dynamic Carpooling - Shortest Path Problem - Synchronized Paths

Digital Object Identifier 10.4230/OASIcs.xxx.yyy.p

1 Introduction

Due to the demographic evolution and the urban spread off during the last decades, people
have moved away from urban centres and now live in residential areas. In order to decrease
the urban traffic congestion and its societal issues, transport strategies have encouraged
to park private cars near multimodal hubs (i.e. park and ride stations) and to use the
public transport system to reach downtown destinations. However, congestion problems
have moved from urban to sub-urban areas where people commute with their cars either
to reach the economic areas or to connect to the public transport system. An appropriate
solution, requiring little investment and reducing the ecological footprint of the car use, is
the promotion of shared transport, like carpooling, which enables private cars to become
part of the public transport system. The main restraints of carpooling development are
insecurity, payment transaction of the shared journey, low number of matches and lack of
flexibility, as well as constraint feelings. For instance, regular (i.e., static) carpooling forces

∗ This work was partially supported by LAAS, CNRS and ANR French national program for Security
and Informatics (grant #ANR-11-INSE-010).

© A. Bit-Monnot et al.;
licensed under Creative Commons License CC-BY

Conference/workshop/symposium title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 Carpooling : the 2SPSPP

the driver to directly go home after work or to plan his trip in advance. Dynamic carpooling
relaxes some of these constraints (few matches, lack of flexibility and constraint feelings).
Dynamic carpooling should enable automatic (or semi-automatic) destination guessing and
trip proposals for drivers. Regarding users, it should help real-time matching with drivers.
In this paper, we address the issue of computing journeys for a driver and a passenger to
carpool together in a complete trip. The two synchronized paths can be decomposed into
5 subpaths. The trip is composed of two convergent paths towards a first synchronization
point, ie. the meeting point, a shared path towards the second synchronization point, i.e.,
the drop-off point and two divergent paths from this drop-off point towards each destination,
henceforth the name 2 Synchronization Points Shortest Path Problem (2SPSPP).

In the problem definition, we can distinguish two types of users. The driver drives his car
and is willing to take a detour in order to pick up a passenger and drive him for some part of
the trip. The passenger can walk or use public transportation to join a pick-up point in order
to be driven. For example, as in the AMORES project[2], we can consider that the users use
smartphones to communicate carpooling requests and offers, to find matches between those,
and possibly to compute their optimal itineraries. In this paper, we focus explicitely on the
computation of optimal itineraries for the 2SPSPP, i.e. the (optimal) pick-up and drop-off
points and the 5 paths which compose the full trip as in figure 1. We consider the objective
of minimizing the total travel time for both users.

2 Problem Statement

A multimodal transportation network is modeled with an edge-labeled graph G = (V,E,Σ)
where V is the set of nodes, Σ the set of modes (for instance foot, car or public transportation)
and E is the set of labeled edges. A labeled edge (i, j,m) is a route from a node i to a node
j having the mode m. Moreover, a cost function cijm is associated to each edge (i, j,m)
representing the travel time. These costs may be static or time-dependent, in this case
cijm(τ) gives the travel time from i to j in mode m when leaving i at time τ . A path Pij is
an ordered list of nodes from i to j. Its cost, denoted by len(Pij , τ), is the sum of the cost of
each edge when leaving node i at time τ .

oc

xup xoff

dc

op dp{f, pt}

{c}

{c}
{c}

{f, pt}

Figure 1 Illustration of the considered carpooling problem

I Definition 1 (2SPSPP). Consider an edge-labeled graph G = (V,E,Σ), a car driver c and
a pedestrian p with their own origins and destinations, denoted by oc, dc and op, dp, and
with their departure times τc and τp respectively. One aims to determine a pick-up point
xup and a drop-off point xoff , and five paths Popxup

, Pocxup
, Pxupxoff

, Pxoff dp
, Pxoff dc

such
as a carpooling cost is minimized.

This problem is depicted in figure 1; in this figure edges’ labels represent the allowed
modes in each part of the network: {c} (ie. car) for the driver and {f, pt} (ie. foot or public
transportation) for the pedestrian.

A. Bit-Monnot et al. 3

A solution S of the carpooling problem is a pair of pick-up and drop-off points (xup, xoff)
and five paths. The considered cost of a carpooling itinerary is the sum of travel times for the
two users from their origin to their destination, i.e. difference between arrival and departure
time for both users. Let us define τ (u)

x the arrival time of user u at point x, for instance
τ

(p)
dp

is the arrival time of the passenger at dp. For the considered overall carpooling cost, we
point out that τ (p)

xoff = τ
(d)
xoff since both users arrive together at xoff , and that they leave

xup at max(τ (p)
xup , τ

(c)
xup) since the first one arrived waits for the other.

I Definition 2 (Carpooling Cost). Given a solution S of the 2SPSPP, we aim at minimizing
cost(S) = (τ (c)

dc
− τ (c)

oc) + (τ (p)
dp
− τ (p)

op), the total time spent traveling by both users.

cost(S) = (τ (c)
dc
− τ (c)

oc
) + (τ (p)

dp
− τ (p)

op
)

= len(Popxup
, τ (p)

op
) + len(Pocxup

, τ (c)
oc

) + |τ (c)
xup
− τ (p)

xup
|

+ 2× len(Pxupxoff
,max(τ (p)

xup
, τ (c)

xup
))

+ len(Pxoff dp , τ
(p)
xoff

) + len(Pxoff dc , τ
(c)
xoff

) (1)

The first line corresponds to the cost of the 2 paths Popxup and Pocxup plus the waiting time,
the second line is the cost of the path Pxupxoff

counted twice since it is made by both users
and the third one is the cost of the 2 paths Pxoff dp and Pxoff dc .

We remark that we are dealing with a polynomial problem as, for fixed synchronization
points, 5 calls to the Dijkstra algorithm (two of them with the time-dependent variant)
are sufficient to obtain the optimal solution. As there are O(|V |2) possible synchronization
points, the complexity result follows.

3 Related Work

Given a weighted graph G = (V,E), an origin node o and a destination node d, the Shortest
Path Problem from o to d (SPP) is solved in polynomial time with the well-known Dijkstra
algorithm. In this algorithm, a label lx = (πx, px) is associated to a node x, where πx is the
current cost from o to x, and px the reference of the predecessor node for the current best
path from o to x. A queue Q is used for exploring the labels in an increasing order of their
costs: the label with minimal cost is extracted from Q, settled and its successors are updated
or inserted in Q. The algorithm stops when node d is settled, πd then gives the cost of the
shortest path from o to d and the path is obtained by exploring the predecessor pd until
the origin is reached. Speed-up techniques were introduce to improve the efficiency of this
algorithm for solving the one-to-one shortest path problem. In the A∗ goal directed search,
the Dijkstra algorithm is guided towards the destination using an estimate cost between
the current node and the destination d. The optimal solution is obtained if the estimation is
a lower bound of the exact cost. In bidirectional algorithm, two algorithms start: one running
from o to d (forward search) and one from d to o in the reverse graph (backward search).
When a connection is found between the forward and the backward algorithms a feasible
solution is obtained. However, this solution may not be optimal and the two algorithms run
until there is no better solution connecting the forward and the backward labels.

In addition, different preprocessing techniques were proposed. The objective is to compute
and store informations on the graph to speed-up the shortest path queries. An overview of
various efficient preprocessing techniques such as landmarks, contraction hierarchy or flags is
given in [4]. We only present one of them, the ALT algorithm [5] that we use later. ALT is

4 Carpooling : the 2SPSPP

based on landmarks and consists in computing the shortest paths from all the nodes to a
(small) subset of landmarks. These precomputed shortest paths are then combined with the
A∗ search and triangular inequality to provide strong lower bounds on the shortest paths.

Some extensions of the SPP were proposed to deal with time-dependency of travel times.
When the cost function on arcs satisfies the FIFO property, the time-dependent SPP remains
polynomially solvable [7] and a straightforward adaptation of the Dijkstra algorithm can be
done. The FIFO property guarantees that, along any edge, it is never possible to depart
earlier and arrive later. In the time-dependent Dijkstra algorithm, the arrival time in x, τx,
is added to each label lx. When the destination is reached, one have both the minimal cost
of the shortest path and the minimal arrival time at the destination. However, many efficient
techniques based on bidirectional search cannot be easily extended in the time-dependent case
as the start time is given at only one node (at the origin or at the destination). For instance,
an adaptation of the bidirectional ALT was proposed in [9] by considering a lower bound of
travel time in the backward search. Each connection then needs to be re-evaluated to obtain
the exact cost from the connection point to the destination, increasing the complexity of the
problem.

When taking multimodality into account, one have to model the transportation network
and the constraints on transportation modes (for instance a passenger may wish to avoid a
given sequence of modes). In [3], the authors use an arc-labeled graph where a mode m is
associated to each arc. They proposed to use a regular language L to model constraints on
modes and define the regular language constrained shortest path problem (RegLCSP). Their
algorithm, called DRegLC , is an extension of the Dijkstra algorithm constrained by the
regular language. Using an automaton A describing the language L, the algorithm works by
solving a Shortest Path Problem on a product-network, that is, a combination of the graph
G and the automaton A. The product-network can be used to navigate simultaneously in
a multi-modal graph and an automaton. Product-nodes are simply a pair (x, s) where x
is a node and s a state in the automaton. The algorithm should be stopped as soon as a
product-node (d, sf) is settled, where d is the destination and sf is an accepting state in the
automaton.

We are not aware of research addressing problems similar to the 2SPSPP. In carpooling
papers, the authors usually consider variants of vehicle routing problems for solving static or
long term carpooling problems (to collect several people at their home for instance and drive
them at work each week or each day). Dynamic carpooling problems were also considered
and several authors (see for instance [1, 10]) proposed a multi-agent architecture in which
some heuristics are used to solve the matching problem between drivers and requesters. But,
to the best of our knowledge, the driver is not derouted for collecting a user.

In [6], the authors propose a method for synchronizing two itineraries in a point such that
the global cost of the two paths is minimized. The problem under study is the 2-Way Multi
Modal Shortest Path problem (2WMMSPP) in which two itineraries are defined for the same
user at different times of the day between a given origin and destination. The proposed
method is firstly based on 4 multi-directional algorithms (forward and backward search) to
obtain the optimal parking node such as the sum of an outgoing path and a return path is
minimized. As already mentioned, the main difficulty arises when facing time-dependency, a
re-evaluation process is added to the 4 algorithms to obtain the exact cost of paths. This
re-evaluation of time-dependent paths is done either each time a parking node is detected or
postponed when all the potential parking nodes are obtained, the latter leading to a lower
cpu time in experimentations.

A. Bit-Monnot et al. 5

4 The proposed approach for the 2SPSPP

4.1 General principle

In the problem under study, we consider that travel times for the car and foot modes are time-
independent, unlike travel times for the public transportation mode that are time-dependent.
Moreover, departure times are given at the origins. The proposed method aims to overcome
the difficulty due to time-dependency, ie. the use of lower bound in algorithms where start
times are unknown and the need for re-evaluation. Indeed, as public transportation is
time-dependent, the use of backward search from the pedestrian’s destination or from the
potential drop-off points requires some (time consuming) re-evaluation. Therefore, in our
method, forward search (from the origin to the destination) is used as long as it is possible
to obtain the exact value of travel time and not a lower bound.

oc

xupi
xoffj

Dc

xup1

xup2

xupp

xoff1

xoffq

op dp

A1, {f, pt}

A2, {c}

A3, {c}

A4, {c}

A5, {f, pt}

Figure 2 General principle for solving the 2SPSPP

We propose a method combining 4 forward algorithms and 1 backward algorithm without
any need for re-evaluation. In Figure 2, the arrows on the arcs indicates the direction of
the algorithms. First, we launch 2 forward algorithms (A1 and A2) from the origins and 1
backward algorithm (A4) from the driver’s destination. Each node reached by the 2 forward
algorithms A1 and A2 is a potential pick-up point. A forward algorithm A3 is then launched
from the set of potential pick-up points towards potential drop-off points. The aim of this
algorithm is to find the best origin between a set of potential origin nodes (here the pick-up
points) and a set of destination node (here the drop-off points). Then, each time a node
is reached by algorithm A3 and the backward algorithm A4, a potential drop-off point is
determined.

Finally, another forward algorithm A5 is launched from the set of drop-off points towards
the pedestrian’s destination. The aim is to determine the best origin between a set of potential
origin nodes (the drop-off points) and a single destination node (pedestrian’s destination).

Algorithms A1, A2 and A4 are standard DRegLC for solving the one-to-all SPP in a
multimodal and time-dependent network. The multimodal constraints only state that car
must be used in A2, A3 and A4 and that either foot or public transportation can be used in
A1 and A5. Algorithms A3 and A5 are dedicated to solving the best origin problem. We
present in the next section how this problem can be solved.

4.2 The Best-Origin Problem

Given a set S of several origin nodes with individual costs and arrival times (ie. πx and
τx∀x ∈ S) and a set of target nodes D, we aim at selecting the best origin to minimize the
cost at the destinations.

6 Carpooling : the 2SPSPP

I Definition 3 (Best Origin Problem (BOP)). Given a weighted directed graph G = (V,E),
a set of origins S and a set of destination nodes D, the expected output is, for every d ∈ D,
an origin x having label (πx, τx) such that, for any other origins y ∈ S with label (πy, τy), it
holds that: πx + len(Pxd, τx) ≤ πy + len(Pyd, τy).

Solving BOP in time-independent networks has been done implicitly for decades using
forward Dijkstra algorithm from the origins. Each time a node is touched by the algorithm,
it is updated with the best available cost. The only predecessor kept is the one providing the
best cost. This problem can therefore be solved by inserting all potential origins with their
initial cost into the priority queue and let the Dijkstra algorithm run until d is settled.
The last predecessor of d in the optimal path would be the best origin.

In the time-dependent context, when there is consistency between cost and arrival time
(see Definition 4), we can consider that the label with the best cost is the one with the best
arrival time. Using the FIFO-property, it is easy to see that the only label we are interested
in is the one with the lowest cost. The Dijkstra approach (dropping all labels with a greater
cost) can therefore be applied to solve this problem.

I Definition 4 (Consistency between cost and arrival time). Given a shortest path solver using
cost and arrival time labels, we say that cost and arrival times are consistent if and only if,
for any two labels (πx, τx) and (πy, τy), πx ≤ πy ⇔ τx ≤ τy

However, the classical solution approach does not hold when costs and arrival times are
not consistent. Figure 3 gives an example of the BOP with inconsistent costs and arrival
times. Let consider a set S = {o1, o2} of origins having respective inconsistent labels (5, 2)
and (6, 0), and a destination d. Travel times are time-dependent and are detailed in Figure 3.
Two labels are obtained for v: (6, 3) due to o1 and (7, 1) due to o2. The best origin for d is
o2 (with a cost of 16), but the best label for v is the one from o1. Applying the Dijkstra
algorithm on this instance would discard the (7, 1) label in v and o1 would be selected as the
best origin, giving a suboptimal result.

o1

(5,2)

o2

(6,0)

v

(6,3)

(7,1)

d

(18,15)

(16,10)

τ = 2 → ∆ = 1

τ = 0 → ∆ = 1

τ = 1 → ∆ = 9
τ = 3 → ∆ = 12

Figure 3 An exemple of the Best Origin Problem with two potential origins {o1, o2} and
unconsistent costs and arrival times. Labels are placed above (resp. below) the node if they are
issued from o1 (resp. o2). Edges are associated with weight τ = a → ∆ where ∆ is the cost of
traversing the edge when departing at time a

To solve this problem, we propose an algorithm performing forward search only and not
doing any reevaluation. This algorithm is inspired by Martins’ algorithm [8] to keep track of
costs and arrival times. However, we note that this algorithm stays mono-objective since we
are only interested in finding the best cost in d. Labels are sorted by cost only and priority
queues for Dijkstra algorithm can be used. Moreover, the extension of this algorithm to
a multimodal network is straightforward using the product network of the graph and the
automaton representing constraints on modes.

A. Bit-Monnot et al. 7

To prune labels during the search, we introduce the following dominance rule.

I Definition 5 (Dominance rule). Given a node x and two labels l = (πx, τx) and l′ = (π′x, τ ′x),
we say that l dominates l′ if and only if πx ≤ π′x and τx ≤ τ ′x.

In this mono-objective variant of Martins algorithm, at first, all potential origins are
inserted in a queue Q with their original costs and arrival times. At each iteration, the
undominated label with lowest cost in Q is selected, settled and its edges are relaxed. The
generated labels are inserted in Q.
I Proposition 6. At each iteration, a label settled has a cost greater than or equal to the
cost of any label previously settled.

Proof. Given that edge weights are non-negative, the cost of a label will be greater than or
equal to its predecessor’s. Since the priority queue selects labels with lowest cost first, all
labels inserted in queue will have a cost greater or equal than the one currently selected. J

I Corollary 7. In the Mono-Objective Martins algorithm, the lowest cost of a node is
the one of its first settled label.

Using Corollary 7, we can stop the algorithm as soon as a label is settled for all d ∈ D.
By looking at predecessors, we deduce the best origins o and the paths Pod.
I Proposition 8. There can be at most |S| undominated labels per node, |S| being the number
of potential origins.

Proof. Given a potential origin o with label (πo, τo) and a node v, we suppose there are
two paths P and P ′ from o to v. The label generated in v by following those paths would
be lv = (πo + len(P, τo), τo + len(P, τo)) and l′v = (πo + len(P ′, τo), τo + len(P ′, τo)). Thus,
if len(P, τo) ≤ len(P ′, τo), lv dominates l′v. Otherwise lv is dominated by l′v. Therefore, a
potential origin generates at most one undominated label per node. J

Complexity. Using Proposition 8, we deduce that their can be at most |E| · |S| labels
inserted in Q. When extracted from the queue, these labels need to be checked for dominance
which can be done in |S|. Hence the worst-case complexity of this algorithm is O(|E| · |S| ·
rQ + |E| · |S| · eQ + |E| · |S|2) where rQ is the cost of reordering the queue after inserting one
label and eQ is the complexity of extracting the next label.

We note that this worst-case complexity is greater than the one of running |S| Dijkstra
algorithms. In practice however, the dominance rule allows to discard many labels, leading
to a very good runtime performance as it will be shown in experiments.

5 Algorithm for the 2SPSPP

5.1 A sequential approach
In our method, we split the carpooling problem into three One-to-All Shortest Path Problems
and two Best Origin Problems. The two BOP are using the nodes settled by the shortest
path algorithms as their potential origins.

We call Ai the algorithm used to solve the ith problem and Ni the set of nodes it settles.
A specification of the algorithms and the problems they have to solve is given in Table 1. All
five algorithms are to be executed sequentially. The 2SPSPP is solved when dp is settled by
algorithm A5: we are able to retrieve xoff (best origin of dp in A5) and xup (best origin of
xoff in A3).

8 Carpooling : the 2SPSPP

We saw in section 4.2, that the consistency between cost and arrival times has an impact
on which algorithm can be used to solve the BOP. We will therefore study this consistency
for each part of the proposed method. We call π(i)

x the cost of node x in algorithm Ai and
τ

(i)
x the arrival time at x for the algorithm Ai. We are also given τ (p)

op and τ (c)
oc , respectively

the departure times of the passenger and the driver. Note that in A1, A2 costs and arrival
times are consistent and than in A4 we do not consider the time since it is executed on
a time-independent graph and the arrival time has no impact on the rest of the method.
Then, for A3 and A5, initial costs and arrival times of nodes in Xup and Xoff derive from
Definition 2 and are defined as follow:

in A3, for x ∈ Xup : τ (3)
x = max(τ (1)

x , τ (2)
x); and π(3)

x = π(2)
x + π(1)

x + |τ (1)
x − τ (2)

x |

in A5, for x ∈ Xoff : τ (5)
x = τ (3)

x ; and π(5)
x = π(3)

x + π(4)
x (2)

Given this definition and recalling that cost is counted twice in A3, it is fairly easy to
show that, for any node x ∈ N3, π(3)

x = 2× τ (3)
x − τ (p)

op − τ
(c)
oc . Hence, costs and arrival times

are consistent in N3. However, breaking down the cost of a node x ∈ Xoff leads us to
π

(5)
x = 2× τ (3)

x − τ (p)
op − τ

(c)
oc + π

(4)
x , showing that costs and arrival times are not consistent in

N5 (since Xoff is a subset of N5).

Algorithm Source Target Settled Nodes Problem
A1 op All N1 Shortest Path (forward)
A2 oc All N2 Shortest Path (forward)
A3 Xup = N1 ∩N2 All N3 Best Origin
A4 dc All N4 Shortest Path (backward)
A5 Xoff = N3 ∩N4 dp N5 Best Origin

Table 1 Specification of the algorithms used to solve the 2SPSPP for carpooling.

According to those results, Dijkstra like algorithm can be used for solving BOP in
A3. However, because of the inconsistency between cost and arrival times in A5, Mono-
Objective Martins has to be used to make sure no solution is discarded.

The complexity of this approach falls back on the one of four Dijkstra algorithms and
one Mono-Objective Martins. Since any node of the graph can be a potential drop-off
point, the worst-case complexity of our method is O(|E| · |V |2) when using a binary heap.

5.2 Concurrent Approach
The sequential approach raises the problem of exploring four times the whole graph. In this
section, we present a method to run all five algorithms concurrently. The idea is to have all
five algorithms initialized and select the one with the lowest cost in its heap for execution.
When a pick-up (resp. drop-off) point is discovered, it is dynamically inserted into A3 (resp.
A5)’s heap.

Initialization is done by inserting the origin of the passenger, the origin of the driver and
the destination of the driver into, respectively, A1, A2 and A4’s heaps with a zero cost and
departure times from the origins.

An iteration of our method starts by selecting k such as the next label to be settled in
Ak has the lowest cost among all algorithms’ heaps. Then, Ak makes one iteration (settling
the next label and relaxing its edges) and yields the node x it just settled. If dp was settled
by A5, the problem is solved. Otherwise, we check if x can be used as a pick-up or drop-off
point. A node x is admissible as a pick-up point if it has been settled by A1 and A2. If
that’s the case, a new label (x, π(3)

x , τ
(3)
x) is inserted in A3’s heap (computed with first line of

A. Bit-Monnot et al. 9

Equation 2). Similar approach is taken for drop-off points: if x was settled by A3 and A4, a
label (x, π(5)

x , τ
(5)
x) is inserted in A5’s heap (second line of Equation 2).

Listing 1 Concurrent approach: the algorithm with lowest cost is selected for execution.
while not all heaps emtpies
k = layer with smallest cost in heap
// run one iteration in current layer and retrieve settled node
x = Algo[k]. make_one_iteration () // x is settled in Ak

if n = dp and k = 5 then stop // Problem solved
if k = 1 or k = 2 then check pick -up point
if k = 3 or k = 4 then check drop -off point

stop // no solution found

When executed on a product network, one has to make sure pick-up (resp. drop-off) nodes
correspond to start states in the automaton modelling constraints on modes. Furthermore,
they have to derive from nodes with accepting states in A1 and A2 (resp. A3 and A4).

I Proposition 9. In Algorithm 1, a settled label has a cost greater or equal than the cost of
any label previously settled.

Proof. There are two ways to insert a label in our algorithm: when executing one step of
Dijkstra or Mono-Objective Martins and when creating a new pick-up or drop-off
label. In both Dijkstra and Mono-Objective Martins, no node with lower cost might
appear as an effect of settling a node. Insertion of pick-up and drop-off points are done when
a node n(l) is settled and the cost of the newly created label is always greater than π(l)

n (see
the previous section for the costs expressions). Thus, every newly created label’s cost will
be greater or equal than the ones previously settled. Since we select the lowest label of all
heaps, labels are settled by increasing cost. J

I Corollary 10. (Correctness) When the node dp is settled in A5, π(5)
dp

is the minimal
carpooling cost.

5.3 Restrictions on pick-up and drop-off points
A carpooling problem usually comes with preferences about where the pick-up and drop-off
can occur. In this part, we present how such preferences can be used for guiding and stopping
our method.

Let Zup be a set of nodes accessible by both the passenger and the driver. When restricting
pick-up points to be in Zup, it is easy to see that the goal of A1 and A2 is to settle all nodes
in Zup and that they can stop once they have done it. This defines a stop-condition.

Furthermore we would like to guide A1 and A2 towards Zup. Suppose we have a set of
consistent heuristic ht(u) that gives a lower bound of the distance from u to t. To guide
towards an area Z, we define HZ(u) = min

z∈Z
hz(u). Combining consistent heuristics with

min results in a consistent heuristic. Furthermore, ∀z ∈ Z : HZ(z) ≤ 0. Hence, HZ(u) can
be used in the A∗ algorithm for guiding towards a set of nodes Z, in practice, using this
heuristic results in guiding towards the closest node of the area.

However, this raises the problem of computing |Z| heuristics at every iteration of the
algorithm. We note as d(u, v) the length of the shortest path from u to v. For every
landmark L and every node t, algorithm ALT [5] provides us with two consistent heuristics:
h+

t (u) = d(u, L) − d(t, L) and h−t (u) = d(L, t) − d(L, u). Taking the minimum of each of
those functions leads us to H+

Z (u) = d(u, L)−max
z∈Z

d(z, L) and H−Z (u) = min
z∈Z

d(L, z)−d(L, u).

10 Carpooling : the 2SPSPP

Note that max
z∈Z

d(z, L) and min
z∈Z

d(L, z) are not dependent on u and are to be computed only
once per carpooling problem. The final heuristic we propose to use is given by taking the
max of H+

Z and H−Z over all landmarks.
We can use this heuristic in A1 and A2 to guide towards Zup. A similar approach can be

taken when we are given a set Zoff of potential drop-off points to (a) stop A3 and A4 once
they have settled all potential drop-off points (b) guide A3 and A4 towards Zoff .

6 Experimental study and discussion

All experiments were conducted under Ubuntu 13.04 on an HP Pavilion g6 with 4GB of RAM.
The processor is a 2.10GHz Pentium-4 with 2MB of L2 cache. Algorithms are implemented
in C++ and compiled with gcc with optimisation level 2. We use a multi-modal graph
modeling the French regions of Aquitaine and Midi-Pyrénées. Our graph contains 629 765
nodes (21 439 of them being public transportation nodes) and about 5 million edges (edges
are duplicated for every transportation mode).

We consider 3 cities to define our instances: Toulouse, Albi and Bordeaux1. Both users
start their journey in Bordeaux, the passenger is willing to go to Toulouse and driver has to
go to Albi. Origins and destinations are randomly chosen in the respective cities and the start
times of both users are identical during daytime (to have access to public transportation).
In this configuration, passenger and driver typically meet in Bordeaux. The passenger is
dropped-off near Toulouse and the driver continues his journey towards Albi. All presented
results are an average over 50 of those instances using the presented concurrent approach.

To measure the efficiency of the stop conditions and guiding, we use two different
restrictions on pick-up and drop-off points:

Cities: Zup (resp. Zoff) contains all car accessible nodes within 20 minutes walk from
Bordeaux (resp. Toulouse)’s public transports. Those areas contain respectively 29 865
and 46 584 nodes. In practice, this corresponds to the whole cities.
10-min: Zup (resp. Zoff) contains all car accessible nodes within 10 minutes by foot or
public transportation from op (resp. to dp). Areas defined this way contain, on average,
a few hundred nodes.

The three tested configurations are (a) original: the concurrent approach defined in
Section 5.2, (b) stop-conditions: stop conditions based on the areas Cities or 10-min (c)
stop-conditions-guided: Use of stop conditions and landmarks in A2, A3, and A4 to guide
towards the pick-up and drop-off areas.

Restriction Configuration Runtime (ms) Settled Nodes Cost (s)
- original 4316 1 760 635 24618

cities stop-conditions 1139 574 936 24620
cities stop-conditions-guided 853 367 574 24620
10-min stop-conditions 571 372 287 24879
10-min stop-conditions-guided 195 120 019 24879

Table 2 Average runtime, total settled nodes and solution costs.

Table 2 gives the average runtime, the number of settled labels and carpooling cost
over the 50 instances. We can see that while the unrestricted version of the algorithm has
acceptable runtime (about 4 sec.), the stop conditions yield a major improvement, allowing

1 Bordeaux-Toulouse is a two hours and a half drive while Toulouse-Albi takes about one hour.

A. Bit-Monnot et al. 11

to divide the runtime by a factor four (around 1 sec for Cities restriction) or by a factor
height (around 0.5 sec for 10-min restriction). The same observation can be done for the
average number of settled labels. The gain of guiding our algorithms is much more noticeable
for the 10-min restriction than for the Cities restriction. This difference is mainly due to the
quality of our heuristic increasing with smaller areas. In case of Cities restriction, carpooling
solutions are mainly identical (2 seconds in average over the 50 instances) than solutions for
the unrestricted variant. When considering the 10-min restriction, the cost of carpooling
solutions is increasing of 259 seconds comparatively to the unrestricted variant.

Restrictions A1 A2 A3 A4 A5

- 830 (70 048) 896 (569 033) 9478 (366 754) 3689 (569 024) 150 (185 776)
cities 824 (45 120) 897 (57 213) 9479 (318 811) 3689 (119 432) 149 (34 360)

cities-guided 824 (45 120) 897 (52 311) 9479 (146 338) 3689 (89 443) 149 (34 362)
10-min 492 (252) 930 (17 977) 9619 (275 551) 3727 (77 980) 53 (527)

10-min-guided 492 (252) 930 (10 548) 9619 (68 141) 3727 (40 551) 53 (527)
Table 3 Average Cost and Number of labels settled by each algorithm. The waiting times are

respectively 97, 103, 103, 439, 439.

Table 3 gives the average cost2 and, in brackets, number of nodes settled by each algorithm
of our method. This table shows that, in terms of number of settled nodes, restrictions
have an impact for all algorithms but this impact is more important for A2, A4 and A5.
Algorithms A2 and A4 only consider the car mode and can, when there is no restrictions,
explore the whole graph with low cost before a solution is found. Moreover, in terms of
number of settled labels, the guiding variant has a light impact on A2 but a large impact on
A3 and A4 since considered paths are longer.

It should be noted that the optimal drop-off point is the passenger’s destination in 29
instances (over 50) in all configurations. This leads to the average cost in A5 being small.
However the passenger’s origin is never selected as the pick-up point since any waiting time
is considered as part of the cost. As expected, restrictions limit the cost of the passenger’s
trips, this cost being transfered on waiting time and driver’s costs.

Concerning the Mono-Objective Martins in A5, in the unrestricted configuration,
there is on average 366 745 drop-off evaluated as potential origin in BOP. The average
number of undominated labels per settled node is 1.17, giving a runtime performance close
to Dijkstra’s on an equivalent BOP with consistency. Results are comparable in other
configurations with an overall average of 1.19 undominated labels per settled node.

7 Conclusions

In this paper, we propose a new algorithm to solve efficiently the 2SPSPP problem aiming at
computing two synchronized paths for a driver and a pedestrian in a carpooling application,
while minimizing the total travel time. Obtaining an optimal solution takes a few seconds
on a large regional network. However, heuristic acceleration techniques using restricted
drop-off and pick-up areas allow to obtain nearly optimal solutions in less than one second.
This allows to take advantage of –highly desirable in practice– user-defined pick-up and
drop-off areas with very low impact on optimality. We also study the versatile Best Origin
Problem and exhibit precise conditions for which the problem can be challenging and needs
a multi-label algorithm.

2 Recall that the cost in algorithm A3 is counted twice

12 Carpooling : the 2SPSPP

Future research directions include a better definition of restriction areas without loss of
optimality and integration of other acceleration techniques such as contraction hierarchies.

Furthermore, it is worth noting that our approach of splitting the 2SPSPP into several
Shortest Path and Best Origin Problems is very flexible and can easily be used to solve
related problems. For instance, to solve two subproblems of the 2SPSPP: where the two users
have the same origin or the same destination. Moreover, our approach is flexible enough so
that other carpooling costs can be considered as long as consistency between costs and arrival
times is preserved. But, one should notice than, even if the consistency is not preserved,
the proposed method can be adapted by running the mono-objective variant of Martins
algorithm for the best origin subproblems, leading to a more time-consuming approach.

However, extension to a greater number of pedestrians may introduce an higher level
of complexity by increasing the number of pick-up and drop-off points and by the need of
re-evaluation of some paths from drop-off points to pedestrian’s destination in the time-
dependent part of the network.

Acknowledgements We would like to thank Dominik Kirchler for his precious comments
on the Best Origin Problem.

References
1 G. Arnould, D. Khadraoui, M. Armendáriz, J. C. Burguillo, and A. Peleteiro. A transport

based clearing system for dynamic carpooling business services. In 11th International IEEE
Conference on ITS Telecommunications (ITST), pages 527–533, 2011.

2 C. Artigues, Y. Deswarte, J. Guiochet, M.-J. Huguet, Marc-Olivier Killijian, D. Powell,
M. Roy, C. Bidan, N. Prigent, E. Anceaume, S. Gambs, G. Guette, M. Hurfin, and
F. Schettini. Amores: an architecture for mobiquitous resilient systems. In Proceedings
of AppRoaches to MObiquitous Resilience (ARMOR’12), a EDCC workshop., 2012.

3 C. L. Barrett, R. Jacob, and M. Marathe. Formal-Language-Constrained Path Problems.
SIAM Journal on Computing, 30(3):809–837, 2000.

4 D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering route planning algorithms.
In Algorithmics of Large and Complex Networks, volume 5515 of LNCS, pages 117–139,
2009.

5 A. V. Goldberg and R. F. Werneck. Computing point-to-point shortest paths from external
memory. In ALENEX/ANALCO, pages 26–40. SIAM, 2005.

6 M.-J. Huguet, D. Kirchler, P. Parent, and R. Wolfler Calvo. Efficient algorithms for the
2-Way Multi-Modal Shortest Path Problems. In International Network Optimization Confe-
rence (INOC), 2013.

7 E. Kaufman and R. L. Smith. Fastest paths in time-dependent networks for intelligent
vehicle-highway systems applications. IVHS Journal, 1(1):1–11, 1993.

8 E. Martins. On a multicriteria shortest path problem. European Journal of Operational
Research, 16(2):236–245, 1984.

9 G. Nannicini, D. Delling, D. Schultes, and L. Liberti. Bidirectional A* search on time-
dependent road networks. Networks, 59(2):240–251, 2012.

10 M. Sghaier, H. Zgaya, S. Hammadi, and C. Tahon. A novel approach based on a distributed
dynamic graph modeling set up over a subdivision process to deal with distributed optimi-
zed real time carpooling requests. In 14th International IEEE Conference on Intelligent
Transportation Systems (ITSC), pages 1311–1316, 2011.

	Introduction
	Problem Statement
	Related Work
	The proposed approach for the 2SPSPP
	General principle
	The Best-Origin Problem

	Algorithm for the 2SPSPP
	A sequential approach
	Concurrent Approach
	Restrictions on pick-up and drop-off points

	Experimental study and discussion
	Conclusions

