
HAL Id: hal-00843625
https://hal.science/hal-00843625v1

Submitted on 12 Jul 2013 (v1), last revised 3 Sep 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Initiation of a periodic array of cracks in the thermal
shock problem: a gradient damage modeling

Paul Sicsic, Jean-Jacques Marigo, Corrado Maurini

To cite this version:
Paul Sicsic, Jean-Jacques Marigo, Corrado Maurini. Initiation of a periodic array of cracks in the
thermal shock problem: a gradient damage modeling. Journal of the Mechanics and Physics of Solids,
2013, (sous presse), pp.1-35. �hal-00843625v1�

https://hal.science/hal-00843625v1
https://hal.archives-ouvertes.fr


Initiation of a periodic array of cracks in the thermal shock problem: a

gradient damage modeling

Paul Sicsica,b,∗, Jean-Jacques Marigoa, Corrado Maurinic,d
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Abstract

This paper studies the initiation of cracks in the thermal shock problem through the variational analysis
of the quasi-static evolution of a gradient damage model. We consider a two-dimensional semi-infinite slab
with an imposed temperature drop on its free surface. The damage model is formulated in the framework of
the variational theory of rate-independent processes based on the principles of irreversibility, stability and
energy balance. In the case of a sufficiently severe shock, we show that damage immediately occurs and
that its evolution follows first a fundamental branch without localization. Then it bifurcates into another
branch in which damage localization will take place to finally generate cracks. The determination of the
time and mode of that bifurcation allows us to explain the periodic distribution of the so-initiated cracks
and to calculate the crack spacing in terms of the material and loading parameters. Numerical investigations
complete and quantify the analytical results.

Keywords: damage mechanics, gradient damage model, thermal shock, variational methods, energy
balance, stability and bifurcation, Rayleigh ratio
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1. Introduction

The shrinkage of materials, induced by cooling or drying, may lead to arrays of regularly spaced cracks
in a range of phenomena. Examples of such a situation come from various fields: civil engineering with the
drying of concrete (Bisschop and Wittel, 2011), mechanical engineering with the exposure of glass (Geyer
and S.Nemat-Nasser, 1982) or ceramics to a thermal shock (Bahr et al., 2010; Shao et al., 2010), geomaterials
with the drying of soils (Morris et al., 1992; Chertkov, 2002; Goehring et al., 2009) or colloidal suspensions
(Gauthier et al., 2010), and the thermal shocks in overexploited gas storage caverns (Berest et al., 2012).
These cracks are of importance as they can weaken the body or govern future diffusion process, modify the
strength of the material (Shao et al., 2011) or compromise the safety of the structure.

In this paper, we focus on the thermal shock problem of a brittle slab, for which experimental results
are reported in Bahr et al. (1986), Shao et al. (2010), and Geyer and S.Nemat-Nasser (1982). The specimen
is a thin slab, free at the boundary, composed of a homogeneous material without prestress in its initial
configuration. It is uniformly heated and then quenched in a cold bath inducing a thermal shock on the
exposed surfaces. Figure 1 reports an example of the observed crack pattern at the end of the cooling process
(from Jiang et al., 2012). The central part of the specimen, where the temperature field only depends on
the distance from the wet surface, presents an array of parallel cracks. Some of these cracks stop earlier
during the penetration and the spacing of the crack increases with the depth.
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Figure 1: Crack pattern in a slab after a thermal shock (from Jiang et al., 2012)

The theoretical and numerical aspects of multiple cracking under thermal shock have been studied by
many authors using classical tools of the Griffith theory of fracture mechanics (Hasselman, 1969; Lu and
Fleck, 1998; Bazant et al., 1979; Bahr et al., 1988; Jagla, 2002; Jenkins, 2005; Bahr et al., 2010; Jiang et al.,
2012). The most intriguing phenomena are the period doubling in the crack spacing during the propagation
inside the body and the crack initiation. The existing studies assume a priori that the cracks are straight,
parallel to each other, and periodically distributed. Hence, they usually perform energetic analyses based
on numerical or semi-analytical calculations of the strain energy associated to uniform or alternate crack
propagation modes. In this context, Bazant et al. (1979) explain selective crack arrest using a bifurcation
analysis based on the change of sign of the second derivative of the strain energy with respect to the crack
penetration. Bahr et al. (1988) performs a similar analysis with numerical boundary element calculations
and discuss crack initiation assuming periodicity and the presence of initial flaws. Jagla (2002) discusses
the initiation and propagation of the periodic crack pattern using a stress criterion for initiation and energy
minimality for optimal spacing. More recently, Jenkins (2005) and Jiang et al. (2012) study spacing and
initiation by global minimization of the Griffith energy. Bahr et al. (2010) derives semi-analytical scale laws
for the spacing of the cracks as a function of the penetration and the severity of the thermal shock.

Removing the hypothesis on the topology of the crack pattern remains a major issue within classical
fracture mechanics. Yet similar problems may be naturally tackled, theoretically and numerically, in the
framework of the variational approach to fracture mechanics proposed by Francfort and Marigo (1998). This
approach, now well established, extends the energetic theory of Griffith by treating the crack geometry as a
genuine unknown. It is based on the minimization of the sum of the elastic energy and the crack energy among
all admissible crack states. The associated numerical solution strategy proposed by Bourdin et al. (2000)
relies on a regularized functional approximating the total Griffith energy in the sense of Gamma-convergence
(Ambrosio, 1990; Braides, 2002). The regularized formulation introduces a smeared representation of the
crack through a smooth scalar field, which may be mechanically interpreted as a damage variable. The
corresponding total energy may be assimilated with that of a non-local gradient damage model in the
framework of the general theory developed in Pham and Marigo (2010a,b). The link between the damage
model quantities and those of the Griffith theory have been extensively studied on a theoretical and numerical
view-point in the one-dimensional case (Pham et al., 2011). Similar numerical methods become nowadays
quite popular in the community of applied numerical engineering (Miehe et al., 2010; Borden et al., 2012).

For the thermal shock problem of Figure 1, Bourdin et al. (2011) report preliminary numerical results
obtained trough the variational approach, focusing on the spacing between cracks as a function of the depth.
We use similar numerical simulations for an illustration of the phenomenology at initiation. The reader
is referred to (Bourdin, 2007; Bourdin et al., 2011) for the details about the numerical implementation.
Figure 2 reports the evolution of a scalar damage field α, affecting the stiffness of the material and varying
between 0 (sound material) and 1 (totally damaged material). Cracks are represented as bands, of finite
width, with localized damage (in red in the figure). If the loading is not large enough, the solution remains
elastic and no damage is observed. For sufficiently severe thermal shocks, a careful numerical computation
(Fig. 2) shows the following main stages:

1. Starting at t = 0 and for small times, a strip with diffuse damage propagates inside the body. Damage
decreases from a maximal value at the surface towards zero, being homogeneous in the direction parallel
to the surface of the thermal shock.
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(a) Onset of a diffuse damage strip (b) Periodic solution

(c) Array of fully developed of cracks (d) Selecting crack arrest

Figure 2: Damage variable α for four time steps of the minimization process. The loading is given by the thermal shrinking
induced by cooling through the top surface. In blue, the sound material; in red, the totally damaged material.

2. At some critical time tb, the homogeneous solution bifurcates towards a solution including a set of
periodically distributed damaged bands penetrating inside the body.

3. The damage field grows until 1 (fully damaged material) in the mid-line of these zones. A set of
periodically distributed cracks of equal length has formed and starts propagating inside the body.

4. Some damage bands stop to propagate whereas the other ones continue penetrating inside the body.

This numerical behavior is a typical illustration of the strength of the variational approach to fracture.
Indeed, after a diffuse damaging phase (step 1), it captures crack initiation (steps 2-3), as well as crack
propagation (step 4). This paper focuses on the steps (1)-(2), attempting to analytically justify and quan-
titatively predict the results of these numerical experiments in the framework of the variational theory of
gradient damage models (Pham and Marigo, 2010a,b). Differently from previous works on thermal shocks,
where initiation is obtained by introducing initial flows or assuming the topology of the crack pattern, here
we start with a truly sound and uniform material.

The aim of this paper is two-fold: (i) give further insight on the initiation phenomenon in thermal
shock fracture, and, more generally, on the morphogenesis of complex crack patterns; (ii) provide a non-
trivial example of the study of the evolution and bifurcation problem of gradient damage models in a two
dimensional settings. We focus on the thermal shock problem for a semi-infinite two-dimensional slab, in
a quasi-static setting. By assuming a perfect conductivity at the surface of the thermal shock, we consider
a Dirichlet boundary condition on the temperature and use the analytically calculated temperature field,
function of space and time, to evaluate the mechanical loading in the form of thermally induced inelastic
strains. We consider the same damage model used in the regularized approach of the numerical simulations
of Figure 2. This model fits into the family of models introduced in (Pham and Marigo, 2010a,b), for
which a general analysis of the one-dimensional traction problem has been reported in (Pham and Marigo,
2012, 2013). It is characterized by a scalar damage variable and a gradient term in the damage for the
regularization, which introduces an internal length ℓ. The corresponding quasi-static evolution problem is
formulated in the framework of the variational theory of rate-independent processes, imposing the three
requirements of stability, irreversibility, and energy balance (Propositions 2). The loading is controlled by
the thermal shock mildness parameter θ = σc/(E aϑ), where σc is the critical stress of the material, ϑ the
temperature drop at the surface, a the thermal expansion coefficient and E the Young modulus. For mild
shocks (θ ≥ 1), one trivially obtains that the solution remains purely elastic and the damage is null at any
time. For sufficiently severe shock (θ < 1), the damage criterion is reached at the beginning of the evolution.
Looking for a solution invariant in the direction x1 parallel to the surface of thermal shock, we show the
existence of a fundamental solution with diffused damage localized in a finite strip (Proposition 3), where
the damage field monotonically decreases from a maximum value at the surface to zero at a finite depth D∗

t

(as in Figure 2(a)).
Hence, we formulate the rate problem (Proposition 5) and the second-order stability conditions (Propo-

sition 1) about this fundamental solution, whose uniqueness and stability are determined through the mini-
mization of a Rayleigh ratio on linear spaces or convex cones (Proposition 8). The main result of this paper
is the solution of this bifurcation and stability problem (Proposition 10), which is obtained by adopting a
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partial Fourier decomposition in the direction parallel to the surface of the slab. We prove the existence of
a finite time tb from which a bifurcation from the fundamental branch can occur, the fundamental branch
becoming unstable at a later time ts. Moreover we show that the bifurcated solution is stable (Proposi-
tion 7) and characterized by a finite wavelength λb proportional to the internal length ℓ of the material.
This bifurcated solution represents the onset of the localization phenomena leading to the establishment
of the periodic crack pattern observed in the experiments. Quantitative results are obtained through the
numerical solution of a one-dimensional boundary value problem for the fundamental branch and of a para-
metric one-dimensional eigenvalue problem for establishing the key properties of the bifurcated solution as
a function of the loading parameter θ and the Poisson ratio.

Specifically the paper is organized as follows. Section 2 formalizes the thermal shock problem in a two
dimensional setting and recalls the formulation of the gradient damage model. Section 3 establishes the
fundamental solution in the elastic and damaged case. The following section is devoted to the bifurcation
and loss of stability of this fundamental branch. In Section 4.1 we formalize the rate problem, then we
characterize bifurcation and stability by Rayleigh’s ratio minimization (Section 4.2) and give the main
properties of the Rayleigh ratio (Section 4.3). We then characterize the first bifurcation (Section 4.4). The
numerical computation are gathered in Section 5, dealing first with the fundamental solution and then
with the bifurcation problem. The key results are resumed and commented in Section 6. Section 7 draws
conclusions and suggests future extensions.

Nomenclature and notation. A list of the main symbols and notations adopted in the paper is reported in
Table 1. The summation convention on repeated indices is implicitly adopted. The vectors and second order
tensors are indicated by boldface letters, like u and σ for the displacement field and the stress field. Their
components are denoted by italic letters, like ui and σij . The fourth order tensors as well as their components
are indicated by a sans serif letter, like A or Aijkl for the stiffness tensor. Such tensors are considered as
linear maps applying on vectors or second order tensors and the application is denoted without dots, like
Aε whose ij-component is Aijklεkl. The inner product between two vectors or two tensors of the same order
is indicated by a dot, like a · b which stands for aibi or σ · ε for σijεij . The symbol ⊗ denotes the tensor
product and ⊗s its symmetrized, i.e. 2e1⊗s e2 = e1⊗e2+e2⊗e1. Ms denotes the space of 2×2 symmetric
tensor and I is its identity tensor. The classical convention is adopted for the orders of magnitude: o(ǫ)
denotes functions of ǫ such that limǫ→0 o(ǫ)/ǫ = 0. If A(·) represents a quadratic form defined on a Hilbert
space, the associated symmetric bilinear form is denoted by A〈·, ·〉, i.e.

4A〈χ, ξ〉 := A(χ+ ξ)−A(χ− ξ).

2. Setting of the problem and damage law

2.1. Setting of the gradient damage model

We simply recall here the main steps of the construction of a gradient damage model by a variational
approach, the reader interested by more details should refer to Pham and Marigo (2010a,b). Since the
application will concern a very thin body, we describe the behavior in a plane stress setting corresponding
to the membrane theory of plates (without bending). Thus we consider a homogeneous (two-dimensional)
plate made of a damaging isotropic material whose behavior is defined as follows:

1. The damage parameter is a scalar which can only grow from 0 to 1, α = 0 denoting the undamaged
state and α = 1 the completely damaged state.

2. The state of the volume element is characterized by the triplet (εe, α,g) where εe, α and g denote
respectively the elastic (in-plane) strain tensor, the damage parameter and the gradient of damage
vector (g = ∇α).

3. The bulk energy density of the material is the state function W : (εe, α,g) 7→W (εe, α,g). Therefore,
the material behavior is non local in the sense that it depends on the gradient of damage. We assume
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Material and geometric constants
E, ν Young modulus and Poisson ratio (sound material)
a, kc Thermal expansion and thermal diffusivity
σc, ℓ Critical stress (10) and internal length of the damage model
L Width of the slab (Fig. 2.2)

Space and time variables
x = (x1, x2) Space variables in the physical space
t Physical time variable
y = x2/2

√
kct Rescaled depth variable adapted to the diffusion process

τ = 2
√
kct/θℓ Rescaled time adapted to the fundamental solution (35)

Thermal Loading
ϑ Temperature drop at the surface
fc Complementary error function (Fig. 2.2)
θ = σc/aϑE Thermal shock mildness parameter (34)
εtht (x) Thermal strain field (14)
εt(x) Total strain field
εet (x) = εt(x)− εtht (x) Elastic strain field (14)

Fundamental Branch
α∗
t (x), u

∗
t (x), σ

∗
t (x) Damage, displacement and stress fields in the physical variables t,x

χ∗
t = (u∗

t , α
∗
t ) state fields vector

ᾱτ (y), σ̄τ (y) Damage and stress field in the scaled variables τ, y
D∗

t Damage penetration in the physical variables t,x
δτ = D∗

t /2
√
kct Damage penetration in the scaled variables τ, y (35)

Bifurcation and Stability
ζ = x2/D

∗
t Rescaled depth variable adapted to the damage penetration (57)

R∗
t (v, β) Rayleigh Ratio (53) studying the positivity of E ′′

t (χ
∗
t )

Rb
t Minimum value of the Rayleigh ratio R∗

t (v, β) over C×Ḋt (54) and of R̄κ
τ (V, β)

over R+ ×H×H0 (60)

Rs
t Minimum value of the Rayleigh ratio R∗

t (v, β) over C×Ḋ+
t (55)

tb, ts First time of bifurcation and loss of stability (65)
vb, βb Mode of bifurcation (66)–(67)
k, κ Wave number corresponding to the periodic solution (57)–(58)

(κb, V̂
b, β̂b) Normalized minimizers of R̄κ

τb
(V, β)

τb, δτb Rescaled time and damage penetration associated to the first bifurcation time
λb = 2πθδτbτbℓ/κb Wavelength of the first bifurcation solution (68)
Db = 2δτb

√
kctb = θδτbτbℓ Damage penetration at the first bifurcation point (69)

Table 1: Main nomenclature
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that the bulk energy density is the sum of three terms: the stored elastic energy ψ(εe, α), the local
part of the dissipated energy by damage w(α) and its non local part 1

2wℓ
2g · g,

W (εe, α,g) = ψ(εe, α) + w(α) +
1

2
wℓ2g · g, (1)

each of these terms enjoying the following properties:
(a) The elastic energy reads as

ψ(εe, α) =
1

2
(1− α)2Aεe · εe, (2)

where A is the stiffness tensor of the sound material. Thus, (1 − α)2A represents the stiffness
tensor of the material in the damage state α, it decreases from A to 0 when α grows from 0 to 1.
The material being isotropic and by virtue of the plane stress assumption, the in-plane stiffness
coefficients read as

Aijkl =
νE

1− ν2
δijδkl +

E

2(1 + ν)
(δikδjl + δilδjk), i, j, k, l ∈ {1, 2}, (3)

where E represents the Young modulus of the sound material and ν is the Poisson ratio (which
does not change throughout the damage process). The compliance tensor of the sound material
will be denoted by S. Hence S = A−1 reads as

Sijkl = −ν
E
δijδkl +

1 + ν

2E
(δikδjl + δilδjk), i, j, k, l ∈ {1, 2}. (4)

(b) The local dissipated energy density reads as

w(α) = wα (5)

and hence is a positive increasing function of α, increasing from 0 when α = 0 to the finite
positive value w when α = 1. Therefore w represents the energy dissipated during a complete,
homogeneous damage process of a volume element: w = w(1).

(c) The non local dissipated energy density is assumed to be a quadratic function of the gradient
of damage. Since the damage parameter is dimensionless and by virtue of the above definition
of w, ℓ has the dimension of a length. Accordingly, ℓ can be considered as an internal length
characteristic of the material while having always in mind that the definition of ℓ depends on the
normalizations associated with the choices of the critical value 1 for α and w for the multiplicative
factor.

4. The dual quantities associated with the state variables are respectively the stress tensor σ, the energy
release rate density Y and the damage flux vector q:

σ =
∂W

∂εe
(εe, α,g), Y = −∂W

∂α
(εe, α,g), q =

∂W

∂g
(εe, α,g). (6)

Accordingly, these dual quantities are given by the following functions of state:

σ = (1− α)2Aεe, Y = (1− α)Aεe · εe − w, q = wℓ2g. (7)

The underlying local behavior is characterized by the function W0 defined by W0(ε
e, α) =W (εe, α,0). This

corresponds to a strongly brittle material, in the sense of (Pham and Marigo, 2012, Hypothesis 1), i.e. the
material has a softening behavior and the energy dissipated during a process where the damage parameter
grows from 0 to 1 is finite. The latter property is ensured by the fact that w(1) < +∞. The former one
requires that the elastic domain in the strain space R(α) is an increasing function of α while the elastic
domain in the stress space R∗(α) is a decreasing function of α. Those elastic domains are defined by

R(α) =

{

εe ∈ Ms :
∂W0

∂α
(εe, α) ≥ 0

}

, R∗(α) =

{

σ ∈ Ms :
∂W ∗

0

∂α
(σ, α) ≤ 0

}
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where W ∗
0 (σ, α) = sup

ε∈Ms

{

σ · εe −W0(ε
e, α)

}

and Ms denotes the space of symmetric 2×2 tensors.
In the present context, one gets

W0(ε
e, α) =

1

2
(1− α)2Aεe · εe + wα (8)

and hence

W ∗
0 (σ, α) = σ · ε0 + 1

2(1− α)2
Sσ · σ − wα. (9)

Accordingly, the elastic domains R(α) and R∗(α) now read

R(α) = {εe ∈ Ms : Aεe · εe ≤ w

1− α
}, R∗(α) = {σ ∈ Ms : Sσ · σ ≤ (1− α)3w}

and one immediately checks that the softening properties are satisfied. The critical stress σc (which represents
for this specific damage model both the yield stress and the peak stress) in a uniaxial tensile test such that
σ = σce1 ⊗ e1 is then given by

σc =
√
wE. (10)

2.2. The body and its thermal loading

The natural reference configuration of the plate is the semi-infinite strip Ω = (0,+L)× (0,+∞). We
assume that the length L is much greater than the internal length ℓ of the material. (This assumption
plays a role in the bifurcation and stability analyses - section 4.) The body forces are neglected. The sides
x1 = 0 or L are submitted to boundary conditions so that the normal displacement and the shear stress
vanish, whereas the side x2 = 0 is free. Accordingly, the mechanical boundary conditions read as

u1|x1=0 or L
= 0, σ21|x1=0 or L

= 0, (11)

σ22|x2=0 = σ12|x2=0 = 0. (12)

In x1 = 0 or L and x2 = 0 no boundary condition are imposed on the damage field, which can thus freely
evolve. Up to time 0, the plate is at the reference uniform temperature T0 and hence in its reference
configuration, stress free and undamaged:

ut(x) = 0, εet (x) = 0, αt(x) = 0, σt(x) = 0, ∀x ∈ Ω, ∀t ≤ 0.

From time 0, a colder temperature T1 = T0 − ϑ is prescribed on the side x2 = 0. Assuming that the
temperature field is not influenced by the damage evolution and that the sides x1 = 0 or L are thermally
insulated, the diffusion of the temperature inside the body is governed by the classical heat equation.
Therefore, assuming the temperature boundary condition in x2 = 0 is of Dirichlet type, the temperature
field at time t > 0 is given by

Tt(x) = T0 − ϑ fc

( x2

2
√
kct

)

, ∀t > 0, (13)

where fc it the complementary error function, strictly decreasing from 1 to 0 at infinity, i.e.

fc(x) =
2√
π

∫ ∞

x

e−s2 ds,

and kc is the thermal diffusivity, a material constant. Thus the temperature field is uniform with respect to
the x1 direction.

At every time t, the elastic strain field εet is the difference between the total strain field εt and the
thermal strain field εtht . Since the material is isotropic, assuming that the shrinkage is linear, this latter one
reads as εtht (x) = a(Tt(x)− T0)I, where a denotes the thermal dilatation coefficient of the material and I is
the identity tensor of Ms. Accordingly, the thermal and elastic strain fields read as

εtht (x) = −aϑ fc

( x2

2
√
kct

)

I, εet (x) = ε(ut)(x) + aϑ fc

( x2

2
√
kct

)

I, (14)
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e1

e2

x2 = 0

x1 = 0 x1 = L

T0

T1 = T0 − ϑ

(a) Mechanical and thermal boundary conditions (b) The complementary error function

Figure 3: Thermal shock problem statement

where ε(ut) is the symmetrized part of the gradient of ut.
We will only consider the first stage of the damage process so that α reaches nowhere the critical value

1 corresponding to the loss of rigidity of the material. Accordingly, the set of admissible damage fields D
and the set of kinematically admissible displacement fields C are defined as

D := {β ∈ H1(Ω) : 0 ≤ β < 1 in Ω}, C := {v ∈ H1(Ω)2 : v1 = 0 on x1 = 0 or L} (15)

where H1(Ω) denotes the usual Sobolev space of functions which are square integrable over Ω and whose
distributional gradient is also square integrable. The spaces D and C are time independent and are equipped
with the natural norm of H1(Ω). With every pair of admissible displacement and damage fields, i.e. with
every (v, β) ∈ C×D, one associates the total energy of the body at time t in this state, that is

Et(v, β) :=

∫

Ω

W (ε(v)− εtht , β,∇β) dx

=

∫

Ω

(1

2
(1− β)2A(ε(v)− εtht ) · (ε(v)− εtht ) + wβ +

wℓ2

2
∇β · ∇β

)

dx. (16)

where ε(v) denotes the symmetrized gradient of v.
Throughout the paper we use the directional derivatives of Et and its partial derivatives with respect to

time. All these derivatives up to the second order are defined below.

Definition 1 (Derivatives of the total energy).

1. First partial derivative with respect to t:

Ėt(v, β) = −
∫

Ω

(1− β)2A(ε(v)− εtht ) · ε̇tht dx; (17)

2. Second partial derivative with respect to t:

Ët(v, β) =
∫

Ω

(

(1− β)2Aε̇tht · ε̇tht − (1− β)2A(ε(v)− εtht ) · ε̈tht
)

dx; (18)

3. First directional derivative of Et at (u, α) in the direction (v, β):

E ′
t(u, α)(v, β) =

∫

Ω

(

(1− α)2A(ε(u)− εtht ) · ε(v)

+
(

w − (1− α)A(ε(u)− εtht ) · (ε(u)− εtht )
)

β + wℓ2∇α · ∇β
)

dx; (19)
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4. Second directional derivative of Et at (u, α) in the direction (v, β):

E ′′
t (u, α)(v, β) =

∫

Ω

(

(1− α)2Aε(v) · ε(v)− 4(1− α)A(ε(u)− εtht ) · ε(v)β

+A(ε(u)− εtht ) · (ε(u)− εtht )β2 + wℓ2∇β · ∇β
)

dx; (20)

In (20), E ′′
t (u, α) is considered as a quadratic form. The associated symmetric bilinear form is still

denoted by E ′′
t (u, α), but is discriminated by denoting by E ′′

t (u, α)
〈

(v, β), (v̄, β̄)
〉

its application to a
pair of directions. Accordingly, one has E ′′

t (u, α)(v, β) = E ′′
t (u, α) 〈(v, β), (v, β)〉.

5. Second order cross term:

Ė ′
t(u, α)(v, β) =

∫

Ω

(

− (1− α)2Aε̇tht · ε(v) + 2(1− α)A(ε(u)− εtht ) · ε̇tht β
)

dx. (21)

2.3. The damage evolution law

Following the variational approach presented in Pham and Marigo (2010a,b), the evolution of the damage
in the body is governed by the three principles of irreversibility, stability and energy balance. Specifically,
in the present context these conditions read as follows:

Damage law. The damage evolution is governed by the three following conditions

(IR) Irreversibility: t 7→ αt must be non decreasing and, at each time t ≥ 0, αt ∈ D.

(ST) Stability: At each time t ≥ 0, the real state (ut, αt) ∈ C×D must be stable in the sense that for all
v ∈ C and all β ∈ D such that β ≥ αt, there exists h̄ > 0 such that for all h ∈ [0, h̄]

Et(ut + h(v − ut), αt + h(β − αt) ≥ Et(ut, αt). (22)

(EB) Energy balance: At each time t ≥ 0 the following energy balance must hold:

Et(ut, αt) +

∫ t

0

∫

Ω

σs · ε̇ths dx ds = 0, (23)

where σs and ε̇ths denote respectively the stress field and the rate of the thermal strain field at time s.

An evolution t 7→ (ut, αt) which starts from (0, 0) at time 0 and which satisfies the three conditions above
will be called a stable evolution.

To simplify the presentation, we will only consider evolutions smooth both in space and time. It is not
really a restrictive assumption because we are essentially interested by the loss of uniqueness and of stability
of the “fundamental branch” which is smooth as we will see in the next section. Specifically, we make the
following smoothness assumption

Hypothesis 1. We will only consider evolutions such that

1. Each component of ut and αt are continuously differentiable in Ω and belong to H2(Ω) at every t ≥ 0;

2. t 7→ ut and t 7→ αt are continuous and piecewise continuous differentiable. The right and the left time
derivatives u̇±

t and α̇±
t exist at every time, u̇±

t belongs to C and α̇±
t belongs to D+, where

D+ := H1(Ω) ∩ {β ≥ 0}.

Note that the concept of stability adopted here is that of directional stability. For a given admissible
direction (v, β), the inequality (22) must hold for sufficiently small h, this neighborhood depending on the
direction. Accordingly, for a given direction considering small h and expanding the energy of the perturbed
state with respect to h up to the second order, the inequality (22) becomes

0 ≤ E ′
t(ut, αt)(v − ut, β − αt) +

h

2
E ′′
t (ut, αt)(v − ut, β − αt) + o(h), (24)
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where E ′
t and E ′′

t denote the first and second directional derivatives of Et. By virtue of Definition 1, one gets

E ′
t(ut, αt)(v, β) =

∫

Ω

(

σt · ε(v)− Yt · β + qt · ∇β
)

dx, (25)

where σt, Yt and qt denote respectively the stress tensor, the energy release rate density and the damage
flux vector at time t which are given in terms of the current state by the constitutive relations (6).

Passing to the limit when h goes to 0 in (24) and using the fact that C is a linear space, one immediately
deduces that the stability condition (22) is satisfied only if, at each time, the body is at equilibrium and the
damage criterion is satisfied. Specifically, these necessary conditions read as

∫

Ω

σt · ε(v) dx = 0, ∀v ∈ C, (26)

∫

Ω

(−Yt · (β − αt) + qt · ∇(β − αt)) dx ≥ 0, ∀β ∈ D : β ≥ αt. (27)

The two conditions (26)-(27) can be seen as the first order stability conditions. They are necessary but not
always sufficient in order for (22) to hold. More precisely, if the direction β is such that the inequality is
strict in (27), then (24) is satisfied for h small enough and hence the stability is ensured in this direction.
However, if the direction β is such that the inequality is an equality in (27), then (24) requires that the second
derivative be non negative in order that the state be stable with respect to this direction of perturbation
(and the stability in this direction is ensured if the second derivative is positive). We have thus obtained
the following

Proposition 1 (Second order stability conditions).

1. When E ′
t(ut, αt)(v−ut, β−αt) > 0, then (ut, αt) is stable with respect to the direction of perturbation

(v, β);

2. When E ′
t(ut, αt)(v−ut, β−αt) = 0, then (ut, αt) is stable with respect to the direction of perturbation

(v, β) only if E ′′
t (ut, αt)(v − ut, β − αt) ≥ 0 and if E ′′

t (ut, αt)(v − ut, β − αt) > 0.

By standard arguments of the calculus of variations and by virtue of Hypothesis 1 of regularity of the
fields, one easily deduces from (26)–(27) that the first order stability conditions are satisfied if and only if
the following local conditions hold:

divσt = 0 in Ω, σte2 = 0 on x2 = 0, σte1 · e2 = 0 on x1 = 0 or L, (28)

(1− αt)Aε
e
t · εet − w + wℓ2∆αt ≤ 0 in Ω,

∂αt

∂n
≥ 0 on ∂Ω. (29)

Thus (28) corresponds to the volume equilibrium equations and the natural boundary conditions whereas
(29) corresponds to the damage yield criterion. Because of the presence of gradient terms in the energy, the
criterion in the bulk involves the second derivatives of the damage field and a natural boundary condition
appears involving the normal derivative of the damage field.

Let us use the energy balance (23). Owing to the smoothness assumption on the time evolution, taking
the derivative of (23) with respect to t leads to

0 =
d

dt

∫

Ω

W (ε(ut)− εtht , αt,∇αt) dx+

∫

Ω

σt · ε̇tht dx

=

∫

Ω

(σt · ε(u̇t)− Ytα̇t + qt · ∇α̇t) dx

= −
∫

Ω

(

divσt · u̇t + (Yt + divqt)α̇t

)

dx+

∫

∂Ω

(

σtn · u̇t + qt · nα̇t

)

ds. (30)
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Taking into account the equilibrium and the boundary conditions (28), the terms containing σt vanish in
(30). Therefore, one gets

0 = −
∫

Ω

(

(1− αt)Aε
e
t · εet − w + wℓ2∆αt

)

α̇t dx+

∫

∂Ω

wℓ2
∂αt

∂n
α̇t ds. (31)

By virtue of the irreversibility conditions and the inequalities (29), the equality (31) holds if an only if the
following pointwise equalities hold

(

(1− αt)Aε
e
t · εet − w + wℓ2∆αt

)

α̇t = 0 in Ω,
∂αt

∂n
α̇t = 0 on ∂Ω. (32)

These equalities can be seen as the local energy balances. They correspond also to what is generally called
the consistency relations in Kuhn-Tucker conditions.

We have thus established the

Proposition 2. A smooth stable evolution t 7→ (ut, αt) ∈ C×D must satisfy the following set of local
conditions at every time t ≥ 0 (with the convention that at any time when t 7→ αt is not differentiable, the
relations hold both for α̇−

t and α̇+
t ):

1. The Kuhn-Tucker conditions in the bulk

In Ω :















α̇t ≥ 0,

(1− αt)A(ε(ut)− εtht ) · (ε(ut)− εtht )− w + wℓ2∆αt ≤ 0,
(

(1− αt)A(ε(ut)− εtht ) · (ε(ut)− εtht )− w + wℓ2∆αt

)

α̇t = 0.

2. The Kuhn-Tucker conditions on the boundary

On ∂Ω : α̇t ≥ 0,
∂αt

∂n
≥ 0,

∂αt

∂n
α̇t = 0.

3. The equilibrium equations and the static boundary conditions

divσt = 0 in Ω, σte2 = 0 on x2 = 0, σte1 · e2 = 0 on x1 = 0 or L.

4. The stress-strain relation

σt = (1− αt)
2
A(ε(ut)− εtht ) in Ω.

These conditions are sufficient in order for the irreversibility condition and the energy balance be satisfied,
but not sufficient to verify the full stability condition (22). Accordingly, a smooth evolution which satisfies
only the four conditions above will be called a stationary evolution.

3. The fundamental branch

3.1. The elastic response

Let us consider the elastic response of the plate, i.e. the response such that αt = 0 at every t. The stress
and strain fields are then given by

σt(x) = Eaϑ fc

( x2

2
√
kct

)

e1 ⊗ e1, ε(ut)(x) = −(1 + ν)aϑ fc

( x2

2
√
kct

)

e2 ⊗ e2, (33)

from which one easily deduces ut (in particular ut · e1 = 0 and ut · e2 only depends on x2). Since |σt11| is
maximal on the side x2 = 0 where it takes the value Eaϑ at every t ≥ 0, the damage criterion (29) is satisfied
everywhere in Ω at every time if and only if aϑ ≤ σc/E with σc =

√
wE given by (10). Specifically, one has
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1. If Ea2ϑ2 ≤ w, then inserting (33) into (19) leads to

E ′
t(ut, 0)(v − ut, β) =

∫

Ω

(

w − Ea
2ϑ2 fc

( x2

2
√
kct

)2
)

β dx, ∀t > 0, ∀(v, β) ∈ C×D.

Since fc(x) decreases from 1 to 0 when x grows from 0 to ∞, E ′
t(ut, αt)(v−ut, β) ≥ 0 and the equality

holds if and only if β = 0 everywhere in Ω. Moreover, by virtue of (20), in such directions the second
derivative reads as

E ′′
t (ut, 0)(v − ut, 0) =

∫

Ω

Aε(v) · ε(v) dx.

Therefore E ′′
t (ut, 0)(v−ut, 0) > 0 for every v ∈ C \{0} and hence the elastic response is stable at every

time t ≥ 0 in all directions by virtue of Proposition 1.

2. If Ea2ϑ2 > w, then at every time t > 0 there exists a subdomain of Ω where the damage criterion (29)
is not satisfied. Hence, the elastic response is never stable. Damage occurs as soon as t > 0.

3.2. The fundamental branch

From now on we will only consider the case when aϑE > σc and we introduce the dimensionless loading
parameter θ which characterizes the mildness of the thermal shock,

θ =
σc
aϑE

< 1. (34)

If we consider the elastic response, one sees that the damage criterion is violated in the strip 0 < x2 <
2fc

−1(θ)
√
kct which grows progressively with time. One can suspect that damage occurs in this strip.

Moreover, since the loading and the geometry are invariant with respect to the x1 direction, one can seek
first for an evolution which only depends on x2 and t. Accordingly, we consider a stationary evolution
(u∗

t , α
∗
t ) such that α∗

t is of the form

α∗
t (x) = ᾱτ (y), τ =

2
√
kct

θℓ
, y =

x2

2
√
kct

, (35)

where we have introduced new spatial and time variables inspired by the thermal diffusion process. Inserting
this form into (28), it is easy to see that the displacement field is the same as the elastic one and hence

ε(u∗
t )(x) = ε̄τ (y) := −(1 + ν)aϑ fc(y)e2 ⊗ e2. (36)

The stress field is different because of the damage evolution

σ∗
t (x) = σ̄τ (y) := (1− ᾱτ (y))

2
Eaϑ fc(y)e1 ⊗ e1. (37)

It remains to find ᾱτ . Assuming that the support of ᾱτ is the interval [0, δτ ) where δτ has to be determined,
by virtue of (29) and (32), ᾱτ must satisfy the following differential equation in this interval

1

τ2
d2ᾱτ

dy2
(y) + fc(y)

2(1− ᾱτ (y)) = θ2 ∀y ∈ (0, δτ ). (38)

The Kuhn-Tucker condition at x2 = 0 requires that the first derivative of ᾱτ vanishes at y = 0. The
continuity of ᾱτ and of its first derivative at y = δτ require that both quantities vanish. Therefore the
boundary conditions read

dᾱτ

dy
(0) = 0, ᾱτ (δτ ) = 0,

dᾱτ

dy
(δτ ) = 0. (39)

Moreover, the damage criterion is satisfied for y ≥ δτ if and only if fc(δτ ) ≤ θ and hence if and only if

δτ ≥ fc
−1(θ). (40)

The existence and the uniqueness of ᾱτ and δτ as a solution of (38)–(40) is a consequence of the following
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Proposition 3. At each time τ > 0 the damage field ᾱτ is necessarily the unique minimizer of Ēτ over
{β ∈ H1(0,∞) : 0 ≤ β ≤ 1}, where

Ēτ (β) :=
∫ ∞

0

(

1

2τ2
β′(y)2 +

1

2
fc(y)

2(1− β(y))2 + θ2β(y)

)

dy. (41)

Accordingly, the support of ᾱτ is really a finite interval [0, δτ ) and (ᾱτ , δτ ) satisfy (38)–(40). Moreover ᾱτ

is monotonically decreasing in [0, δτ ) from ᾱτ (0) < 1 to 0.

Proof. The proof is given in Appendix A.

From the characterization of ᾱτ , it is easy to obtain its asymptotic behavior at small times and at large
times. This leads to the

Proposition 4 (Asymptotic behaviors of ᾱτ ).

1. When τ tends to 0, (ᾱτ/τ
2, δτ ) strongly converges in H1(0,∞)×R to (ᾱ0, δ0) given by

δ0 is the unique positive number such that θ2δ0 =
∫ δ0
0

fc(y)
2 dy, (42)

{

ᾱ′′
0 (y) = θ2 − fc(y)

2 if y ∈ [0, δ0)

ᾱ0(y) = 0 if y > δ0
, ᾱ0(δ0) = ᾱ′

0(δ0) = 0. (43)

2. When τ tends to ∞, (ᾱτ , δτ ) strongly converges in L2(0,∞)×R to (ᾱ∞, δ∞) given by

δ∞ = fc
−1(θ), ᾱ∞(y) =







1− θ2

fc(y)2
if y ∈ [0, δ∞)

0 if y ≥ δ∞

. (44)

Proof. This result is quite natural in view of (38)-(39). It can be rigorously proved by virtue of Proposition 3
and using classical arguments of functional analysis based on first estimates, weak and strong convergences.
The proof is left to the reader.

In order that t 7→ (u∗
t , α

∗
t ) be an admissible evolution (at least a stationary evolution), it remains to

verify that t 7→ α∗
t satisfies the irreversibility condition, i.e. is monotonically increasing. Unfortunately, this

property cannot be proved analytically and will be only checked numerically. Indeed, using the chain rule,
α̇∗
t (x) reads as

α̇∗
t (x) =

dᾱτ

dy
(y)

∂y

∂t
+ ˙̄ατ (y)

dτ

dt
.

The first term in the right hand side above is positive because y 7→ ᾱτ (y) is monotonically decreasing at
given time and y is a decreasing function of t at given x2. On the other hand, τ 7→ ᾱτ is not monotonically
increasing. Indeed, τ 7→ δτ is in fact monotonically decreasing. (In particular one immediately deduces from
(42) and (44) that δ0 > δ∞.) Consequently, the second term in the right hand side above is not always
positive and one cannot conclude. (In fact we could prove the monotonicity of t 7→ α∗

t for values of θ close
to 1, but not on the full range (0, 1).) Accordingly, one adopts the following

Hypothesis 2 (Monotonicity of t 7→ α∗
t ). Throughout the next section we will assume that t 7→ α∗

t is
monotonically increasing and hence that the depth D∗

t := 2δτ
√
kct of the damage zone associated with the

fundamental branch is an increasing function of time. Those properties will be checked numerically in
Section 5.

4. Bifurcation from and instability of the fundamental branch

In the wake of Nguyen (1994, 2000) we use bifurcation and stability theory, introduced in the case of
non local damage for the selection of solutions in Benallal and Marigo (2007). The response can follow
the fundamental branch only as long as the associated state is stable. But the evolution can bifurcate on
another branch before the loss of stability of the fundamental branch, whenever such a branch exists and
is itself stable (at least in a neighborhood of the bifurcation point). Accordingly, it is important to identify
the possible points of bifurcation on the fundamental branch. It is the aim of this section.
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4.1. Setting of the rate problem

Let t > 0 be a given time and (u∗
t , α

∗
t ) be the associated state of the fundamental branch, given by

(35)–(40). Let us study the evolution problem in the time interval [t, t+ η), with η > 0 and small enough,
assuming that the state of the body is the fundamental one (u∗

t , α
∗
t ) at time t. Let {(us, αs)}s∈[t,t+η) be a

possible solution of the evolution problem during the time interval [t, t+η). One assumes that the evolution
is sufficiently smooth so that the right derivative exists at t. This derivative is denoted (u̇, α̇) and is defined
by

u̇ = lim
h↓0

1

h
(ut+h − u∗

t ), α̇ = lim
h↓0

1

h
(αt+h − α∗

t ), (45)

these limits being understood in the sense of the natural norm of C×D. Moreover, the construction of the
rate problem giving (u̇, α̇) needs an additional smoothness assumption relative to the growth of the damage
zone. Specifically, one adopts the following

Hypothesis 3 (Smooth growth of the damage zone). Let Ωd
s be the damage zone at time s ∈ [t, t + η) in

the evolution {(us, αs)}s∈[t,t+η), i.e.

Ωd
s = {x ∈ Ω : αs(x) > 0}. (46)

Thus Ωd
t = (0, L)×[0,D∗

t ). By virtue of the irreversibility condition and Hypothesis 2, s 7→ Ωd
s is increasing.

One assumes that this growth is smooth in the sense that there exists C > 0 such that

Ωd
s \ Ωd

t ⊂ (0, L)×[D∗
t ,D

∗
t + C(s− t)).

Thus, the new damaging points in the time interval (t, s) are included in a strip of width C(s− t).

Of course, if the evolution follows the fundamental branch, then (u̇, α̇) = (u̇∗
t , α̇

∗
t ) and Hypothesis 3 is

satisfied because τ 7→ δτ is smooth.
Our purpose is to find whether another rate is possible, recalling that one only considers the case θ < 1.

Imposing the evolution to satisfy the three items (IR), (ST) and (EB) and Hypothesis 1, one deduces the
following variational formulation for the rate problem.

Proposition 5 (The rate problem). Let t > 0 be a given time. At this time, the rate (u̇, α̇) of any branch
which is solution of the evolution problem and follows the fundamental branch up to time t is such that

χ̇ = (u̇, α̇) ∈ C×Ḋ+
t , ∀ξ = (v, β) ∈ C×Ḋ+

t

E ′′
t (χ

∗
t )〈χ̇, ξ − χ̇〉+ Ė ′

t(χ
∗
t )(ξ − χ̇) ≥ 0. (47)

In (47) Ḋ+
t is the set of admissible damage rate fields at time t, i.e.

Ḋ+
t = {β ∈ H1(Ω) : β ≥ 0 in Ωd

t , β = 0 in Ω \ Ωd
t }, Ωd

t = (0, L)×[0,D∗
t ).

Proof. The proof is given in Appendix C.

4.2. Characterization of bifurcation and stability by Rayleigh’s ratio minimization

The rate χ̇∗
t = (u̇∗

t , α̇
∗
t ) is solution of (47). The question is to know whether another solution exists. The

uniqueness is guaranteed when the quadratic form E ′′
t (χ

∗
t ) is positive definite on the linear space C×Ḋt, Ḋt

denoting the linear space generated by Ḋ+
t , i.e.

Ḋt = {β ∈ H1(Ω) : β = 0 in Ω \ Ωd
t }. (48)

Indeed, in such a case, let us consider another solution χ̇. Making ξ = χ̇∗
t in (47) we obtain

E ′′
t (χ

∗
t )〈χ̇, χ̇∗

t − χ̇〉+ Ė ′
t(χ

∗
t )(χ̇

∗
t − χ̇) ≥ 0. (49)
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Making ξ = χ̇ in the variational inequality satisfied by χ̇∗
t , we get

E ′′
t (χ

∗
t )〈χ̇∗

t , χ̇− χ̇∗
t 〉+ Ė ′

t(χ
∗
t )(χ̇− χ̇∗

t ) ≥ 0. (50)

The addition of the two inequalities (49)-(50) leads to E ′′
t (χ

∗
t )(χ̇− χ̇∗

t ) ≤ 0 which is possible only if χ̇ = χ̇∗
t

when E ′′
t (χ

∗
t ) is positive definite.

Let us now consider the question of the stability of (u̇∗
t , α̇

∗
t ). By virtue of Proposition 1, this fundamental

state is stable only if E ′′
t (χ

∗
t )(ξ̇) ≥ 0, for all ξ ∈ C×Ḋ+

t , and if E ′′
t (χ

∗
t )(ξ̇) > 0 for all rates ξ̇ 6= 0 in C×Ḋ+

t .
Accordingly, the stability is governed by the positivity of E ′′

t (χ
∗
t ) on C×Ḋ+

t .
By virtue of (20), E ′′

t (χ
∗
t ) can be read as the difference of two definite positive quadratic forms on C×Ḋt,

i.e.
E ′′
t (χ

∗
t ) = A∗

t − B∗
t

with

A∗
t (v, β) =

∫

Ω

(

A
(

(1− α∗
t )ε(v)− 2εet

∗β
)

·
(

(1− α∗
t )ε(v)− 2εet

∗β
)

+ wℓ2∇β · ∇β
)

dx, (51)

B∗
t (β) =

∫

Ω

3Aεet
∗ · εet ∗ β2 dx, εet

∗(x) = aϑ fc

( x2

2
√
kct

)

(e1 ⊗ e1 − νe2 ⊗ e2). (52)

where εet
∗(x) comes from (14) and (33). Accordingly, we have:

Proposition 6. The study of the positivity of E ′′
t is equivalent to compare the following Rayleigh ratio R∗

t

with 1:

R∗
t (v, β) =







A∗
t (v, β)

B∗
t (β)

if β 6= 0

+∞ otherwise
. (53)

Specifically, the possibility of bifurcation from the fundamental state is given by

R
b
t := min

C×Ḋt

R∗
t ,

{

Rb
t > 1 =⇒ no bifurcation

Rb
t ≤ 1 =⇒ bifurcation possible

(54)

while for the stability of the fundamental state one gets

R
s
t := min

C×Ḋ+
t

R∗
t ,

{

Rs
t > 1 =⇒ stability

Rs
t < 1 =⇒ instability

(55)

Remark 1. By standard arguments one can prove that both minimization problems admit a solution. Since
the dependence on time of the fundamental state is smooth, so is the dependence on time of the minima Rb

t

and Rs
t . Since Ḋ+

t ⊂ Ḋt, one immediately gets Rb
t ≤ Rs

t and hence one can suspect that a bifurcation occurs
before the instability. The proof of that result as well as the determination of the times tb and ts when the
bifurcation and the loss of stability occur are the aim of the next subsections.

The bifurcated branch is only observed if it corresponds to stable states. Thus the following result
characterizes the neighboring states after bifurcation from the stable fundamental branch.

Proposition 7. Let (u∗
t , α

∗
t ) be the state of the fundamental branch at time t < ts. Let s 7→ (us, αs) be a

stationary evolution (as defined in Proposition 2) in the time interval [t, t+ η) which starts from (u∗
t , α

∗
t ) at

time t. Then for η sufficiently small, all the states of this branch satisfy (ST) and are thus stable.

Proof. The proof is given in Appendix B.
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4.3. Some properties of Rayleigh’s ratio minimizations

Let ξ̂ = (v̂, β̂) be a minimizer of R∗
t over C×Ḋt. It satisfies the following optimal conditions which involve

the symmetric bilinear forms A∗
t 〈·, ·〉 and B∗

t 〈·, ·〉 associated with the quadratic forms A∗
t (·) and B∗

t (·):

A∗
t 〈ξ̂, ξ〉 = R

b
t B∗

t 〈β̂, β〉, ∀ξ = (v, β) ∈ C×Ḋt. (56)

By standard arguments, one deduces the natural boundary conditions ∂β̂/∂x1 = 0 on x1 = 0 or L. Therefore,

as it is suggested by the x1 independence of the fundamental state, one can decompose β̂ into the following
Fourier series:

β̂(x) =
∑

k∈N

β̂k(ζ) cos
(

kπ
x1
L

)

, ζ =
x2
D∗

t

, (57)

where one introduces the change of coordinate x2 7→ ζ in order that the support of the functions β̂k be the
fix interval [0, 1). Accordingly, the β̂k’s can be seen as elements of H0,

H0 = {β ∈ H1(0, 1) : β(1) = 0}.

In the same way, using the boundary conditions v̂1 = 0, ε12(v̂) = 0 and hence ∂v̂2/∂x1 = 0 on x1 = 0 or L,
v̂ can be decomposed as follows:

v̂(x) =
∑

k∈N

2aϑδτ
√

kct
(

V̂ k
1 (ζ) sin

(

kπ
x1
L

)

e1 + V̂ k
2 (ζ) cos

(

kπ
x1
L

)

e2

)

(58)

where the V̂k’s are normalized to simplify future expressions and belong to H,

H = H1(0,∞)2.

Considering only the rates (v, β) in C×Ḋt which can be decomposed in the same manner and using the
orthogonality between the trigonometric functions of x1 entering in the expansions of (v, β), the different
modes (Vk, βk) are uncoupled from each other. Specifically A∗

t and B∗
t can read as

A∗
t (v, β) =

∑

k∈N

Ak
t (V

k, βk) B∗
t (β) =

∑

k∈N

Bk
t (β

k).

Therefore, if one introduces the Rayleigh ratios Rk
t (V, β) = Ak

t (V, β)/Bk
t (β) for k ∈ N, then

R
b
t = min

k∈N

min
H×H0

Rk
t . (59)

Indeed, let R̂k
t be the minimum of Rk

t over H×H0 and let (V̂ k
t , β̂

k
t ) be a minimizer. Let k̂t be a minimizer

of k 7→ R̂k
t . (All these minimizers exist.) Then Ak

t (V, β) ≥ R̂
k̂t

t Bk
t (β) for all k ∈ N and all (V, β) ∈ H×H0.

Therefore, Rb
t ≥ R̂

k̂t

t . But since R̂
k̂t

t = R∗
t (V̂

k̂t

t , β̂k̂t

t ), one gets R̂k̂t

t ≥ Rb
t and hence R̂

k̂t

t = Rb
t .

Finally, after a last change of variable (63) and introducing the assumption that the internal length ℓ is
small by comparison with the width of the body L, we are in a position to set the following

Proposition 8. Assuming that ℓ ≪ L, at a given time t > 0, the minimum of the Rayleigh ratio R∗
t over

C×Ḋt is given by

R
b
t = min

κ≥0
min
H×H0

R̄κ
τ , R̄κ

τ (V, β) =







Āκ
τ (V, β)

B̄τ (β)
if β 6= 0

+∞ otherwise

, (60)
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where the dimensionless quadratic forms Āκ
τ and B̄τ are given by

Āκ
τ (V, β) =

∫ ∞

0

(1− ᾱτ (δτ ζ))
2

1− ν2

(

κ2V1(ζ)
2 + V ′

2(ζ)
2 + 2νκV1(ζ)V

′
2(ζ) +

1− ν

2

(

V ′
1(ζ) + κV2(ζ)

)2
)

dζ

+

∫ 1

0

(

− 4(1− ᾱτ (δτ ζ))fc(δτ ζ)κV1(ζ)β(ζ) + 4fc(δτ ζ)
2β(ζ)2

)

dζ

+
1

δ2τ τ
2

∫ 1

0

(

κ2β(ζ)2 + β′(ζ)2
)

dζ, (61)

B̄τ (β) =

∫ 1

0

3fc(δτ ζ)
2β(ζ)2 dζ. (62)

The optimal “wave number” k̂t is related to the optimal dimensionless “wave number” κ̂τ (minimizer of
R̄κ

τ ) by

k̂t =
κ̂τ

πθδτ τ

L

ℓ
, τ =

2
√
kct

θℓ
, (63)

and, since ℓ≪ L, the discrete minimization problem over N for k can be replaced by a continuous minimiza-
tion problem over R

+ for κ.

Proof. The change of variable ζ = x2/D
∗
t reduces the support of β to [0, 1). By virtue of (59), it suffices to

insert (57) and (58) into (51)–(53) to obtain after some calculations (60)–(63).

The next Proposition gives some useful estimates of the Rayleigh ratio minima.

Proposition 9 (Some estimates of Rb
t , minH×H0

R̄κ
τ and Rs

t ).

1. There exists C > 0 such that minH×H0 R̄κ
τ ≥ C

τ2
for all τ > 0 and all κ ≥ 0;

2. limt→0 R
b
t = limτ→0

(

minH×H0
R̄κ

τ

)

= +∞, ∀κ ≥ 0;

3. limt→∞ Rb
t ≤ limt→∞ Rs

t < 1;

4. minH×H0 R0
τ ≥ 4/3, ∀τ > 0. Moreover, limτ→∞ minH×H0 R0

τ = 4/3.

5. For given τ > 0,

lim
κ→∞

minH×H0
R̄κ

τ

κ2
=

1

3δ2τ τ
2
.

Proof. The proof is given in Appendix D.

4.4. Determination of the first bifurcation

We are now in a position to obtain the major result of this paper.

Proposition 10. There exists a time tb > 0 such that Rb
t > 1, ∀t < tb and Rb

tb
= 1. Therefore tb is the first

time at which a bifurcation from the fundamental branch can occur. The fundamental branch is still stable
at this time but becomes definitively unstable at a time ts such that tb < ts < +∞.

Moreover, at time tb, the rate problem admits other solutions than the rate (u̇∗
tb
, α̇∗

tb
) corresponding to

the fundamental branch. Such bifurcation rates (u̇, α̇) are necessarily of the following form

(u̇, α̇) = (u̇∗
tb
, α̇∗

tb
) + c (vb, βb) (64)

where (vb, βb) is a minimizer of R∗
tb

over C×Ḋtb while c is an arbitrary (but non-zero) constant whose

absolute value is sufficiently small so that α̇∗
tb
+ c βb ≥ 0. Conversely, if (vb, βb) is a minimizer of R∗

tb
over

C×Ḋtb , then there exists c̄ > 0 such that, for every c with |c| ≤ c̄, (u̇, α̇) given by (64) is really solution of
the rate problem at tb.
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Specifically, the time tb and the mode of bifurcation (vb, βb) are given by

tb =
θ2τ2b ℓ

2

4kc
, (65)

vb(x) = aϑDb

(

V̂ b
1

( x2
Db

)

sin

(

2π
x1
λb

)

e1 + V̂ b
2

( x2
Db

)

cos

(

2π
x1
λb

)

e2

)

, (66)

βb(x) = β̂b
( x2
Db

)

cos

(

2π
x1
λb

)

. (67)

In (65)–(67) the wave number κb and the modes (V̂b, β̂b) are (normalized) minimizers of R̄κ
τb
(V, β) over all

κ ≥ 0 and all (V, β) ∈ H×H0 while τb is such that R̄κb

τb
(V̂b, β̂b) = 1. Since 0 < κb < +∞, the damage mode

of bifurcation is a sinusoid with respect to x1 whose wavelength λb is finite and given by

λb = 2π
θδτbτb
κb

ℓ. (68)

In (66)-(67), Db represents the depth of the damage zone at time tb, i.e.

Db := 2δτb
√

kctb = θδτbτbℓ. (69)

Hence, λb and Db are proportional to the internal length ℓ of the material. The coefficients of proportionality
only depend on the Poisson ratio ν and on the dimensionless parameter θ characterizing the amplitude of
the thermal shock.

Proof. The proof is divided into 3 steps.
(i) : Definitions of tb and ts. By virtue of Proposition 9 (Properties 2 and 3), Rb

t varies continuously from
a value less than 1 to +∞ when t goes from 0 to +∞. Hence, there exists at least one time s such that
Rb
s = 1. Any such time is necessarily non-zero and finite, i.e. 0 < s < +∞. Defining tb as the smallest of

such times, one gets Rb
t > 1 for all t < tb by virtue of Property 2. Therefore, by virtue of (54), tb is the first

time when a bifurcation can occur.
In the same way, since Rs

t ≥ Rb
t and by virtue of the Properties 2 and 3, Rs

t varies continuously from a
value less than 1 to +∞ when t goes from 0 to +∞. Hence there exists at least one time σ such that Rs

σ = 1.
Any such time is necessarily non-zero and finite, i.e. 0 < σ < +∞. Defining ts as the largest of such times,
one gets Rs

t < 1 for all t > ts by virtue of Property 3. Therefore, by virtue of (55), the fundamental branch
is never stable after ts. Hence, these critical times are such that 0 < tb ≤ ts < +∞. (The inequality tb < ts
will be proved in the next step.) ⊳
(ii) : Necessary form of a bifurcation rate. Let us consider the rate problem at time tb and let χ̇ be a

solution. Inserting into (47) and taking into account that χ̇∗
tb

itself satisfies (47) at time tb gives A∗
tb
(χ̇ −

χ̇∗
tb
) ≤ B∗

tb
(χ̇− χ̇∗

tb
), see (49)-(50). But since Rs

tb
:= minC×Ḋtb

R∗
tb

= 1, one has also the converse inequality

and hence the equality
A∗

tb
(χ̇− χ̇∗

tb
) = B∗

tb
(χ̇− χ̇∗

tb
).

Therefore, if χ̇ 6= χ̇∗
tb
, then χ̇ − χ̇∗

tb
must be a minimizer of R∗

tb
over C×Ḋtb . Therefore, by virtue of the

analysis of the previous subsection and Proposition 8, χ̇ must take the form given by (64)–(69). Indeed,

(κb, V̂
b, β̂b) is a minimizer of (κ,V, β) 7→ R̄κ

τb
(V, β) over R+×H×H0 and 1 = R̄κb

τb
(κb, V̂

b, β̂b). By virtue of
the properties 4 and 5 of Proposition 9, 0 < κb < +∞ and hence the wave length λb is non-zero and finite.
By using (63) at time tb, one obtains (65) and (68). Since, at a given τ , ᾱτ depends only on θ, so does δτ .
Therefore R̄κ

τ depends only on ν and θ. Accordingly, κb and τb depend only on ν and θ.
Since λb < +∞, the dependence of βb on x1 is really sinusoidal and hence βb does not belong to Ḋ+

tb
.

Accordingly (vb, βb) cannot be a minimizer of R∗
tb

over C×Ḋ+
tb
. Therefore Rs

tb
> 1 = Rb

tb
and hence ts > tb.

The fundamental branch is still stable at tb. ⊳
(iii) : Existence of a bifurcation rate. It remains to prove that non trivial solutions for the rate problem

really exist at time tb. So, let (κb, V̂
b, β̂b) be a minimizer of (κ,V, β) 7→ R̄κ

τb
(V, β) over R+×H×H0. Since
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(κb, cV̂
b, cβ̂b) is also a minimizer for any c 6= 0 and since β̂b 6= 0, one can normalize the minimizer for

instance by
∫ 1

0
β̂b(ζ)2 dζ = 1. Let us consider the rate χ̇ = χ̇∗

tb
+ cξb with ξb = (vb, βb) given by (66)-(67)

and c 6= 0. Since ξb is a minimizer of R∗
tb

over C×Ḋtb and since Rb
tb
= 1, ξb satisfies the variational equality

E ′′
tb
(χ∗

tb
)〈ξb, ξ〉 = 0, ∀ξ ∈ C×Ḋtb . (70)

Since χ̇∗
tb

is solution of the rate problem, it satisfies (47) which reads at time tb as

E ′′
tb
(χ∗

tb
)〈χ̇∗

tb
, ξ − χ̇∗

tb
〉+ Ė ′

tb
(χ∗

tb
)(ξ − χ̇∗

tb
) ≥ 0, ∀ξ ∈ C×Ḋ+

tb
. (71)

Using (21), (66) and (67), it turns out that Ė ′
tb
(χ∗

tb
)(ξb) = 0. Indeed, by virtue of the independence of εtht

and α∗
t on x1, one gets

Ė ′
tb
(χ∗

tb
)(ξb) =

∫ ∞

0

∫ L

0

φ(ζ) cos
(

kbπ
x1
L

)

dx1 dζ = 0. (72)

Therefore, after calculations based on (70)–(72), one obtains ∀ξ ∈ C×Ḋ+
tb
:

E ′′
tb
(χ∗

tb
)〈χ̇, ξ − χ̇〉+ Ė ′

tb
(χ∗

tb
)(ξ − χ̇) = E ′′

tb
(χ∗

tb
)〈χ̇∗

tb
, ξ − χ̇∗

tb
〉+ Ė ′

tb
(χ∗

tb
)(ξ − χ̇∗

tb
) ≥ 0, (73)

and hence χ̇ satisfies (47) at tb. In order that χ̇ be a solution of the rate problem, it remains to verify that
α̇∗
tb
+ cβb ≥ 0. Since it is true for sufficiently small |c| (one has to prove that α̇′ is non zero and that β′

is finite. This proof is left to the reader), one has constructed a family of non trivial solutions of the rate
problem at time tb. ⊳ The proof of the Proposition is complete. �

5. Numerical results

This section is devoted to the numerical exploration of the equations of the minimization problem.
These results can be classified in three families: illustration, hypothesis validation and quantification. Some
results are illustrated by plotting the solutions. The validation of hypothesis can be made numerically such
as the irreversibility. The main interest is to quantify the results especially those of Proposition 10 with the
wavelength at the first bifurcation. This numerical implementation is based on two aspects: solving (38)
by a shoot method and minimizing (60). Before starting, let us recall that the loading parameter reads
θ = σc/(aϑE), and thus θ → 0 correspond to a strong thermal shock and θ → 1 to a very light loading.

5.1. The fundamental branch

The fundamental branch is a solution with homogenous damage in the direction parallel to the surface
of the thermal shock. It exists for any positive time t > 0 and has non-zero damage in a strip within a
positive distance D∗

t from the surface. Using the time and space variables τ and y adapted to the thermal
problem (Table 1), the value of the damage field in the region 0 < y < δτ = D∗

t /2
√
kct is found by solving

the second order non-autonomous linear differential equation (38) with the boundary conditions (39). The
existence and uniqueness of the solution of this boundary value problem is guaranteed by Proposition 4.
To solve it, for a given time τ and mildness of thermal shock θ, we apply a shooting method, which, after
solving the initial value problem for ᾱτ (δτ ) = ᾱ′

τ (δτ ) = 0, searches for the length of the damaged domain δτ
such that ᾱ′

τ (0) = 0. The corresponding solution for δτ is checked against the asymptotic results for δ0 and
δ∞ obtained in Proposition 4 (Fig. 4). For large values of τ , the numerical problem becomes ill-conditioned
and differential solver and root finding algorithms show convergence issues.

Figure 5 reports the damage field obtained for different times and thermal shock intensities. The left
and right columns show the results in the scaled (y,τ) and physical (x,t) coordinates, respectively. This
fundamental solution is independent of the Poisson ratio ν, being characterized by null displacements in the
x1-direction.
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Figure 4: Asymptotic result for the scaled depth of the damage strip δτ as a function of the mildness thermal shock θ. The
dashed lines are the results for τ → 0, δ0, and for τ → ∞, δ∞. The continuous lines are the results of the numerical root
finding in the shooting method for short (τ = 0.1) and long (τ = 50) times.

The damage is non null for any positive time. For severe thermal shocks (see the plots at the top for
θ = 0.01 in the figure), the solution in the physical space is characterized by an almost fully damaged zone
close to the boundary, which propagates inside the domain with increasing time. For mild thermal shock
(θ = 0.5, 0.9) the solution is with smaller space and time gradients. Note that δτ is decreasing with τ , whilst
D∗

t is increasing with t. For any value of θ and τ , the solution is monotonically decreasing in space, varying
from a maximum value α∗

t (0) at the boundary to 0 at x = D∗
t , as proven in Proposition 3. Hence, its

behavior as a function of θ and t can be globally resumed by the contour-plots of the damage at the surface,
α∗
t (0), and the length of the damaged domain, D∗

t , see Figure 6. Both the maximal value of the damage
field and the damage penetration depth increase monotonically with the severity of the thermal shock and
the time. The limit value of the maximal value of the damage field for t, τ → ∞ is α∗

∞(0) = 1 − θ2 < 1
(see Proposition 4, Eqns. (44)). To check numerically that the solution α∗

t (x2) respects the irreversibility
condition for a fixed loading θ, we report in Figure 5.1 α̇∗

t (x2) as a function of x2 and t for θ = 0.2. Similar
results are found for any other tested value of θ. In particular, for any value of θ, whenever the numerical
ODE solver converges, we get that the minimum value of α̇∗

t (x2) over t > 0, x2 > 0 is 0. The numerical tests
seem to corroborate the validity of Hypothesis 2 on the irreversibility of the fundamental branch.

5.2. Bifurcation from the fundamental branch: critical times, critical damage penetration and optimal wave-
length

The goal of this Section is to quantify numerically the first possible bifurcation from the fundamental
branch. Starting from the result of Proposition 8, we solve the problem using the partial Fourier series
in the x1-variable and the associated wave number κ introduced in Section 4.3, Eqns. (57)-(58). For the
x2-direction, we use the dimensionless variables ζ = x2/D

∗
t , so that the support of the damaged strip of

the fundamental solution is [0, 1) for any loading parameter θ. Hence, we study numerically the sign of the
second derivative of the energy E ′′

t (χ
∗
t ), which below is referred to as E ′′

t for brevity, and look for the critical
bifurcation times τb, the critical wave numbers κb and the associated bifurcation modes as a function of the
thermal shock mildness θ.

In the numerical work, the study of the positive definiteness of E ′′
t is based on the following Proposition.
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Figure 5: Fundamental solution in the physical space and in the spatial coordinates defined (35). The loading parameter takes
the values θ = {.01, .5, .9}. The list of rescaled times τ = {.5, 1, 10, 20, 40} are the same for all 3 loading corresponding to
different dimensionless physical time

√
kct/ℓ
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Figure 6: Fundamental solution: damage at the surface α∗

t
(0) and penetration of the damage D∗

t
of the as a function of the

thermal shock mildness (θ) and time. The red dashed line indicates the bifurcation time as a function θ and separate the
parameter space in regions where the fundamental solution is unique or not.

Figure 7: Check of the irreversibility condition: Total
time derivative of the damage field of the fundamental
branch α∗

t
with respect to time, α̇∗

t
, for the loading θ = .2.

Figure 8: Evolution of the coefficients c11, c12, c22 with
respect to the Poisson ratio ν
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Proposition 11. Let
{

µi, (V
(i), β(i))

}∞

i=1
, µi ≤ µi+1

be the eigenvalues and the eigenvectors of the following quadratic form defined on the finite interval [0, 1]

Ẽ ′′
τ (V, β) = Ãκ

τ (V, β) +
κ

1− ν2
C(V(1))− B̄τ (β), (V, β) ∈ H1(0, 1)2 ×H0 (74)

where Ãκ
τ is the restriction of Āκ

τ on [0, 1] and C(V(1)) = c11
2 V1(1)

2 + c12V1(1)V2(1) +
c22
2 V2(1)

2 is defined
by

C(V(1)) = min
W∈HV(1)

˜̃Aκ
τ (W), HV(1) =

{

W ∈ H1(0,∞)2 : W(0) = V(1)
}

(75)

with
˜̃Aκ
τ (W) =

∫ +∞

0

(

W1(ζ̃)
2 +W ′

2(ζ̃)
2 + 2νW1(ζ̃)W

′
2(ζ̃) +

1− ν

2
(W ′

1(ζ̃) +W2(ζ̃))
2

)

dζ̃

The study of the positivity of E ′′
t is equivalent to compare the smallest eigenvalue µ1 with zero and Rb

t >
(resp. <)1 if and only if µ1 > (resp. <)0. The possibility of bifurcation from the fundamental solution is
given by

{

µ1 > 0 =⇒ no bifurcation

µ1 ≤ 0 =⇒ bifurcation possible
(76)

Moreover, (V(1), β(1)) is the restriction on [0, 1] of the first eigenvector of E ′′
t .

Proof. Being Āκ
τ and B̄τ positive definite and B̄τ defined on [0, 1], the positive definiteness of the quadratic

form E ′′
t is equivalent to the positive definiteness of

Ẽ ′′
τ (V, β) = min

V∈H1(1,∞)2
E ′′
τ (V, β).

The expression (74) is obtained by decomposing Āκ
τ in the contributions coming from the integral over [0, 1]

and [1,∞]. The latter contribution is given by

∫ ∞

1

(1− ᾱτ (δτ ζ))
2

1− ν2

(

κ2V1(ζ)
2 + V ′

2(ζ)
2 + 2νκV1(ζ)V

′
2(ζ) +

1− ν

2

(

V ′
1(ζ) + κV2(ζ)

)2
)

dζ (77)

which, using the change of variable ζ → 1 + ζ̃/κ and that ᾱτ = 0 in [1,∞), may be rewritten as κ
1−ν2

˜̃Aκ
τ .

The criterion for assessing the positivity of the quadratic form Ẽ ′′
t on the basis of the sign of its smallest

eigenvalue is a classical result of the spectral decomposition theorem for a continuous self-joint linear operator
on a real Hilbert space and is not discussed further here.

The quadratic form (74) is a reduced version of the second derivative of the potential energy defined
on the finite interval [0, 1], instead of on the semi-infinite space [0,∞). The formulation above is more
convenient for the numerical analysis than the Rayleigh ratio bifurcation criterion of Proposition 6 for two
main reasons: (i) the availability of efficient numerical methods for the calculation of the smallest eigenvalue
of a symmetric matrix; (ii) the formulation of the eigenvalue problem on a finite interval is better suited for
the discretization. The effect of the subdomain [1,∞] is accounted for by an equivalent stiffness localized
in ζ = 1 ( C(V(1) ), which implies a boundary condition of the Robin type in ζ = 1. The coefficients of
the quadratic form C are evaluated by solving the linear differential equations obtained as Euler-Lagrange
equations for (75). An easy analytical solution is possible for the case ν = 0, giving

c11 = 2/3 c12 = −1/3 c22 = 2/3.

For ν 6= 0 the analytical solution becomes cumbersome and the coefficients must be computed numerically,
once for all. The corresponding results obtained through a finite element solver are reported in Figure 8.
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They are obtained on a domain long enough to obtain a result almost independent of its length (the solutions
of (75) are decaying exponentially with ζ). Note that c11 = c22.

For the numerical analysis of the sign of (74), we discretize the problem using linear 1d Lagrange finite
elements and a uniform mesh. Hence, for given values of the parameters τ, θ, ν and the wave number κ in the
x1-direction, we calculate the smallest eigenvalue µ1(τ, κ, θ, ν) of the matrix corresponding to the discrete
version of (74). The numerical code for this purpose is based on the use of the finite element library FEniCS

(Logg et al., 2012) and the eigensolvers provided in SLEPC (Hernandez et al., 2005).

Figure 9: Decreasing of the first eigenvalue µ1 with re-
spect to τ of the quadratic form (74) for θ = .4, ν = 0 for
κ = {1, 2, 5, 10}

Figure 10: Critical curves separating the states (κτ , τ)
unique and those where bifurcation can occur for different
values of the loading parameter θ

To find the shortest bifurcation time τb for which µ1 = 0 and the associated wave number κb we proceed
with the following steps:

1. Initialization. Set the values of (ν, θ).

2. Define the critical curve. Given κ, find τ(κ) such that µ1(τ, κ, θ, ν) = 0, using a bisection algorithm
on τ . This gives the critical curve in the τ − κ space.

3. Find the bifurcation point given by κb = argminκ µ1(τ(κ), κ, θ, ν) and τb = τ(κb). To this end we use a
numerical minimization routine using the downhill simplex algorithm (fmin function provided in the
optimization toolbox of SciPy (Jones et al., 2001–))

For step 2 we are not able to show neither existence nor uniqueness of a solution for the critical τ for a given
κ. We found numerically that the µ1(τ, κ, θ, ν) is a monotonically decreasing function of τ (Fig. 9), which
gives us the convergence of the bisection algorithm if a solution exists in the selected initial interval. However,
for small values of κ a solution may not exist at all, in agreement with the Property 4 of Proposition 9.

Figure 10 illustrates the critical curves obtained for ν = 0 and different θ. For a given loading θ the
critical curve partitions the space (κ, τ) in the region below the curve, where the fundamental solution is
the unique solution of the rate problem, and in the region above the curve, where other solutions may exist.
During the evolution problem, the first time for which another solution may exist (and indeed it does exist, as
stated in Proposition 10), is the minimum point on the critical curve κ 7→ τ(κ). This point is the bifurcation
point corresponding to the critical time τb and the wave number κb (see Proposition 10). The numerical
solution provided in Figure 10 may be checked against the qualitative properties of the Rayleigh ratio proved
in Proposition 9. Namely, we observe that: (i) the fundamental solution is unique for τ sufficiently small
(Properties 1-2); (ii) the fundamental solution is unique for sufficiently small wave numbers even for very
long times (Property 4); (iii) for κ→ ∞, τ(κ) is approximately linear in κ (Property 5).

For the case ν = 0, the critical time τb and wave number κb at the bifurcation as a function of θ are
reported in Figure 11. Figure 12 shows the shape of the damage rate βb as a function of ζ for the eigenvector
associated to the eigenvalue µ1 = 0.
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The key numerical results of this paper are condensed in Figure 13. It shows as a function of θ (and

ν = 0) the plots of the critical bifurcation time tb, wave length λb = 2π
θδτbτb

κb

ℓ and penetration of the damage
Db in the physical space and time variables, x2 and t. The critical time at the bifurcation is reported also
as dashed lines in Figure 6, which partitions the θ − t space in the regions where the fundamental solution
is unique or not.

Figure 11: Wave number and rescaled time at the first
bifurcation point κb, τb defined by (57) and (63) for a
vanishing Poisson ratio ν = 0

Figure 12: Characterization of damage rate at bifurcation
through the eigenvector βb (64)

Figure 13: Wavelength λb, time tb and penetration of the damage zone Db at the first possible bifurcation (given by (65), (68))
for a vanishing Poisson ratio ν = 0 as a function of the loading parameter θ

Figure 14 shows the influence of the Poisson ratio on the results for a fixed value of θ, showing that the
critical wavelength, time and damage depth have a relevant dependence on the Poisson ratio only for ν close
to −1. Recall that in plane stress elasticity thermodynamically admissible values of the Poisson ratio are in
the interval (−1, 1).
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Figure 14: Influence of the Poisson ratio on the characteristic of the first bifurcation point as a function of the loading parameter
θ = .4.

6. Comments

6.1. Main results

The analysis of gradient damage models of the previous sections quantitatively predicts the establishment
of a fundamental solution with diffuse damage and its bifurcation at a finite time tb towards a periodic
solution. We resume and comment below the main results, coming from our analytical and numerical
approaches on a semi-infinite slab.

� Loading parameter. The solution of the problem depends on a single dimensionless parameter, the
mildness of the thermal shock θ = σc/aEϑ, defined as the ratio between the critical stress of the
material and the thermal stresses induced by the temperature drop ϑ at the surface, and the Poisson
ratio ν. The dependence on the internal length of the damage model ℓ is almost trivial and given
explicitly (see below).

� Existence of a critical severity of the thermal shock. For mild shocks with θ ≥ 1 the solution remains
purely elastic at any time and there is not damage at all.

� Fundamental solution. If θ < 1 there exists, for any t > 0 a solution with diffused damage in a strip,
varying monotonically from a maximum damage value α∗

t (0) at the surface to zero at a depth D∗
t .

The values of α∗
t (0) and D

∗
t as a function of time and the mildness of the thermal shock can be read

in Figure 6, where the dashed red line critical time tb for the first bifurcation toward the periodic
solution. This fundamental solution becomes unstable at a finite time ts > tb (Proposition 10).

� Bifurcated solution. At a finite time tb there exists a bifurcation from the fundamental solution toward
a periodic solution with a wavelength λb in the x1 variable. This bifurcated branch is stable for t
sufficiently close to tb (Proposition 7).

� Bifurcation time. The bifurcation time tb is monotonically increasing with the mildness of the thermal
shock. The numerical results of Figure 13 for ν = 0 indicate that it varies from very small values for
θ → 0 to very large values for θ → 1. Proposition 10 states that tb is always a strictly positive time.

� Bifurcation wavelength. The wavelength of the bifurcated solution is increasing with the mildness of
the thermal shock θ . The numerical results of Figure 13 for ν = 0 indicate that it goes to zero for
θ → 0+. For θ → 1, it has finite limit which is of about eight times the internal length, (numerical
result for θ = .96).
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� Damage penetration. The damage penetration at the bifurcation, Db, is almost independent of the
loading (it varies only between ℓ and 1.5 ℓ), as evident also from Figure 6(b), where the dashed line
corresponding to the bifurcation almost coincides with an iso-depth line. The penetration of the
damage band seems to be the parameter triggering the bifurcation and not the maximal value of
damage or time which vary with the loading.

� Influence of the internal length. The damage penetration in the homogeneous solution Dt and the
wavelength λb of the bifurcated solution are simply proportional to the internal length ℓ of the damage
model. This fact does not really come as surprise, because ℓ is the only characteristic length of the
problem for a semi-infinite slab (the characteristic length of the diffusion process associated to the
material constant kc can be eliminated by a trivial rescaling of the time variable). The bifurcation
time tb is proportional to ℓ2.

� Influence of the Poisson ratio. The fundamental solution is independent of the Poisson ratio. The
numerical results of Figure 14 show a weak dependence of the key properties of the bifurcated solution
of the Poisson ratio ν, except for ν → −1.

6.2. From diffuse damage to periodic cracks

The bifurcation toward a periodic solution is the onset of the localization process leading to the formation
of periodic crack patterns. The fundamental solution and its bifurcation correspond to the steps 1 and 2
observed in the numerical simulations described in the introduction (see Figure 2). Although the study of
the rest of the evolution is outside the scope of the present paper, the numerical experiments show that the
oscillations in the damage field further develop by localizing in completely damaged bands. These bands are
the regularized representation, typical of gradient damage models, of the periodic array of parallel cracks
observed in the experiments. From previous studies in 1d setting (Pham and Marigo, 2012), we know the
damage profile in a cross section of each fully developed localization band. In particular, their width Lc and
energy dissipated per unit line Gc (corresponding to the fracture toughness of the cracks) are given by

Lc = 2
√
2 ℓ, Gc =

4
√
2

3

σc
2ℓ

E
. (78)

Most probably, the wavelength λb found by the bifurcation analysis is a lower bound on the minimal spacing
of the crack at the initiation. Indeed, if the bifurcation is the first step of the localization process into cracks,
we have no guarantee that a crack will develop in each period.

The damage model has been introduced using the Young modulus E, the critical stress in a uniaxial
tensile test σc and the internal length ℓ as material parameters (see Eqns. (1), (10)). Instead of the couple
(σc, ℓ), one can equivalently adopt as independent material constants of the damage model (Gc, σc) or (Gc, ℓ)
and use (78) for the conversions.

6.3. Domain of applications

In the present paper we made explicit reference to the geometry and loading of the experimental setups
for thermal shock on glass or ceramics of Shao et al. (2010, 2011); Bahr et al. (2010); Jiang et al. (2012),
where thin specimens of the typical size 50×10×1 mm are heated (300◦C - 600◦C ) before being dipped into a
water bath (20 ◦C ). Thermal shock cracks may appear also in cementitious materials during the exothermic
hydration process, where for massive structures the associated temperature drop may reach 40 ◦C . Cracking
of the rocks at the wall of gas storage caverns is another example, which is an unwanted consequence of
the aggressive operational modes introduced to answer new market regulations. Salt caverns, being initially
designed for seasonal storage, i.e. a small number of yearly pressure cycles and moderate gas-production
rates, are often converted to high-frequency cycling. The rapid release of the gas on a short period of time
implies a drop in temperature and a thermal shock for the rocks at the walls of the cavern, where cracks
may appear (Berest et al., 2012). The results for thermal loading may be extended by analogy to all the
other phenomena governed by a diffusion process which induces a linear shrinkage. The analogy with drying
process of cementitious (Colina and Acker, 2000) or geological (Morris et al., 1992; Chertkov, 2002; Goehring

27



et al., 2009) materials is of particular interest. In this case the temperature field is replaced by the water
content or the relative humidity of the material and the thermal shock by a sudden change of the humidity
of the environment. In Table 2 we report examples for the relevant material constants for these different

E [GPa] σc [MPa] ℓ a (×10−6) ϑ θ
Ceramics 370 270 50 µm 8.4 300− 600◦C 0.15− 0.3
Gas storage caverns 20 1 .5− 2 m 40 30− 60◦C 0.02− 0.04
Drying of concrete 40 2− 3 30− 100 mm 5− 15 40− 80 l/m3 0.05− 0.25

Table 2: Relevant material parameters and corresponding dimensionless thermal shock mildness parameter θ for ceramics,
geomaterials and concrete. The values are purely orientative, giving an indication only of the order of magnitude of the
material parameters. The internal length is calculated through equation (78) by using the data available for the critical stress
σc and the fracture toughness Gc.

situations, giving the corresponding values of the dimensionless parameter appearing in our analysis. The
typical order of magnitude of the mildness of the thermal shock θ lies in the range from 0.1 to 0.5.

7. Conclusion and perspectives

We have studied the initiation of a periodic solution in a gradient damage model under a thermal shock
loading. The quasi-static evolution problem for a semi-infinite slab has been formulated in the framework
of the variational theory of rate-independent processes. From the first order stability conditions and energy
balance, we have proven that, for sufficiently severe thermal shocks, damage initiates at t = 0 with non-
zero damage diffused in a strip parallel to the surface of the shock. The analysis of the rate problem
about this fundamental solution shows the existence of a bifurcation at a finite time tb towards a stable
solution with periodic damage. The fundamental solution becomes unstable at a later time ts > tb. The
bifurcation and stability analysis is based on the study of the sign of the second derivative of the energy
in an infinite dimensional setting. The analytical results are obtained by the minimization of a Rayleigh
ratio and the decomposition of the solution with a partial Fourier series. Further quantitative results about
the time, damage penetration and wavelength at the bifurcation are obtained numerically by solving a
one-dimensional eigenvalue problem.

Our work relies on many simplifying hypotheses, which allow us to reach an almost complete analytical
treatment of the initiation problem. First, the geometry and the loading are highly idealized. More realistic
settings will include the effect of the finite dimension of the slab and a full two-dimensional solution of
the thermal problem, eventually accounting for boundary condition of the Robin type on the temperature
(Newtonian cooling) and the localized changes in the thermal conductivity due to cracks. Three dimensional
effects may play a crucial role as soon as the thickness of the slab become comparable with the internal
length of the material. Further generalization should consider the effect of choice of the damage law, as
done in a 1d setting by Pham and Marigo (2012). Here we made a specific choice (see Eqns. (2) and (5)),
which assures the existence of a purely elastic response and an easy numerical treatment.

The present work is a first attempt to rigorously study the morphogenesis of complex crack patterns
in regularized fracture mechanics models. The study of the further localization of the bifurcated solution
with periodic damage and of the selective crack propagation typical of the thermal shock problem will be
the subject of a further work, currently under preparation. The next step is to compare the semi-analytical
results of this paper to the full scale two-dimensional numerical simulations of Figure 2. The comparison
with the experimental results is a further ambitious goal. A key problem is that the distinction between
homogeneous damage and periodic fracture is somehow arbitrary, both theoretically and experimentally.

Acknowledgement

J-J. Marigo and C. Maurini gratefully acknowledge the funding of the ANR program T-Shock OTP
J11R087.

28



References

Ambrosio, L., 1990. Existence theory for a new class of varitional problems. Arch. Rational Mech. Anal., 291–322.
Bahr, H. A., Fischer, G., Weiss, H. J., 1986. Thermal-shock crack patterns explained by single and multiple crack propagation.

Journal of Materials Science 21, 2716–2720, 10.1007/BF00551478.
URL http://dx.doi.org/10.1007/BF00551478

Bahr, H.-A., Weiss, H.-J., Bahr, U., Hoffmans, M., Fischer, G., Balke, H., 2010. Scaling behavior of thermal shock crack
patterns and tunneling cracks driven by cooling or drying. Journal of the Mechanics and Physics of Solids 58, 1411–1421.

Bahr, H.-A., Weiss, H.-J., Maschke, H., Meissner, F., 1988. Multiple crack propagation in a strip caused by thermal shock.
Theoretical and Applied Fracture Mechanics 10, 219–226.

Bazant, Z., Ohtsubo, H., Aoh, K., 1979. Stability in post-critical growth of a cooling or shrinking cracks. International Journal
of Fracture 15, 443–456.

Benallal, A., Marigo, J.-J., 2007. Bifurcation and stability issues in gradient theories with softening. Modelling and Simulation
in Materials Science and Engineering 15, 283–295.
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Appendix A. Proof of Proposition 3

Proof. The proof is divided into 8 steps. Throughout the proof τ is a given positive number, D1
0 := {β ∈

H1(0,∞) : 0 ≤ β ≤ 1} and D0 := {β ∈ H1(0,∞) : 0 ≤ β}.
(i) : Existence and uniqueness of the minimizer. Since Ēτ is positive and lower semi-continuous and since

D1
0 is closed in H1(0,∞), a minimizer exists. Since Ēτ is strictly convex, the minimizer is unique and is

denoted by ᾱτ . ⊳
(ii) : ᾱτ is also the unique minimizer of Ēτ over D0. By the same arguments as for the minimization over

D1
0, the minimizer exists and is unique, say α̂τ . Let us set α̌τ = min{α̂τ , 1} ∈ D1

0 ⊂ D0. One easily checks
that Ēτ (α̌τ ) ≤ Ēτ (α̂τ ). Therefore α̂τ = α̌τ ∈ D1

0 and hence α̂τ = ᾱτ . ⊳
(iii) : 0 is not the minimizer. Since θ < 1 = fc(0), there exists h > 0 such that θ < fc(y) in [0, h]. Since

Ē ′
τ (0)(β) =

∫ ∞

0

(θ2 − fc(y)
2)β(y) dy,

if one chooses β ∈ D0 with its support included in [0, h], then Ē ′
τ (0)(β) < 0 and hence 0 cannot be the

minimizer. The (open) support of ᾱτ is denoted by Iτ , i.e. Iτ = {y ≥ 0 : ᾱτ (y) > 0}. ⊳
(iv) : ᾱτ is indefinitely continuously differentiable in Iτ and satisfies

1

τ2
ᾱ′′
τ (y) + fc(y)

2(1− ᾱτ (y)) = θ2 ∀y ∈ Iτ . (A.1)

Since ᾱτ minimizes Ēτ over D0, by standard arguments one gets that it satisfies

∫ ∞

0

(

1

τ2
ᾱ′
τ (y)β

′(y) +
(

θ2 − fc(y)
2(1− ᾱτ (y))

)

β(y)

)

dy ≥ 0, ∀β ∈ D0, (A.2)

and the equality holds when β = ᾱτ . Let ϕ ∈ C∞
0 (Iτ ) (where C

∞
0 (Iτ ) is the set of indefinitely differentiable

functions with compact support in Iτ ). For h small enough, β := ᾱτ + hϕ ∈ D0 and one gets from (A.2)

∫

Iτ

(

1

τ2
ᾱ′
τ (y)ϕ

′(y) +
(

θ2 − fc(y)
2(1− ᾱτ (y))

)

ϕ(y)

)

dy ≥ 0.
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Changing ϕ in −ϕ gives the opposite sign and the equality for every ϕ ∈ C∞
0 (Iτ ). Therefore ᾱτ satisfies

(A.1) in Iτ . Since ᾱτ is continuous and since fc is indefinitely continuously differentiable, one deduces by
induction that ᾱτ is also indefinitely continuously differentiable in Iτ . ⊳
(v) : The support Iτ is an interval of the form [0, δτ ) with 0 < δτ ≤ ∞. Let us prove by contradiction

that there does not exist a connected component (a, b) of Iτ such that 0 < a < b ≤ ∞. If such a component
exists, then ᾱτ (a) = ᾱτ (b) = 0 (even if b = ∞ because ᾱτ must tend to 0 at infinity in order to belong to
H1(0,∞)). Let us prove that ᾱ′

τ (a) = 0 by using (A.2). For h > 0 and small enough, let us consider the
family of test functions βh defined by βh(y) = 1 − |y − a| /h when |y − a| ≤ h and βh(y) = 0 otherwise.
Then (A.2) gives

0 ≤ ατ (a− h)

h
+
ατ (a+ h)

h
≤ τ2

∫ a+h

a−h

(

θ2 − fc(y)
2(1− ᾱτ (y))

)

βh(y) dy.

Passing to the limit when h goes to 0 gives ᾱ′
τ (a−) = ᾱ′

τ (a+) and hence ᾱτ is differentiable at a. But since
ᾱτ ≥ 0 and ᾱτ (a) = 0, this is possible if and only if ᾱ′

τ (a) = 0. Therefore ᾱ′′
τ (a+) must be non negative so

that ᾱτ be positive in a neighborhood of a. Since ᾱ′′
τ (a+) = τ2(θ2 − fc(a)

2) by (A.1), since fc is decreasing
and since 0 < ᾱτ ≤ 1 in (a, b), one gets

α′′
τ (y) = τ2(θ2 − fc(y)

2(1− ᾱτ (y)) > τ2(θ2 − fc(a)
2) ≥ 0, ∀y ∈ Iτ .

Consequently ᾱ′
τ is increasing and hence positive in Iτ . Hence ᾱτ must be increasing in Iτ which is incom-

patible with ᾱτ (b) = 0. This is the contradiction and therefore a = 0. Consequently, there exists a unique
connected component and Iτ is an interval of the form [0, δτ ). ⊳

(vi) : ᾱτ satisfies the boundary conditions ᾱ′
τ (0) = ᾱτ (δτ ) = ᾱ′

τ (δτ ) = 0 and δτ is finite. Taking β = ᾱτ

in (A.2) which is then an equality, integrating by parts the first term in the integral and using (A.1) give
ᾱ′
τ (0)ᾱτ (0) = 0. Since ᾱτ (0) > 0, one obtains ᾱ′

τ (0) = 0. If δτ = ∞, then the boundary conditions at
δτ are a consequence of ᾱτ belongs to H1(0,∞) and is indefinitely continuously differentiable. If δτ < ∞,
integrating by parts the first term in the integral of (A.2) and using (A.1) leads to

ᾱ′
τ (δτ−)β(δτ ) + τ2

∫ ∞

δτ

(θ2 − fc(y)
2)β(y) dy ≥ 0, ∀β ∈ D0.

This is possible if and only if ᾱ′
τ (δτ−) ≥ 0 and θ ≥ fc(y) for all y ≥ δτ . But since ᾱτ (δτ ) = 0 and ᾱτ ≥ 0,

one also has ᾱ′
τ (δτ−) ≤ 0. Hence ᾱ′

τ (δτ−) = 0 and since ᾱ′
τ (δτ+) = 0 one finally has ᾱ′

τ (δτ ) = 0.
From the inequality θ ≥ fc(y) for all y ≥ δτ one deduces that δτ ≥ fc

−1(θ). Integrating (A.1) over Iτ
gives

θ2δτ =

∫ δτ

0

fc(y)
2(1− ᾱτ (y)) dy ≤

∫ ∞

0

fc(y)
2 dy <∞

and hence δτ is finite. ⊳
(vii) : ᾱτ (y) is monotonically decreasing from ᾱτ (0) < 1 to 0 when y goes from 0 to δτ . If ᾱτ (0) = 1, then

we should have both ᾱ′
τ (0) = 0 and ᾱ′′

τ (0) = θ2 > 0. Hence ᾱτ (y) should be greater than 1 for small positive
y which is impossible. So, ᾱτ (1) < 1. Let us show that there does not exist a point y where ᾱ′

τ (y) > 0,
by contradiction. If such a point exists, then by continuity there should exist a connected component (a, b)
where ᾱ′

τ > 0. Since ᾱ′
τ (0) = ᾱ′

τ (δτ ) = 0, one should have ᾱ′
τ (a) = ᾱ′

τ (b) = 0. Consequently ᾱ′′
τ (a) ≥ 0.

But, by (A.1), ᾱ′′
τ should be increasing in (a, b) (because fc and 1− ᾱτ are decreasing). Therefore ᾱ′′

τ should
be positive and hence ᾱ′

τ should be increasing in (a, b). That is impossible, hence ᾱ′
τ ≤ 0 everywhere. ⊳

(viii) : There exists a unique pair (ᾱτ , δτ ) in D0×(0,+∞) which satisfies (38)–(40). Let us first remark
that (40) with ᾱτ = 0 in (δτ ,∞) implies that

1

τ2
ᾱ′′
τ (y) + fc(y)

2(1− ᾱτ (y)) ≤ θ2 ∀y ∈ (δτ ,∞). (A.3)

Multiplying (38) and (A.3) by β ∈ D0, integrating over (0, δτ )∪ (δτ ,∞), integrating by parts and using (39)
leads to (A.2). Moreover the equality holds when β = ᾱτ . Therefore ᾱτ ∈ D0 is such that Ē ′

τ (ᾱτ )(β−ᾱτ ) ≥ 0
for all β ∈ D0 which is a characterization of the unique minimizer of Ēτ over D0. ⊳ �
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Appendix B. Proof of Proposition 7

Proof. ‖ · ‖ denotes indiscriminately the natural norm on H1(Ω) and H1(Ω)2. Let s ∈ (t, t + η), (v, β) ∈
C×Ḋ+

s , (v, β) 6= (0, 0) and let h be a small positive real number. Expanding with respect to h up to the
second order gives

Es(us + hv, αs + hβ) = Es(us, αs) + E ′
s(us, αs)(v, β) +

1

2
E ′′
s (us, αs)(v, β) + ≀(h)

Since the evolution is stationary we have E ′
t(us, αs)(v, β) ≥ 0. Thus it is sufficient to prove E ′′

t (us, αs)(v, β) >
0 for proving the stability of (us, αs) in the direction (v, β). By continuity the quadratic form E ′′

t (us, αs)
converges to the quadratic form E ′′

t (ut, αt) when s tends to t and

∀(v, β) ∈ C×H1(Ω) | (E ′′
s (us, αs)− E ′′

t (u
∗
t , α

∗
t )) (v, β) |≤ O(s− t)(‖v‖2 + ‖β‖2)

where O(·) is bounded on [0, η) and limς→0 O(ς) = 0. Therefore it is sufficient to prove that there exist Ct

such that
∀(v, β) ∈ C×Ḋ+

t E ′′
t (u

∗
t , α

∗
t )(v, β) ≥ Ct(‖v‖2 + ‖β‖2) (B.1)

Indeed, in such a case for η sufficiently small we will have for all s ∈ (t, t+ η)

E ′′
s (us, αs)(v, β) ≥ (Ct −O(s− t))(‖v‖2 + ‖β‖2) > 0

Since t < ts the state (u∗
t , α

∗
t ) is stable and Rs

t = minC×Ḋ+
t

R∗
t > 1. By definition of see (53) we have

∀(v, β) ∈ C×Ḋ+
t E ′′

t (u
∗
t , α

∗
t )(v, β) ≥

(

1− 1

Rs
t

)

A∗
t (v, β) ≥ 0

with the equality to 0 if and only if (v, β) = (0, 0). Thus we obtain (B.1).

Appendix C. Proof of Proposition 5

Proof. The three items (IR), (ST) and (EB) give the following necessary conditions for (u̇, α̇):

1. By (IR), we get α̇ ≥ 0 and hence (u̇, α̇) ∈ C×D+;

2. The stability condition (ST) implies the first order stability conditions which at time t+ h read as

∀(v, β) ∈ C×D+, E ′
t+h(ut+h, αt+h)(v, β) ≥ 0. (C.1)

Let us discriminate between two types of direction:

(a) For the directions (v, β) such that E ′
t(u

∗
t , α

∗
t )(v, β) > 0, by continuity the inequality (C.1) holds

for h small enough and hence (ST) is satisfied.
(b) Considering the directions (v, β) such that E ′

t(u
∗
t , α

∗
t )(v, β) = 0. By virtue of (26)-(27) they

correspond to the directions such that β = 0 in the undamaged domain at time t Ωe
t = Ω \ Ωd

t .
Dividing the inequality (C.1) by h and passing to the limit when h goes to 0 give the following
inequality that the (u̇, α̇) rate must satisfy

∀(v, β) ∈ C×D+ E ′′
t (u

∗
t , α

∗
t ) 〈(u̇, α̇), (v, β)〉+ Ė ′

t(u
∗
t , α

∗
t )(v, β) ≥ 0. (C.2)

In (C.2), E ′′
t (u

∗
t , α

∗
t ) represents the symmetric bilinear form associated with the quadratic form

defined in (20), while Ė ′
t(u

∗
t , α

∗
t ) is the linear form given by (21).
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3. We deduce from the Kuhn-Tucker conditions in the bulk at time t, see Proposition 2, that α̇ = 0 in
Ωe

t . The energy balance (EB) reads at time t+ h

0 = Et+h(χt+h)− Et(χ∗
t ) +

∫ t+h

t

∫

Ω

σs · ε̇ths dx ds

= Et+h(χt+h)− Et+h(χ
∗
t ) + Et+h(χ

∗
t )− Et(χ∗

t ) +

∫ t+h

t

∫

Ω

σs · ε̇ths dx ds (C.3)

where σs = (1 − αs)
2A(ε(us) − εths ), χt+h = (ut+h, αt+h) and χ∗

t = (u∗
t , α

∗
t ). A first expansion of

(C.3) gives

0 = E ′
t+h(χ

∗
t )(χt+h − χ∗

t ) +
1

2
E ′′
t+h(χ

∗
t )(χt+h − χ∗

t ) + Et+h(χ
∗
t )− Et(χ∗

t )

+

∫ t+h

t

∫

Ω

σs · ε̇ths dx ds+ o(‖χt+h − χ∗
t ‖2) (C.4)

where E ′′
t (χ

∗
t ) is the quadratic form defined in (20), ‖ · ‖ denotes the natural norm on C×D. A second

expansion leads to

0 = E ′
t(χ

∗
t )(χt+h − χ∗

t ) + h2Ė ′
t(χ

∗
t )(χ̇) +

h2

2
E ′′
t (χ

∗
t )(χ̇) + hĖt(χ∗

t ) +
h2

2
Ët(χ∗

t )

+h

∫

Ω

σ∗
t · ε̇tht dx+

h2

2

∫

Ω

(σ∗
t · ε̈tht + σ̇∗

t · ε̇tht ) dx+ o(h2) (C.5)

where χ̇ = (u̇, α̇) and σ̇ is the right derivative of t 7→ σt at t. Let us examine the different terms of
(C.5):

(a) Using (6), (25), (26), (35)–(39), one gets

E ′
t(χ

∗
t )(χt+h − χ∗

t ) =

∫

Ωd

t+h
\Ωd

t

(

w − Ea
2ϑ2 fc

2

(

x2

2
√
kct

))

αt+h(x) dx.

By virtue of Hypotheses 1 and 3, αt+h is continuously differentiable and vanishes outside Ωd
t .

Therefore maxΩd

t+h
\Ωd

t

|αt+h| = o(h) since Ωd
t+h \ Ωd

t is included in a strip of width Ch. Hence

E ′
t(χ

∗
t )(χt+h−χ∗

t ) = o(h2) (in the case of the fundamental branch, this term is of the order of h3);

(b) By virtue of (17), Ėt(χ∗
t ) = −

∫

Ω
σ∗

t · ε̇tht dx;

(c) By virtue of (18), Ët(χ∗
t ) =

∫

Ω
((1− α∗

t )
2Aε̇tht · ε̇tht − σ∗

t · ε̈tht ) dx.

Using all these calculations, dividing (C.5) by h2 and passing to the limit when h goes to 0, one finally
obtains

E ′′
t (χ

∗
t )(χ̇) + Ė ′

t(χ
∗
t )(χ̇) = 0. (C.6)

where by virtue of (21), Ė ′
t(χ

∗
t )(χ̇) = −

∫

Ω
(σ̇ · ε̇tht + (1− α∗

t )
2Aε̇tht · ε̇tht ) dx.

Equation (47) is a direct consequence of (C.2) and (C.6).

Appendix D. Proof of Proposition 9

Proof. Throughout the proof we use the notations of Section 4.3.

1. By virtue of the positivity of the sum of the first two terms in the right hand side of (61) and since
fc ≤ 1 everywhere, one gets

R̄κ
τ (V, β) ≥

1

3δ2τ τ
2

∫ 1

0
β

′2 dζ
∫ 1

0
β2 dζ

, ∀V ∈ H, ∀β ∈ H0 \ {0}
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and hence

min
H×H0

R̄κ
τ ≥ 1

3δ2τ τ
2

min
β∈H0\{0}

∫ 1

0
β

′2 dζ
∫ 1

0
β2 dζ

=
π2

12δ2τ τ
2
.

Since, by Proposition 4, δτ varies continuously from δ0 to δ∞, maxτ δτ <∞ and the result follows.
2. It is a direct consequence of the previous estimate, of the definition (63) of τ and of the definition (60)

of Rb
t .

3. Let us consider the following pair (v, β) in C×Ḋ+
t :

β(x) = β̌(ζ)
(

1 + cos(kπ
x1
L
)
)

, v(x) = 2aϑδτ
√

kct V̌ (ζ) sin(kπ
x1
L
)e1,

where β̌ ∈ H0 ∩ {β ≥ 0}, V̌ ∈ H1(0,∞) and k ∈ N∗. Inserting into (53) and using (61)–(62) give

R
s
t ≤ R∗

t (v, β) =
2Ā0

τ (0, β̌) + Āκ
τ (V̌ e1, β̌)

3B̄τ (β̌)
.

After some calculations, one gets 3B̄τ (β̌) = 9
∫ 1

0
fc(δτ ζ)

2β̌(ζ)2 dζ and

2Ā0
τ (0, β̌) + Āκ

τ (V̌ e1, β̌) =

∫ ∞

0

(1− ᾱτ (δτ ζ))
2

(

κ2V̌ (ζ)2

1− ν2
+

V̌ ′(ζ)2

2(1 + ν)

)

dζ

+

∫ 1

0

(

− 4(1− ᾱτ (δτ ζ))fc(δτ ζ)κV̌ (ζ)β̌(ζ) + 12fc(δτ ζ)
2β̌(ζ)2

)

dζ

+
1

δ2τ τ
2

∫ 1

0

(

κ2β̌(ζ)2 + 3β̌′(ζ)2
)

dζ.

Taking

V̌ (ζ) =
1− ν2

κ

fc(δτ ζ)

1− ᾱτ (δτ ζ)
β̌(ζ)

and passing to the limit when t→ ∞ yields

lim
t→∞

R
s
t ≤

8− 4ν2

9
+
C(β̌)

κ2
,

where C(β̌) depends on β̌ but not on κ. Passing to the limit when κ goes to ∞ gives the desired
inequality for Rs

t . Since Rb
t ≤ Rs

t (Remark 1) the result follows.
4. When κ = 0, the crossed term of β with V vanishes in R̄κ

τ (V, β). Therefore, V = 0 is the minimizer
of R0

τ at every τ > 0. Accordingly, one gets

min
H×H0

R0
τ =

4

3
+

1

3δ2τ τ
2

min
β∈H0\{0}

∫ 1

0
β′(ζ)2 dζ

∫ 1

0
fc(δτ ζ)2β(ζ)2 dζ

,

from which one easily deduces the announced property.
5. The behavior of minH×H0

R̄κ
τ when κ goes to infinity is a problem of singular perturbation in which the

sequence of minimizers degenerates. So, this asymptotic behavior is obtained by a direct approach.
First, one deduces from (61)-(62) the following estimate:

R̄κ
τ (V, β) ≥

κ2

3δ2τ τ
2

∫ 1

0
β(ζ)2 dζ

∫ 1

0
fc(δτ ζ)2β(ζ)2 dζ

>
κ2

3δ2τ τ
2
, ∀ (V, β) ∈ H×(H0 \ {0}),

where the second inequality is due to fc < 1 in (0, 1). Therefore one obtains the following lower bound
for the limit of the minimum when κ→ ∞:

lim
κ→∞

minH×H0
R̄κ

τ

κ2
≥ 1

3δ2τ τ
2
.
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It remains to construct a minimizing sequence such that the equality holds at the limit. Let βκ be the
sequence defined by βκ(ζ) = max{1− κζ, 0}. Hence βκ ∈ H0 and R̄κ

τ (0, β
κ)/κ2 is given by

R̄κ
τ (0, β

κ)

κ2
=

1

3δ2τ τ
2

∫ 1/κ

0
(1− κζ)2 dζ + 1/κ

∫ 1/κ

0
fc(δτ ζ)(1− κζ)2 dζ

+
4

3κ2

and passing to the limit yields

lim
κ→∞

R̄κ
τ (0, β

κ)

κ2
=

1

3δ2τ τ
2
.

The proof is complete.
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