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Abstract

Wave propagation in a 1-D guide with an array of Helmholtz resonators is
studied numerically, considering large amplitude waves and viscous bound-
ary layers. The model consists in two coupled equations: a nonlinear PDE
of nonlinear acoustics, and a linear ODE describing the oscillations in the
Helmholtz resonators. The dissipative effects in the tube and in the throats
of the resonators are modeled by fractional derivatives. Based on a diffusive
representation, the convolution kernels are replaced by a finite number of
memory variables that satisfy local ordinary differential equations. An opti-
mization procedure provides an efficient diffusive representation. A splitting
strategy is then applied to the evolution equations: the propagative part
is solved by a standard TVD scheme for hyperbolic equations, whereas the
diffusive part is solved exactly. This approach is validated by comparisons
with exact solutions. The properties of the full nonlinear solutions are in-
vestigated numerically. In particular, existence of acoustic solitary waves is
confirmed.
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1. Introduction

Propagation of linear acoustic waves in lattices has been the object of
many theoretical and experimental works. Floquet-Bloch band gaps are ex-
hibited in ordered lattices [4], whereas localization occurs in disordered cases
[25]. Nonlinearities, when they are present, are incorporated punctually [26].

Propagation of nonlinear acoustic waves in lattices has been addressed
by Sugimoto and his coauthors in a series of theoretical and experimental
works [28, 29, 30, 31, 32]. The configuration under study was made up of a
tube connected with an array of Helmholtz resonators (figure 1). The latters
induce dispersion that competes with the nonlinear effects and may prevent
from the emergence of shocks. That is why the original motivation of these
works was the reduction of shock waves generated by a high-speed train in a
tunnel.

More fundamental questions are also raised, concerning well-known non-
linear waves: the solitons [34, 33]. These ones are stable solitary wave that
maintain their shape while they travel at constant speed. Solitons are caused
by a cancellation of nonlinear and dispersive effects in the medium. Many
physical models yield such solutions, for instance the Korteweg-de Vries equa-
tion, the nonlinear Schrodinger equation, and the sine-Gordon equation. In
acoustics, dissipation is largely greater than dispersion, so that it was com-
monly thought that solitary waves were impossible to be generated. But in
the Sugimoto’s configuration, it was shown that acoustic solitons can exist
and propagate in place of shock waves [32].

The model proposed by Sugimoto involves two coupled equations: a non-
linear PDE describing the propagation of large amplitude acoustic waves
in the tube, and a linear ODE describing the oscillations in the Helmholtz
resonators. The dissipative effects in the tube and in the throats of the
resonators are modeled by fractional derivatives [19], that amount to convo-
lution products with singular kernels. A good numerical modeling relies on
the following three specifications:

e accurate computation of nonlinear non-smooth waves;

e efficient computation of fractional derivatives, without storing the past
values of the solutions;

e stable algorithm under a CFL-like condition, whatever the physical
parameters and the amplitude of the waves are.



Figure 1: Guide with an array of Helmholtz resonators (courtesy given by O. Richoux).

The first specification has been well-known for a few decades, based e.g. on
shock-capturing schemes [15]. The second requirement is much less standard.
Here we follow a strategy relying on the diffusive representation of fractional
operators [35, 18, 10, 8, 6, 1]. The fractional derivatives are replaced by
a set of memory variables that satisfy local-in-time linear differential equa-
tions. The coefficients of this representation are issued from an optimization
procedure, which ensures a minimal computational cost of the fractional
derivatives. Lastly, the stability specification requires an adequate coupling
between the PDE and the ODE. A naive coupling between these equations
usually ensures an increase of discrete energy. Here we obtain a stable scheme
under the optimal CFL condition.

The paper is organized as follows. The Sugimoto’s model is presented in
section 2. Dispersion analysis in the linear case is developed, and degeneracy
towards Korteweg-de Vries equations is precised. The diffusive representa-
tion of fractional derivatives is described in section 3, leading to a first-order
system of PDE. The procedure to compute weights and nodes of this rep-
resentation is explained. The numerical methods are detailed in section 4:
a splitting to ensure an optimal CFL condition and to take advantage of
efficient methods; a TVD scheme for the advection-Burgers PDE; and an
exact resolution of the diffusive part. Numerical experiments are proposed
in section 5. Four tests are addressed, concerning successively nonlinear
acoustics in the tube, oscillations in the resonators, and the coupling (linear



and nonlinear) between the two subsystems. Numerical measures on the full
nonlinear system confirm the classical propertie s of solitons. Conclusion and
future directions of research are sketched in section 6.

2. Physical modeling
2.1. Notations

Figure 2: Sketch of the guide with an array of Helmholtz resonators.

The configuration under study is made up of an air-filled tube connected
with an array of Helmholtz resonators (figure 2). The cylindrical resonators
are uniformly distributed along the tube. The geometrical parameters are
the length of the tube £; the radius of the guide R; the axial spacing between
resonators D; the radius of the throat r; the length of the throat L; the radius
of the cavity rj; and the height of the cavity H, which may vary depending
on the resonator. It follows the cross-sectional area of the guide A = 7 R?
and of the throat B = 7 r?, the volume of each resonator V = wri H, and
the reduced radius:

. R R
R :1 R B 2 (1)
2D A " 2DR

The physical parameters are the ratio of specific heats at constant pressure
and volume ~; the pressure at equilibrium pg; the density at equilibrium py;
the Prandtl number Pr; the kinematic viscosity v; and the ratio of shear
and bulk viscosities p,/p. It follows the linear sound speed ag, the sound
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diffusivity 14, the dissipation in the boundary layer C, the natural angular
frequency of the resonator wy and the natural angular frequency of the tube
coupled with the resonator w;:

7 Po 4 7—1> -1
ag = 4/ —, vi=v|-+—+ , C=1+ ;
" Po ‘ <3 I Pr VPr

B ro 1 1+ %4
wn = Q, _— = —— w1 = W r——
TN Ly e VIH PRV T D

Under a one-dimensional assumption, the variables are the axial velocity
of the gas u and the excess pressure in the cavity p (denoted p, = py —
po in the papers of Sugimoto, ps being the pressure in the cavity of the
resonators). The wavelength of the initial disturbance is A. It follows the
acoustic Mach number M, the parameter of nonlinearity ¢, the characteristic
angular frequency w, the excess pressure p in the tube (in the linear theory)
and the intensity of sound I (in dB):

1 2
Y eV A g
Qg 2 A
P wu B Y po
— =7, 1—2010g<— z—:),
Po ag Y+ 1 Dres

where p,.; = 2107° Pa.

2.2. Governing equations

The main assumptions underlying Sugimoto’s model are [29]:
e 1D geometry;
e weak acoustic nonlinearity in the tube (¢ < 1);

e continuous distribution of resonators (A > D);

no interactions between neighboring resonators (ﬁ = (%)2 (%) < 1);

linear response of the resonators, no turbulence.



Under these hypotheses, the right-going simple wave is modeled by the fol-
lowing coupled system of PDE and ODE

2 ~1/2 2
@+g<au+b%):cL%+d@—e@ (4a)

ot Oz ot=1/2 oz O0x? ot’
a2p 83/2])
o T g Top = (40)
with the parameters
1
a = ay, bzi, C:Cao\/ﬂ’ d:ﬁ,
2 R* 2 (5)
V 2 \/17 2 2 Y Po
= — g — h — - -
¢ 2poag AD’ / r 9= %o “o ap

The PDE (4a) involves nonlinear advection (a and b) with losses due to
viscous boundary layers in the tube (¢) and to diffusivity of sound in the tube
(d); see [5]. The ODE (4b) models the oscillation of Helmholtz resonators
(g) with losses due to viscous boundary layers in the throat of resonators (f);
see [22, 23]. The coupling between these equations is done by the coefficients
e and h. If the resonators disappear (H — 0 and thus V' — 0), then e — 0:
no coupling occurs, and one recovers the classical Chester’s equation [20].

Fractional operators are involved in the system (4). In (4a), the Riemann-
Liouville fractional integral of order 1/2 of a function w(t) is defined by

o2 _ H() 1 ' o \-1)2
8t_1/2w(t)_ﬁ*w_\/7_r/o(t T) /w(T)dT, (6)

where * is the convolution product in time with H(¢) the Heaviside function
[19]. The fractional derivative of order 3/2 in (4b) is obtained by differenti-
ating (6) twice with respect to t.

2.3. Dispersion analysis

In this section we present the dispersion analysis of (4), thus in the linear
case b = 0. The obtained results will be useful to adjust the terms in the
diffusive representation of the fractional derivatives (section 3.3).

Let us introduce the Fourier transforms in time and space

400 +00
w(w) = / w(t) e "t dt, w(k) = / w(z) e da, (7)
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Figure 3: phase velocity in the linear regime, with resonators (V # 0 < e # 0). Inviscid
(v = 0) and viscous (v # 0) case; see table 1 for the parameters. The vertical dotted lines
denote wy and w;. The horizontal dotted lines denote T < ag and ag (12).

where w is the angular frequency and k is the wavenumber. Applying these
transforms to (4) provides a system of two linear equations whose determi-
nant must be null, which yields the dispersion relation between w and k.
Defining the symbol of the half-order integral (6)

) = 8
and setting the coefficients
Da(w) = idlg —w*(1+ fx)],
Dy(w) = (a—cx)lg —w (1 + £ X)), (9)
Dy(w) = wlw’(1+ fx) = (g +eh)],
the dispersion relation takes the form

D(k, w) = Dy(w) k* + D1 (w) k + Do(w) = 0. (10)

Let us now describe this dispersion relation. First, we discuss the general
case where the guide is coupled with resonators (e # 0). Neglecting the
diffusivity of sound (d = 0), one obtains k = —Dy(w) / D1(w). Otherwise,
(10) has two roots k; and ko, and the root k with minimal modulus is selected.
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Figure 4: attenuation in the linear regime, with resonators (V' # 0 < e # 0). Viscous case
(v # 0); see table 1 for the parameters. The vertical dotted lines denote wy and wy.

It follows the phase velocity v = w / Re(k) and the attenuation —Sm(k). In
the inviscid case (¢ = f = 0 adding to d = 0), one obtains the explicit
expressions

w? — w} o
v(w) = ag R and SQm(k) =0, (11)

where we have used (2) and (5). Basic properties of (11) are deduced:

( ao

U=0v(0) = —— < ao, v(wo) =0,
1+ L
2AD
lim v(w) = Foo, lim v(w) = ap, (12)
w—wj w—+00
/ V w
_ 2
\ v (w) = —2ayw; <2AD) R < 0.

By assumption, % < 1 and hence wy is close to wy (2). Far from wy and wy,

the curve of v is quite flat. In the viscous case (¢ # 0 and f # 0), the phase
velocity does no more vanish at wg. Two vertical asymptotes of v occur near
wo and w;. When w — +o00, the horizontal asymptote of v is still ag. On the
other hand, the maximum of attenuation occurs near wy. These properties
are illustrated in figures 3 and 4.

In the limit-case without resonators (e = 0), the linear dispersion relation
(10) simplifies to

[g — w1+ f)idE* 4+ Kk(a—cx) —w] = 0. (13)
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Figure 5: phase velocity and attenuation of the tube without resonators (V =0 < e = 0).
Viscous case (v # 0); see table 1 for the parameters.

In this product we focus on the part corresponding to (4b), i.e. the tube
behavior, which leads to

idi2+ a——S | k—w=0. 14
+< (m)l/2> (14)

Neglecting the diffusivity of sound (d = 0) leads to the following phase ve-
locity and the attenuation

a’w—acV2w+ 2 c w32 (15)
= , oa=— )
aw —cy/w/2 V2 a?w —acV2w+ 2

In the inviscid case (¢ = d = 0), the phase velocity is equal to a and the
attenuation is null. Otherwise, one deduces the following properties:

v

v(w) ~—cy/—, lim v(w) = ao,

c |w
a(0) =0, a(w)&?\/;,

radically different from the coupled case. These properties are illustrated in
figure 5.



2.4. Regimes of propagation

An analysis of wave regimes has been performed in [29]. Under the hy-
pothesis of weak nonlinearity, du/0x in (4a) is replaced by —(1/ag) Ou/0ot
in the terms with coefficients b, ¢ and d. The resulting system is written in
the (T, X') coordinates, where T" is a non-dimensional retarded time, X is a
non-dimensional slow space variable and ¢ is defined in (3):

T:w<t—£), X=cwl. (17)
Qo

The reduced variables F' = O(1) and G = O(1) are introduced:

S ly+lu 1y41yp Cly+lp p

F=-— = — = G=-——==5F 18
e 2 ay € 27 po e 2y po p (18)
leading to
OF OF OVFE  O*F oG
- = _ — K — 1
ox For = rgpr TP e K or (19a)
0°G 0*2a
W+5TW+QG:QF’ (19Db)
with the new sets of parameters
C v Vg w \%
5 = — = K =
P er VW b 2ea?’ 2AD¢e’

(20)

The effect of dissipative terms §,, 8 and dg has been analyzed in [28, 29]; in
particular, 3 is negligible. The dynamics of the system is mainly governed by
the two parameters K and €. K is the ratio of geometrical dispersion terms
with the nonlinearity effects. We assume that the resonators are coupled to
the guide (V' # 0), hence wy # oo and 0 < < +o00. Three limit-cases are
then obtained in the inviscid case:

o first, if K < 1 or ) < 1, then one gets the evolution in a tube without
resonators, leading to a shock
oF oF
— —F— =0; 21
0X oT 0 (21)
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e second, if K > 1, then (19) degenerates into a linear dispersive equa-
tion

OF  OF 1 OF
ax TR ar taarax 0 (22)

e third and last, if €2 > 1, then one obtains the Korteweg-de Vries equa-
tion
oF OF OF K O*F
K——F—= 23
ax "Mar ~ar T aars (23)

This case is of particular interest, since it yields to solitons.

3. Mathematical modeling

3.1. Diffusive representation of fractional derivatives

Here we focus on the fractional terms in (4). The fractional integral (6) is
non local in time, and relies on the full history of w(¢). A much more efficient
formulation relies on a diffusive representation of this operator, which can be
written equivalently [8]

9-1/2 +o0
Ww(t) =/ ¢(0,t) db, (24)
where the diffusive variable ¢ defined by
92 t
B(0,t) == / e~ (r) dr (25)
m™Jo
satisfies the local-in-time differential equation
0¢ 5 2
T _ 9 z
ot o+ LW (26)
»(6,0) =0.

To compute the derivative of order 3/2, we start from the fractional integral
(6) and derivate it twice. A first derivation leads to the derivative of order

1/2:
Ol = %(%wm),
= (\F / —1/2y T)dT), (27)

= ﬁ/o(t_T)_l/Qw/(T) dr,
11



where w(0) = 0 has been used. In the following of the paper w(-) = p(z,-)
and a zero initial condition p(z,0) = 0 will always be chosen in the numerical
tests. Then proceeding as previously for the fractional integral, a diffusive
representation is introduced

81/2

aut) = /0 T e0.1) do, (28)

where the diffusive variable £ satisfies

ok 2
A (29)
£(0,0) = 0.
The derivative of order 3/2 is immediately deduced [6]:
/2 d / 9\/2
8t3/2w<t) = % <8t1/2w(t)> )
+o0 ag
= —(0,t)do 30
| G (30)

+oo 2,
_ / <—92§+—w)d0.
0 T
Note that an alternative expression of the derivative of order 3/2 can also be
obtained by derivating (27) which reads:
0%/ I g
Ww(t) = ﬁ/o' (t — T) / w (7') dT,

if w'(0) = 0. Such an expression is less convenient than (30) since w”(-) =
9*p/ot*(z,-) is involved but is not a natural unknown of the problem.

3.2. First-order system

To approximate the integral (24), a quadrature formula on N points is
used, with weights p, and abscissa 6,:

o-1/2 N N
Ww(t) ~ > e d (O t) = e delt), (31)
(=1 /=1
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where the ¢, satisfiy the ODE (26). Similarly, the integral (30) is written

33/2

)= 3 (~0te00+ 20) = S (s 2u). o2

where the & satisfy the ODE (29). The determination of weights and nodes
e and 6 is discussed further. Then equations (4), (26, (29)), (31) and (32)

are written as a first-order system

4

ou 0O u? al 0%u
E—i—% <au+b?) —c;/uqﬁg—l—dw—eq,
I _
at_Q7
dyq a , 2
Ezhu—gp—f;w <—95&+;Q),
8@ 28u_ 9 .
6t_7T8x__9£¢€’ t=1--N,
0 9 2 _

L at 8€§f+ﬂ_q7 E_]- N7

in an unbounded domain. The initial conditions are ({ =1---N)

dp

u(x,0) =ug(x), p(x,0)=pe(z)=0, %%

¢o(x,0) =0, &(x,0) = 0.

Taking the vector of (3 + 2 N) unknowns

(z,0) = qo(z) =0,

U:(uapa Q7¢17"'7¢N7 gla"'agN)Ta

the system (33) can written in the form

0 0 0?
5 Ut - F(U)=8U+G 75U,

where F is the nonlinear flux function
2 2 2 T
F= (au+bu—, 0,0, —Zu,- -, —=u, 0, 0) ,
2 T s

13

(34)

(36)

(37)



G is the (34 2N) x (3 + 2 N) diagonal matrix diag(d, 0,---, 0). S is the
(342 N) x (342 N) diffusive matrix, in the sense that it contains the diffusive
representation:

0 0 —e cly -+ CUN 0 0
O 0 1 O e O 0 o 0
2 N
h —g _;fzw 0 - 0 fm6 - funby
/=1
0 0 0 —67
S: : .
0 0 0 —0%
9
0 0 = —67
T
' 9
0 0 z —03
pu N

(38)
Three properties are deduced from (36):

e the eigenvalues of the Jacobian matrix J = F in (37) are real: a +bu,
and 0 with multiplicity 2 N 4 2. These eigenvalues do not depend on
the coefficients of the diffusive representation;

e if N = 0, the eigenvalues of S are 0 and +iw;, with w; = eh + g;
see (2) and (5). If N # 0, the eigenvalues of S are not known, but
numerical investigations indicate that the eigenvalues are close to 0,
—¢+iw; (with 0 < ¢ < 1), and —67 with multiplicity 2 (¢ = 1,---, N);

e a linear dispersion analysis can be performed as in the original model
(4). The formula (10) with coefficients (9) still holds, replacing x in

(8) by

20

Z 0 :L—Zi W (39)

2
1 ¢

X(w) =

3.3. Coefficients of the diffusive representation

It remains to determine the 2 N coefficients of the diffusive representation
e and 6 in (38), issued from (31) and (32). This issue is crucial both for the
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accuracy of the modeling and for the computational efficiency of the method.
Two strategies exist for this purpose.

The first one relies on Gaussian quadratures of improper integrals (24)
and (30). A Laguerre quadrature formula can be used for this purpose [9)].
This technique is frequently used in the literature [35, 18, 8, 1], ensuring
positive weights and nodes; a short discussion on that topic is proposed in
section 6. Moreover, Laguerre quadrature does not depend on the frequency
content of the waves, which may be advantageous in nonlinear problems,
where harmonics are generated. However despite these advantages we have
tried this approach and it gives very poor results. As shown further, a large
number of memory variables is required to get acceptable accuracy, which
greatly increases the computational cost.

Here we propose a much more efficient strategy, based on the dispersion
relation (10). The original problem (4) and the first-order system (36) differ
only in their symbol y(w): (8) in the first case, (39) in the second one.
Adjusting them provides a way to estimate u, and 6,. This technique is
physically meaningful, and has proven its efficiency in a previous work about
poroelastic waves [2]. Let Q(w) be the optimized quantity and Qs the
desired one:

~ N
XW _2 )2
Qw) = @) _wz;e o ) ZMW "

Qrep(w) =1

We implement a linear optimization procedure [12, 2] in order to minimize
the distance between ) and Qs in the interval [Wyin, Winay| containing the
characteristic angular frequency w of the initial pulse. The abscissas 6, are
chosen distributed linearly on a logarithmic scale

-1

N—-1
02 = wyim <wm) . (=1 ..N (41)

Wmin

The weights p, are obtained by solving the system

dmeaqar) =1,  k=1..K (42)

15



where the @, are also distributed linearly on a logarithmic scale of K points

k-1

K—1
D= W (wmm> k=1 ..K (43)

min

Since the g,(w) are complex functions, optimization is performed simultane-
ously on the real and imaginary parts

N

> meRe(q(@r) =1,
S (44)

N
> pelm(g(@) =0, k=1, K.
/=1

A square system is obtained when 2K = N, whereas 2 K > N yields an
overdetermined system, which can be solved by writing normal equations
[9]. The quality of resolution deteriorates as N increases or as the interval
[Winin, Wmaz| decreases. In the numerical experiments, we use even values of
N and 2K = N. The interval of optimisation [Wyin, Wmaz| depends on the
configuration under study:

e for the coupled system with resonators, the attenuation is bounded
(figure 4), and the existence of smooth solitary waves maintains glob-
ally the frequency content of the initial disturbance. Consequently,
we choose a narrow interval centered around w, by taking for instance
Winin = w /2 and wypee = w X 3/2;

e for the tube without resonators, shocks are expected. Consequently,
higher harmonics are generated, and we propose to use Wy, = w/2
but Wpee = w X N, where N is the number of harmonics of interest

in a Fourier decomposition of the wave [20]. In numerical experiments,
we take N = 20.

Figure 6 illustrates how the number of diffusive variables influences the
accuracy of the optimisation procedure, in the case of the coupled system.
In the left part, we show the error |Q(w) — 1| for various values of N. The
vertical dotted lines represent the range of optimisation. By construction, the
error vanishes at the abscissae @;. As expected, the accuracy of the diffusive
approximation increases with N. The right part of the figure displays the
error of model ¢, = ||Q(w) — 1]|z, on the range of interest, in terms of N

16
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Figure 6: error of model due to the optimisation procedure, for the coupled system (tube
with resonators, V' # 0). Left: |Q(w)—1]in (40), for various numbers of diffusive variables
N; the vertical dotted lines denote the upper and lower ranges of optimisation wy,;, and
Wmag- Right: e, = ||Q(w) — 1||1,, in terms of N; the slope of the linear regression is -5.

and in log-log scale. The measured values are close to a straight line with
slope -5, hence one can postulate a power-law &, & go(1/N)?.

The role of diffusive representation on linear attenuation is illustrated
in figure 7. The attenuation of the exact model (4) is compared to the
approximate diffusive model (36). The top of the figure concerns the coupled
system. When Laguerre quadrature is used, the resonance peak is shifted
and poor accuracy is obtained even with N = 50, involving 103 unknowns
in (35). On the contrary, N = 6 is sufficient to get excellent agreement if
optimisation is used, involving only 15 unknowns in (35). The bottom of the
figure concerns the guide without Helmholtz resonators. Similar accuracy is
obtained with N = 50 if Laguerre is used, and with N = 12 if optimisation
is used.

4. Numerical modeling

4.1. Splitting

In order to integrate the system (36), a grid is introduced, with a uniform
spatial mesh size Az and a variable time step At,, which for the sake of
simplicity will be noted A¢. The approximation of the exact solution U(z; =
JAwxt, =t, 1+ At) is denoted by U}. Unsplit integration of (36) is not
optimal, because the time step stability condition involves the spectral radius
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Figure 7: attenuation in the viscous linear regime.
tional model (4) and the approximate diffusive model (36). Left: Laguerre quadrature;
right: optimisation. Top: coupled system with resonators; bottom: tube without res-
onators. The vertical dotted lines denote the range of optimisation [Wiin, Wmax]-
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of S which grows in an unbounded way with N. Moreover, it requires to build
an adequate scheme for the coupled system.

A more efficient strategy is adopted here, which consists in splitting the
original system (36) into a propagative part (45a) and a diffusive part (45b)

0 6 62
Iy_su (45b)
ot

The discrete operators associated with steps (45a) and (45b) are denoted by
H, and H,, respectively. The second-order Strang splitting [15, 14] is then
used between ¢, and t,.1, giving the time-marching

e UV = H(3HuUr
e UY =H (At)U“’ (46)
o UM = H(3HUY.

4.2. Propagative part

The propagative part (45a) is solved by any standard scheme for nonlinear
hyperbolic PDE:

At d At

u?+1:uy_ﬂ(]:j+1/2—]:}71/2)+AxQ ( uiig —2u; +uj )
47
(b _(bjg—i_ Aﬂf (u]Jrl_uj*l)’ é:l,-u’N,

where .7-"]1 112 18 the numerical flux function of the advection-Burgers part in
(37). In practice, a second-order TVD scheme with MC-limiter is used in our
numerical experiments [15]. Stability analysis of (47) provides the necessary
and sufficient condition [27, 7]

a? -« J e

<6<
2 - T 27

(48)

with the adimensionalized parameters o and § and the discrete velocity all

At At . .
o= a’maxA 0= dp7 asnezx =a+b mjax(uj). (49)
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The condition (48) is proven rigorously in the case of the advection equation
and the upwind scheme, but numerical experiments indicate that it still holds
for the nonlinear advection (modifying a into aggx) and for the TVD scheme.
Solving (48)-(49) gives the condition

1 1
a < min 1+P—, i (50)
e e
1+ Pe
where Pe = a/2§ = aliy Ax/2d is the discrete Péclet number. In our
configuration, Pe &~ 10° which leads to the restriction on the time step
(n) -1
Amax At 1 1
< (14 = ~1l—-—=1. 51
AV ( N Pe) p (51)

Therefore despite the explicit discretization of d 9*u/0x?, the optimal CFL
condition is maintained.

4.3. Diffusive part

Since the physical parameters do not vary with time, the diffusive part
(45b) can be solved exactly. This gives

At At
H, (7) U; =52 Uj. (52)

In the inviscid case v = 0, only the unknowns p, ¢ and u are involved, and
since N = 0, the exponential can be computed analytically. Using w; (2)
and defining 7 = At/2, one obtains:

eg e .
— (g+eh coswiT) —5 (1 —coswiT) ——sinwy T
w? w? w
1 1 1
1
St .
e”m = | —5(1—coswiT) —5 (eh 4 g coswiT) —sinw T . (53)
h g
— sinwy T ——sinw T COSW1T
Wi Wi

In the general case N > 0, it is computed numerically using a (6,6) Padé
approximation in the “scaling and squaring method” [21]. If the physical
parameters are constant, the computation is done only once at each time
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step, leading to a negligible computational cost. Even in the case N = 0, it
is twice faster to use the numerical evaluation of €57 than computing (53),
because of the numerical evaluations of trigonometric functions.

This part of the splitting is unconditionally stable, so that the global sta-
bility requirement is (51) and is not penalized by the diffusive part. In other
words, the time step only depends on the advection and on the Burgers coef-
ficient in (4). In particular, At does not depend on the fractional parameters
c and f or on the coupling parameters e and h.

5. Numerical experiments

5.1. Configuration

v po (Pa) | po (kg/m?) [ Pr v (m?/s) | po/p
1.403 | 10° 1.177 0.708 | 1.57107° | 0.60
R(m) | D (m) |7 (m) L (m) | rp (m) H (m)
0.04 0.05 0.00355 0.0356 | 0.0125 0.1

Table 1: physical parameters of air at 15°C, and geometrical data from [32].

The physical and geometrical parameters are given in table 1. The physi-
cal data correspond to air at 15°C, and the geometrical data are issued from
[32]. From (2), one obtains ag = 345.25 m/s, C' = 1.478 and vy = 3.92107°
m?/s. One deduces the parameters of the PDE (4)-(5), given in the upper
part of table 2. The tube of length £ = 80 m is discretized on N, = 8000
grid nodes. The maximal CFL number is 1 —1/Pe, where the Péclet number
is Pe = 1.7510° (51); in practice, we take the CFL number equal to 0.95.
Lastly, a set of 10 receivers is put on the computational domain at abscissas
x, =15+5(i—1), i = 1---10, where the time history of u is recorded at
each time step.

Except in section 5.3, computations are initialized by a Gaussian pulse
or by a door pulse on the velocity

e (-(22)) o

T (el D) (e 2).

where H is the Heaviside function and o = 7 m. A is the width of the door
pulse, and is also the width of the Gaussian pulse: taking o = A\/2+v/In 100
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a (m/s) 345.25

b 1.20

¢ (m/s%?) | 50.42

d (m?/s) 1.96107°
e (m/s3/Pa) | 2.401074
f(s71/?) 2.23

g (s?) 2.7010°
h (Pa/m/s) | 1.1010°

wo (rad/s) 1645.67
wy (rad/s) 1724.16
v (m/s) 314.53

Table 2: coefficients of the PDE (4). Lower part: natural angular frequencies (2), and low
frequency limit of the phase velocity (11) in the coupled system.

gives ug(x) = u;,/100 at © = zo £ A/2. All the other initial conditions in
(34) are null.

The key parameters governing the evolution of the system are K and
2 (20); see section 2.4. On one hand, we take K = 0.5 which ensures a
nonlinear regime of propagation. It follows the amplitude w,, ~ 56.12 m/s
(54), the parameter of nonlinearity ¢ = 0.19, the overpressure p /py = 0.22
and the sound intensity I = 181.1 dB (3). On the other hand, we take
Q =1 or Q = 16, yielding theoretically to dispersive waves and solitons,
respectively. In the case €2 = 1, the linear dispersion analysis predicts a
maximal attenuation. In the case ) = 16, the natural frequency is w = 411.4
rad/s and the central wavelength is A = 5.27 m.

5.2. Test 1: nonlinear acoustics

In a first test, the height of the cavity is H = 0, hence e = 0 and no
coupling occurs with the Helmholtz resonators. The dispersion relation is
therefore (14), and the key adimentionalized parameters of section 2.4 are
K =0 and Q) = +00. The number of diffusive variables is N = 12; since no
memory variables £ are required to model dissipative effects in the resonators,
only 15 variables are involved in (35). Optimisation of the coefficients g, is
performed between w,;,, = 185 rad/s and wy,, = 8228 rad/s (section 3.3).

In the inviscid case, where only the coefficients a and b are non-null in
(4), smooth initial data develop shocks in finite time, yielding a decrease of
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Figure 8: test 1. Nonlinear acoustics without oscillators, for a Gaussian pulse (left row)
and a door pulse (right row). (a-b): initial pulse. (c-d): numerical and exact solution at
t =0.16 s. (e-f): time evolution of the energy; in (e), the vertical dotted line denote the
time of shock t*.
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energy. The Gaussian initial pulse breaks at time

e o
== —
\@umb, (55)

where the Neper constant e ~ 2.71 must not be confused with the null
coefficient in (4a). It gives the time break t* = 0.021 s (55).

Figure 8 shows the initial values of the solution at the initial instant (a-b)
and at t = 0.16 s > t* (c-d), which corresponds roughly to 7000 time steps.
Both the inviscid case and the viscous case are displayed, where the viscous
boundary layer in the tube and the diffusivity of sound are accounted for. In
the inviscid case, typical nonlinear phenomena are observed: shock on the
right part of the Gaussian pulse (c), rarefaction waves and right-going shock
for the door pulse (d). In this latter case, good agreement is obtained with
the exact solution. In the viscous case, these phenomena are qualitatively
maintained. A small decrease of amplitude is observed, together with a tail
on the left part of the waves. The key issue is that viscous effects are not
sufficient to prevent from the occurrence of a shock (c¢) or to smooth an
existing discontinuity (d), which confirms the theoretical analysis performed
in [28].

Lastly, time evolution of the energy £ = ;(u?)? is displayed in (e-f).
For the Gaussian pulse in the inviscid case (e), energy is conserved as long as
the wave is smooth; at the scale of the figure, numerical diffusion is not seen.
From ¢ = t* where the shock appears, energy decreases. For the door pulse
in the inviscid case (e), energy decreases linearly with time. The results are
qualitatively the same in the viscous cases, with a greater decrease of energy.

5.8. Test 2: fractional oscillations in Helmholtz resonators

As a second validation test, we focus on the fractional oscillator of order
3/2. The coupling with nonlinear acoustics in the tube is neglected, and we
solve (4b) with no coupling h = 0. The initial value of pressure is py(z) = 1
and p;(x) = 0, leading to oscillations with damping. The analytical solution
is obtained in terms of fractional power series on 200 modes: see equation (10)
of [6]. The numerical solution is obtained by solving the following problem
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Figure 9: test2. Fractional oscillator of order 3/2. Comparisons between the numerical
solution and the exact solution (right row: zoom).

with NV + 2 unknows

(@—

8t_q7

dq al , 2

9% _ _ “ 56
o gp f;ue( 94§g+7rq), (56)
8&_ 9 2 B

\g——%fﬁ;q, ¢=1---N.

Therefore the numerical solution is the exact solution of the system (52) with
N memory variables; consequently, the only error is the error of model ¢,,,
due to the quadrature of the diffusive representation.

Figure 9 shows the influence of the quadrature rule on the accuracy of
the modeling. When optimisation is used, only N = 2 memory variables are
required to obtain an excellent agreement with exact solution (left row). On
the contrary, large errors are observed when Laguerre quadrature is used,
even with N = 20.

5.4. Test 3: linear dispersive waves

In a third test, we consider the coupled system with resonators, in the
linear regime: b = 0 in (4). The simulations are initialized by a Gaussian
pulse, and they are performed during 8000 time steps. The computations are
done with and without the viscous effects of boundary layers and diffusivity
of sound. The number of diffusive variables is N = 6, involving 15 variables
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Figure 10: test3. Linear coupled system, with a Gaussian pulse and €2 = 1. Snapshots of
u after 8000 time steps. Left: invicid case; right: viscous case.

in (35). Optimisation of the diffusive coefficients pu, is performed between
Wmin = 822 rad/s and wy,e, = 2468 rad/s if Q = 1, and values 4 times
smaller if 2 = 16 (section 3.3).

The case €2 = 1 is shown in figure 10. High dispersion is observed in the
inviscid case, which confirms the dispersion analysis performed in section
2.3 (see figure 3, near the vertical dotted lines). The oscillations are highly
damped in the viscous case, due to the large value of attenuation (see figure
4).

The case 2 = 16 is displayed in figure 11. Compared with figure 10,
the dispersion is greatly reduced. In the inviscid case, an oscillating mode
remains at the place of initialization; moreover, the energy is conserved (not
shown here). The static mode is damped in the viscous case. Seismograms
are built from the time signals stored at the receivers. Then, the celerity V of
the highest amplitude is numerically measured. One obtains V = 312.02 m/s
(if v =0) and V = 310.39 m/s (if v # 0). These values are close to the zero-
frequency limit v = 314.53. The slight difference is due to the large-band of
the intial pulse.

5.5. Test 4: acoustic solitary waves

Lastly, we consider the full coupled system in the nonlinear regime. Com-
putations are initialized by a Gaussian pulse, and simulations are performed
during 8000 time steps, which corresponds roughly to 0.20 s of propagation.
The case K = 0.5 and 2 = 1 is shown in figure 12, to be compared with
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Figure 11: test3. Linear coupled system, with a Gaussian pulse and 2 = 16. Left: invicid
case; right: viscous case. Top: snapshot of u after 8000 time steps (the vertical dotted

lines denote the receivers); bottom: seismograms.
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Figure 12: test4. Nonlinear coupled system, with a Gaussian pulse, K = 0.5 and Q2 = 1.
Left: viscous case; right: inviscid case. Top: snapshots of u after 8000 time steps (the
vertical dotted lines denote the receivers); bottom: time evolution of the energy (the
vertical dotted line denotes t* (55).
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29



the figure 10 obtained in the linear regime. A ballistic signal is observed,
followed by a highly dispersive coda: no solitary wave emerges. If v #£ 0, a
large amount of attenuation is also introduced, that damps this coda. In the
inviscid case, the energy begins to decrease and then is almost conserved. It
means that the initial smooth pulse has lead to a shock, and then an equi-
librium with dispersion has lead to the emergence of a smooth structure.
Similar conclusion is reached in the viscous case, except that energy always
decreases.

The case K = 0.5 and {2 = 16 is displayed in figure 13, to be compared
with figure 11 obtained in the linear regime. We recall that the theoretical
analysis predicts the existence of solitary waves (section 2.4). Compared
with figure 12, the coda has disappeared. In the inviscid case, an oscillating
mode remains at the place of initialization; moreover, the energy is conserved
(not shown here), which indicates that no shock has been created. Two
smooth structures are observed. Longer simulations show that these two
components separate and propagate at different speeds. In the sequel, we
examine whether these solitary waves have the classical properties of solitons.

In the case K = 0.5 and ) = 16, seismograms are built from the time
signals stored at the receivers. One measures numerically the celerity V of the
nonlinear wave with highest amplitude. Similar measures are done for various
amplitudes u,, of the incident pulse, from 10 m/s to 100 m/s, or equivalently
from K = 2.80 to K = 0.28. It is observed that V increases linearly with w,,:
a linear regression estimation yields V = 313.58 4+ 0.4435u,,, (if v = 0) and
V = 312.17 + 0.3773 u,, (if v # 0). Waves propagate slightly faster in the
inviscid case, because attenuation decreases the amplitude and consequently
the celerity. The limit for u,, = 0 is close to the value obtained in the linear
case (test 3).

In figure 13, it was observed that the original Gaussian pulse of u separates
into two smooth structures. The taller is thinner and travels faster than the
shorter one. At the final instant of simulation, we invert these waves to
initialize a new computation (top of figure 14). In the inviscid case, we
observe that the two waves interact like classical solitons, exchanging their
shape [16, 17]. After separation, each wave has again the original form,
though shifted in location from where they would be without interaction.
These behaviors are qualitatively maintained in the viscous case, even if it is
less clear due to the attenuation of waves.
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6. Conclusion

We have considered nonlinear acoustic waves in a tube with an array of
resonators. Various challenging physical features are involved: nonlinearity
due to the amplitude of waves, dispersion induced by the resonators, and
fractional derivatives of order -1/2 and 3/2 due to viscous losses.

Our original contribution was to propose an efficient and accurate numer-
ical modeling of this configuration. Some tools are standard (TVD scheme
for the nonlinear hyperbolic part), some others are more recent (diffusive rep-
resentation of fractional derivatives). To our knowledge, it is the first time
that diffusive representation is considered together with advection-Burgers
equation. Lastly, a splitting strategy has ensured an optimal CFL condition
for an explicit scheme. The proposed approach is computationaly efficient:
the CFL stability condition is only governed by the nonlinearity (as in the
usual advection-Burgers equation), and a minimum number of supplemen-
tary arrays is required to discretize the fractional derivatives.

This work has been motivated by the experimental configuration shown
in figure 1, previously used in the linear regime of propagation [25, 26],
and currently investigated in the nonlinear regime. Our objective was to
provide an efficient and accurate numerical modeling, validating (or not) the
model (4) and the underlying hypotheses. Numerical experiments have shown
that the viscous effects do not modify qualitatively the wave phenomena.
Consequently, the theoretical predictions done in the inviscid case about the
existence of acoustic solitons are also obtained in the viscous case [29].

A first extension of this work concerns the coefficients of the diffusive
representation. In some linear problems, is is possible to determine the time
evolution of the energy and to prove that this energy decreases as soon as
all the coefficients py > 0 (I = 1---N) of the diffusive representations of
the fractional derivatives are positive [13, 6]. Therefore methods leading to
positive y; > 0 are usually prefered. As already pointed out, it is the case
for the Laguerre method but not for the optimization method we use. One
perspective is to develop an alternative method ensuring the positivity of the
coefficients ;. A first possibility is to use an analytical method consisting
in appoximating the function y(w) by rational fractions. A second approach
is to use an optimization process with a positivity constraint, for instance a
Shor algorithm [24] initialized with the results from the Laguerre method.
In the case of propoelasticity [3], this method has led to 10 up to 100 times
more accurate results.
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From a physical point of view, the dissipation effects require also fur-
ther investigations. To get solitons, one needs to have Q > 1 (20), which
implies w < wp. In this regime, the dispersion analysis indicates that the
attenuation is quite low (left part of figure 3). On the contrary, a high at-
tenuation of waves is observed experimentally. A possible explanation of this
mismatch is that some mechanisms of attenuation are not incorporated in the
model. A good candidate is given by turbulence and nonlinear losses in the
resonators. To account for these losses, a nonlinear theory for the response
of the resonators has been proposed in the appendix of [29]. Equation (4b)
with notations (5) should be replaced by the nonlinear fractional ODE

0*p 2w L' 0¥ Ly 1Zl1? (p)°

ot? T L. 032 2v py Ot
(57)
14 Ip| Op 57 Dpo
| o W,
BL.pyag |0t| Ot ao
with the new parameters
' 2 L o,
L =L+2r, L.=L+n, We = T s (58)

where 7 is determined experimentally (7 &~ 0.82r). The term 62 (p)* /Ot>
models the nonlinearity due to the adiabatic process in the cavity, whereas
the semi-empirical term depending on the sign of dp/dt accounts from the jet
loss resulting from the difference in flow patterns on the inflow and outflow
sides of the throat [29]. A more sophisticated numerical method must be
developed to integrate (57).

A last extension of our work concerns the case where the height H of
each resonator may vary with position, leading to variable coefficients in (4).
Numerically, it requires to build smooth functions e(x), g(x) and h(z), for
instance with cubic splines. The exponential of S in (38) and (52) needs to
be computed at each grid node and at each time step, which increases the
computational cost, but no other modifications are required. It will allow to
investigate numerically the propagation of acoustic solitons in random media
[11]. This topic is a subject of intense research in various fields of physics,
with possible applications in the transport of information.
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