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Crackling vs. continuum-like dynamics in brittle failure

J. Barés, L. Barbier, and D. Bonamy
CEA, IRAMIS, SPCSI, Grp. Complex Systems & Fracture, F-91191 Gif sur Yvette, France

We study how the loading rate, specimen geometry and microstructural texture select the dynam-
ics of a crack moving through an heterogeneous elastic material in the quasi-static approximation.
We find a transition, fully controlled by two dimensionless variables, between dynamics ruled by
continuum fracture mechanics and crackling dynamics. Selection of the latter by the loading, mi-
crostructure and specimen parameters is formulated in terms of scaling laws on the power spectrum
of crack velocity. This analysis defines the experimental conditions required to observe crackling in
fracture. Beyond failure problems, the results extend to a variety of situations described by mod-
els of the same universality class, e.g. the dynamics in wetting or of domain walls in amorphous

ferromagnets.

Many systems including ferromagnets [1]|, plastically
deformed metals [2], fault seismicity [3], liquid spreading
[4], and fracturing solids [5, 6] crackle, i.e. respond to a
slowly varying external parameter through jerky dynam-
ics, with discrete pulses or avalanches spanning a variety
of scales. The salient feature of such crackling dynam-
ics is to exhibit universal scale-free statistics and scaling
laws, independent of both microscopic details and ex-
ternal conditions (see [7] for a review). Those are set
by generic properties such as symmetries, dimensions,
and interaction range. This behavior, reminiscent of self-
organized criticality, is generally explained as being due
to the presence of a critical point and a mechanism at-
tracting the system towards this point [§].

In brittle failure problems, the crack front can be iden-
tified with a long-range elastic spring [9-12], and the
crack onset in heterogeneous/amorphous solids can be
mapped to a critical depinnning transition [13-15]. In
stable crack growth experiments, crackling dynamics are
sometimes observed [17] and can be attributed to a self-
adjustment of the driving force around its depinning
value [16]. This model is found to reproduce the scal-
ing laws and scale free statistics observed experimentally
in [17]. Still, many situations involving a variety of disor-
dered brittle solids (structural glasses, brittle polymers,
ceramics,...) do not exhibit crackling. Rather, they ex-
hibit continuous dynamics compatible with the Linear
Elastic Fracture Mechanics (LEFM) predictions.

By investigating theoretically and numerically crack
propagation in elastic disordered media, we reveal that
either LEFM-like or crackling dynamics can be observed
— A transition line is exhibited between the two regimes,
and defines a phase diagram within a space defined by
two reduced variables that intimately mingle the speci-
men thickness, specimen geometry, loading rate, mate-
rial constants (fracture energy and crack front mobility),
and microstructural texture (disorder contrast and length
scale). Within the crackling phase, the Fourier spectrum
of the crack velocity is characterized by a power-law with
a universal exponent. Conversely the prefactor and the
two cutoffs associated to this power-law are found to de-
pend on the loading, microstructure and specimen pa-

rameters according to scaling laws that are uncovered
herein. These results are discussed within the framework
of the depinning theory [19]. They shed light on the
experimental conditions required to observe crackling in
brittle fracture. Beyond crack growth problems, they can
be immediately extended to a number of others systems
described by the same long-range string model, such as
the dynamics of contact lines in wetting [18], or that of
magnetic domain walls with dipolar interactions [22].

Theory — In brittle failure problems, crack destabiliza-
tion and further propagation are governed by the balance
between the amount of elastic energy, GG, released by the
solid as the crack propagates over a unit length, and the
fracture energy, I', dissipated in the fracture process zone
to create two new fracture surfaces of unit area [23]. In
standard continuum fracture theory, G depends on the
imposed loading and specimen geometry, and I' is a ma-
terial constant. In the slow fracture regime, the crack
velocity v is given by v/u = G — T’ where (in a perfectly
linear elastic material and in the absence of any environ-
mental effect) the effective mobility p can be related to
the Rayleigh wave speed ci through p = cp/T.

Defects and inhomogeneities at the microstructure
scale yield fluctuations in the local fracture energy:
I'(z,y,2) = T + 7y(z,y,2) where 2, §, and Z-axis are
aligned with the direction of crack propagation, tensile
loading, and mean crack front, respectively. This induces
(z,2) in-plane and (g, 2) out-of-plane distortions of the
front which, in turn, generate local variations in G. To
the first order, variations of G depend on the in-plane
front distortion only. Thus, the problem reduces to that
of a planar crack [24, 25]. One can then use Rice’s analy-
sis [26] to relates the local value G(z,t) of energy release
to the planar front shape f(z,t) (see [27] for a recent
review). Once injected in the equation of motion, this
yields [28]:
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where the long-range kernel J is more conveniently de-
fined by its z-Fourier transform J(q) = —|q|f. Here,



F(f,t) = G(f,t)—T and G(f,t) denotes the mechanical
energy release which would result from the same loading
conditions with a straight crack front at the mean posi-
tion f(t) = (f(z,t)).. This equation is that of a long-
range elastic line driven by this force F' within the frozen
random potential y(z,z). It exhibits a depinning tran-
sition at a critical value F., characterized by avalanche
dynamics and universal scale-free behaviors [18].

The function G(f, ) is selected by the specimen geom-
etry and imposed loading. It has to be determined using
LEFM. In stable growth situations, it should increase
with ¢ [crack loaded by imposing external displacements
that grow with ¢| and decreases with f [specimen com-
pliance increases with f]. Without loss of generality, we
consider an immobile crack at ¢ = 0 and we set the x-
axis origin at its tip (f(¢ = 0) = 0). Then, one gets:
G(f = 0,t = 0) = T. Considering the subsequent vari-
ations f(z,t) are small with respect to the initial crack
length, one can write:

F(?v t) = Gt — G/?v (2)

where G' = G/t (driving rate) and G’ = —9G/Jf (un-
loading factor) are positive constants set by the imposed
displacement rate and the specimen geometry, respec-
tively.

To complete the description, one has finally to precise
the random term ~ in Eq. 1. A priori, this latter is
characterized by the probability function p(y) and the
spatial correlation function C(7) = (y(70 +7)y(r0))r,- In
the following, we will consider (i) a Gaussian distribution
p of standard deviation 7; and (ii) an isotropic correlation
function C that decreases linearly with |r| over a distance
¢ (correlation length for the disorder landscape) beyond
which C' = 0. Note that the scaling properties are ex-
pected to remain unaffected by changing the shapes p(7)
and C(|r]) [29]. Microstructural disorder is then fully
characterized by 4 and £.

In this framework, the front dynamics are a priori set
by 7 parameters: u, I, G, G, 7, ¢ and the system size
L (specimen thickness along z axis). By introducing the
dimensionless time ¢t — ¢/(¢/ul’) and length {z,z, f} —

{z/,z/L, f/l}, one gets:

% — et —kf— I ) 4 n(za=f(1)  (3)

where ¢ = G/ / MTQ is the dimensionless driving rate, k =
G'"¢/T is the dimensionless unloading factor, and 7 is a
Gaussian random term of standard deviation o = /T
and unit spatial correlation length. As a result, the front
dynamics are selected by four independent parameters,
only: ¢, k, o, and the scale ratio N = L//.

Numerics — Using a fourth order Runge-Kutta scheme,
we solved Eq. 3 for a front f(z,t) propagating in a N xpN
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FIG. 1. A1—A3: Time evolution of the spatially averaged
crack front velocity o(t) for increasing unloading factor k:
k=4.75x107° (A1), k =2 x 107* (A2) and k = 5.5 x 1073
(A3). Other parameters are kept constants: ¢ = 1072,
N = 1024 and 0 = 1. At low k, U(¢) wanders around the
value ¢/k expected in absence of microstructural disorder,
with relative fluctuations that decreases with k. For higher
k, the dynamics become jerky and, above a given value k¢,
separated pulses can be distinguished, which sharpens as k
increases. B: Minimum value of T(t) vs. k. The transition
value k. between CM-like and crackling dynamics is precisely
defined as the smallest value k for which vmin = 0.

uncorrelated random Gaussian map 7(z, z) with zero av-
erage and o variance (p sets the (Z, 2) aspect ratio). The
parameter ¢ was varied from 107% [imposed by the time
limit of 40 days on a 2 GHz CPU we impose for each
simulation| to 107 [to keep a large enough scale separa-
tion between the depinned front velocity and the loading
rate]. The parameters k, o, and N were respectively var-
ied from 1078 to 1, 107! to 4, and 32 to 2048. This per-
mits a wide exploration of the phase diagram (8 decades
in the relevant units, see Fig. 2 and associated text).

Results — Figure 1:A1—A3 presents typical time pro-
files of the spatially averaged crack velocity o(t) = df /dt
for constant ¢ and increasing k. At low k, v(¢) fluctuates
over the mean value ¢/k that would have been expected
from Continuum Mechanics (CM), i.e. for n = v = 0.
When £k increases, the signal becomes more jerky and,
above a given value, exhibits crackling dynamics, with
distinct pulses separated by silent periods where v = 0.
The transition k. between these two regimes can be com-
puted by plotting the minimum value of T(¢) as a func-
tion of k (Fig. 1:B). vppn is equal to zero in the crackling
regime, and increases with k in the CM-like regime, above
ke.

On Fig. 2:A(Inset), we plot k. vs. ¢ as measured
in systems of fixed p = 3 and various N and 0. A
c-independent plateau k.., is observed at low c/low
N /large o while k. increases linearly (slope A) with ¢
at high ¢/high N/low o. All curves can then be su-
perimposed by making k. — k) = k./keeqr and ¢ —
¢ = Ac/kegq;- Both A and kg, are found to go
as a power-law with N and o: A =~ o~ “*N% with
a1 = 1.15£0.05 and ag = 0.3840.05, and k.yp =~ o N ~3
with ags = 1.65 £ 0.05. The resulting master function,
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FIG. 2. (Color online) A: Phase diagram of the crack dynam-
ics. Inset: variation of k. as a function of ¢ for different N
and o (values on right-hand side). Each point results from
averaging over many simulations and errorbars correspond to
a 95% confidence interval. Main panel: Collapse obtained
using Eq. 4 with a1 = 0.38, a2 = 1.15 and a3 = 1.65.
Straight line indicates proportionality. In both graphs, the
axis are logarithmic. B: Sketch of the variation of the effec-
tive pinning force applying on the front as it quasistatically
propagates throughout the disordered landscape (see e.g. [30]
for implementation of such a propagation algorithm). Points
Si = {x1,m} and Sz = {x2,7m2} locate the maximum and
following next-to-maximum peaks over the traveled distance
(see text for details).

plotted in Fig. 2:A(main), is:

. R . ke, ifct < kX,
=g witn fe) = { B SR (g

where ¢ = ¢ x No2tas /[glter and k} = k. /oN~—*. The
plateau value k;_ , is found to decrease with p. This
curve separates CM-like and crackling dynamics.

The form of the k. vs. ¢ curves can be understood
by analyzing the profile n°//(z) = (J(z,{f} + n(z,z =
f(z,1))). of the effective pinning force applying on the
front as it propagates throughout the disordered land-
scape. Such a profile is depicted in Fig. 2B. The value
kesqr Observed for ¢ — 0 is set by the relative positions
of the maximum and the following next-to-maximum
peaks over the traveled distance (S; = {x1,m} and
Se = {@2,m2} in Fig. 2B): kegor = (m — m2)/ (22 — 21).
At finite ¢, the front earns an extra driving force during
its depinning jump (duration 712) from Sy to Ss, yielding
ke = kegqr+ Ac with A = 795 /(22—21). One thus expects
ke = kegar Tor ¢ K kegar /A and ke = Ac for ¢ > kegqi/A.
The linear variation of {n°//} with o explains the ob-
served k.,,+ o< 0. Note that, in this scenario, the jerky
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FIG. 3. (Color online) Power spectrum (PS) of T(t) obtained
for various value of k (logarithmic axes). Other parame-
ters are kept constant: ¢ = 107°, N = 1024 and o = 1.
Right-handed colorbar indicates the k value. Note the quali-
tative change at the transition k., and the power-law observed
above, in the crackling regime.

dynamics observed for ¢ < ke 4, /A are dominated by a
single large avalanche (from S; to Sz), while true steady
self-sustained crackling dynamics can only be observed
for ¢ > kegqr/A.

We now focus on the evolution of the fracturing dy-
namics v(t) within the steady regimes of the phase dia-
gram. One way to characterize it is to analyze its power
spectrum (PS). Such an analysis, indeed, has two ad-
vantages with respect to the standard statistical analysis
of pulse size and duration developed to analyze crack-
ling signals [31]: i) it allows a full exploration of the
phase diagram (both crackling and LEFM-like); ii) in the
crackling part, it does not call for any additional criteria
(threshold setting) to filter single pulses in the presence
of overlapping avalanches. Figure 3 presents the evolu-
tion of PS(v) for increasing k and the other parameters
constant. Below k., all curves overlap except at the low-
est frequencies. This is precisely what is requested in a
CM description, where the continuum-level scale control
parameter k should affect the system at large scales only.
Conversely, above k., the PS curves are distinct show-
ing that all scales are affected by k. One points out the
power-law behavior characteristic of crackling dynamics
[31-33]. The power-law exponent 1/a is independent of
k, whereas the prefactor decreases with k. The dramatic
change observed as k crosses k. is a signature that the
CM-crackling transition line is a true transition, not a
crossover phenomenon.

We turn now to the quantitative selection of the PS
in the crackling regime. The curve collapse presented
in Fig. 4:A unravels the scaling between the power-law
prefactor and the series of variables ¢, k, and N: Over
the range vmin < v < Umax, PS(v) is:
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FIG. 4. (Color online) A(main panel): Collapsed PS curves
of v(t) in the self-sustained steady crackling part of the phase
diagram (logarithmic axes). The collapse is obtained using
Eq. 5 with k = 0.7. The different curves (with different
colors) correspond to different values of ¢, k, N, o: 107 <e<
3x1074,3x1073 <k<3x1072,128 < N <2048, 0 = 1.
Black straight line is a power law of exponent 1/a = 1.5.
A(inset): For a given PS(v) curve, Vmin is defined from the
intersection of the power-law and the plateau value at low
frequencies, while Ve, sets the upper cutoff for the power-
law. B(main panel): Variation of the lower cutoff vmin with
k for ¢ =107° (0), c =3 x 107° (O), c = 3 x 107° (<), and
constant values N = 1024 and o = 1 [It was checked that vmin
is independent of both NV and o]. In both plots, straight lines
are power-law (Eq. 6) with 2k = 1.4, and A = 0.52. B(inset):
Variation of the upper cutoff vmax with o for N = 128 (0J),
N = 256 (A),N = 1024 (o), N = 2048 ({) and constant
values ¢ = 107° and k = 1073 [It was checked that vmax is
independent of both ¢ and k.

o%r ¢
PS~——p /e
S N5’ (5)
The upper cutoff is found to depend on o only (Fig.
4:B(inset)), while the lower one depends on & only (Fig.

4:B(main)):

Vmax =~ 0—2K; Vmin ~ kA (6)

In Egs. 5 and 6, the fitted exponents were found to be
1/a~1.50£0.02, Kk ~ 0.7+ 0.1, and A ~ 0.52 +0.08.
Discussion — The crackling pulses evidenced in the T(t)
signal result from the depinning avalanches. Single, non-
overlapping, avalanches are known to exhibit universal
scale-free distributions and scaling relations character-
ized by a variety of critical exponents, which can be esti-
mated using renormalization group (RG) [18, 19] or nu-
merical [20, 21] methods. These scale-free features only
hold for length-scales larger than the Larkin length [34]
L., which, for our model, scales as L. ~ 1/0?. We then
expect Umax ~ 1/LF =~ 02% where k = 0.770(5) [21]
refers to the dynamic exponent. This value is in agree-
ment with that measured here. In the so-called adiabatic
limit (¢ — 0), there is a one to one relation between the
o(t) pulses and the single depinning avalanches. Then,
the PS exponent a,q in Eq. 5 [Here, "ad" index stands

for "adiabatic limit"] is expected [32] to be the one that
defines the scaling T" oc S?+¢ between the avalanche size S
and duration T aqq = k/(1 + ¢) [5] where ¢ = 0.385(5)
[20, 21] refers to the roughness exponent. As a result,
one expects 1/aq,q = 1.80(2). The exponent A,y in Eq.
6 defines the scaling between the upper cutoff in time
for scale-free features, and the unloading factor k. In
our model, it is given by A,q = /2 [5], which yields
Ayq = 0.385(5). Both A,y and 1/aqq are found to be
significantly different from the values A and a measured
herein. By yielding some overlap between the avalanches,
a finite driving rate ¢, indeed, is expected [35] to alter the
PS shape and the cutoff dependencies. It is interesting to
note that the effect is limited to a novel value set for a and
A, without modifying the power-law shape for PS, nor
yielding an additional dependency with ¢ for vp,. By
yielding percolation throughout the space-time diagram
as ¢ increases and /or k decreases, the overlap effect is also
believed to drive the crackling/CM transition. On-going
work aims at accurately characterizing this coalescence
process. This will allow unraveling the selection of a and
A in Eq. 5 and that of a; in Eq. 4.

To summarize, we have analyzed here how a brittle
crack selects its propagation dynamics in the presence
of microstructural disorder. Large disorder (contrast or
length-scale), large unloading factor, small specimen size
and small driving rate yield crackling dynamics, while the
opposite yields CM-like dynamics. The associated phase
diagram is unraveled and is shown to be fully controlled
by two reduced variables (Fig. 2 and Eq. 4) that inti-
mately mingle the above parameters. Relations between
these parameters and the dynamics in the crackling phase
(Fourier spectrum of the crack velocity) have been finally
determined (Egs. 5 and 6).

This work sheds light on the experimental conditions
required to observe crackling in brittle fracture. It also
provides insights on how to decipher the crackling dy-
namics and gain information on the underlying condi-
tions, e.g. in terms of microstructure or loading when
those are not a-priori known. These results can also in-
form technological relevant fracture processes, e.g. in the
future development of rationalized design methodologies
to prevent (or to limit) inopportune crackling (and in-
duced indetermination) in cutting technologies. Beyond
solid failure, our analysis directly extends to a number of
others systems described by the same long-range string
model, such as the dynamics of contact lines in wetting
problems [18] and the dynamics of domain walls in ferro-
magnets [22] (field sweep rate and demagnetization fac-
tor then playing the role of ¢ and k). As such, it may
be relevant to other fields facing similar problems, e.g.
nanofluidic or nanomagnetism technologies.

We thank Alberto Rosso and Alexander Dobrinevski
for fruitful discussions, and Cindy Rountree for a criti-
cal reading of this manuscript. Support through ANR
project MEPHYSTAR is gratefully acknowledged.
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