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Internal Maodel Contiol and Max-Algehra:
Controlier Design

Jean-Louis Bolmond and Jean-Louis Persier

Abstracl— This noie proposes an infernal model contrel for Toear
discrete-eveni systoms over maxstlgebra, We shail concentrate on the
controlier block of this control sivuciure.

L INTRODUCTION

We are interested in the control of discrete-event sysiems {DES’s)
which can be modeled by determimistic timed-gvent graphs (TEG's).
It is well kaown that this particular class of graphs (a subset of the
more general class of Petri nets [3], [4]) can be linzarly describeid in
max-algebra. Morcover, this algebra allows interesiing concepts from
conventional linear system theory to motivaie the siudy of DES's
{2i, {3}

This paper deals with the foliowing control problem: 1o fire at the
latest date the process input so thal the fring dates of the process
output occur i the latest before the desired ones (describied by the
reference input). An sftractive solution (o this problem exists and
is given in [2, Section X] snd [3, Section 5.6] in the particular case
where all the values of the desired process output are available and the
model is exactly known. The conirel system offers a strong analogy
with the adjoint system of conventional optimal control theory. Our
motivation 15 fo consider here some more general assumptions:

+ Only the past values of the desirad process output are available
which prevents us from applytag the previous solution;

+ Mismaich between the process and its model can exist which
leads us to congider a feedback control structure rather than
the open-icop control structure used in the previous solution.
We choose the internal model control (IMC) structure used fn
conventional control theory because it is recognized ss very
useful 1o take into sccount imperfect madeling.

This note is organized as follows. Section It deals briefiy with the
linear model represeniation in max-algebra, Basic IMC structure is
intrsduced in Section HI; the stability guarantee, in case of important
mismaich between the process and its mxdel, 1= not addressed here,
Besides the model, this control strecture includes a controller. Ity
design in max-algebra is described in Section IV, The unavailability
of aff the future firing dates of the controller input prevents us from
having the exact solution 1o the previous control problem. However,
in the proposed method we try (o control the model i such a way
that the future firing dates of the model output opcur as close as
possible 10 the ones defined by the predicted comroller input. This
input is the reference input modified to take into account mismatch
between the process amd its model With such a procedure, the
difference between the process output and the reference input depends
on the prediction guality of the modified reference input. Specific
probiems of prediction are not discussed in this note; we only define
the instanis when the predicted modified reference input must be
available. Section V applies the IMC design to a shont example.
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Fig. 1. A TEG,

H. LINEAR ALGIBRAIC REPRESENTATION

Some resulis ielated to the modeling of deterministic TEG [3), (4]
in max-algebra are presented in this section; for o general survey see
[11-{4].

To deseribe completely the behavior of a TEG, it suffices to record
the sequences of its trunsition firing dates. We assume that transitions
agre fired a8 soon as they can be fired. For a tansition labeled 2, we
define =(k) as the date when transition 2 is fired for the &th time. For
example, we consider two machines described by the deterministic
TEG of Fig. 1.

The firing of transition u means that a part is given to the inpwt
stock {place P1) to be manufactured by machine [. The firing of
transition «yr, denotes the loxding of a pant in machine | when this
one is free (token in place P2 The holding time dyy associated
with place P3 indicates the working ume of machine 1. The firing
of transition =, means that machine § has just comploted its work,
Machine 2, which can manufaciure & part in dyra seconds, works
like mackine 1. We state that

wypy (k4 1) = max {zar (k). ulk+ 1))
wag, (k4 1) =dapy + ou, (k1)

For x5, 1o be fired k + 1 times, it 15 necessary that u also be fired
k + L times, whereas »ap, needs only to be fired  times since one
tokex is already aveilable in place P2. Op the other hand, if .,
produces & token a1 a fime 1, this token will not be available before
1+ duey for use by £as,. The max operation refiects the behavior
of the connections. Finally, the equality results from the assuption
that transitions are fired immedintely when they can be fired.

Operations max and + are writlen in max-algebra as & and @,
respectively, to clearly underline the fnearity of a deterministic DES,
The elerents of max-algebra aye the real numbers and minus infinity
(denoted £). Zzro is denoted e o refer to the unity element of &,
More generally, the model we consider is described by the following
linear equations in max-slgebra [35:

{ﬁu(*'i'llﬁfi Szuk!®dBOulk+1) “)

The model stale (denoted z,,) is the n-vecior (zar, -+ 2ar, )"
The control (denoted u) s the p-vector (uy -+ 1,)", and the mosiel
output {denoted g, } is the g-vector (yar, =+ ¥ar, )’ The mitrices
A, B, C have appropriate dimensions with entries in % U {c]. '
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Fig. 2. Basic IMC structare.

As an example, the deterministic TEG of Fig. 1 is described in
max-algebra by

( £ e £
Zylk+ 1= lg dag : D gpe (k)
£ dany dap

4 e (2)

@ fdagy | ©ulk+1)

tdan |
\ pmi)=[r £ daa]® iy (k)
where #ar = (rary  2ary  da) With 2, (0) = (e ¢ £)'. Such

an initial model state means that tokens of the initial marking are
available immedinely.
Henceforth, the sign © is omitted as in usual linear algebrn.

HL Basic INTERNAL MobsL ConTrRoL

An open-loop control structire cannol guaranice to keep the
process output close to the reference lupit in case of mismalch
between the process and its model {(always prosent in practice). To
solve this problem. the apen-foop control structure is improved. The
resulting control, whose structure is depicted in Fig, 2, is celled the
basic IMC {5].

The modified reference inpul (denoted ¢, ) is equal  the reference
input (denoted ¢) minus the difference bmrem the process and maodel
outputs {denoted y, y V5 mpwﬂve!y) Thits difference (denoted d and
called the feedback signal) is due o an imperfect process modeling.
since the same control ¢ is applied 1o both process and model. With
such a control strugture, the difference between the process output and
the reference input is aiso equal to the one between the model output
and the modisted reference input because ¢, = ¢~ (g~ ¥,,)- Hence,
1o keep the process output as close a possible 1o the reference input,
the model output must behave as closely as possible to the modified
reference input which means that the comtroller is designed to be as
close as possible o the inverse of the model {limitation is principally
due o the necessary causality of the controlier).

IV. BASIC INTERNAL MODEL CONTROL IN MAX-ALGEBRA

We try to control the firing dates of the discrete-event process
output (¢) by fiving control (u) at appropriate instants. The reference
nmmidemmmmﬁnngmwﬂwmmm The
sequences of these firing dates are nateraily nondecrensing, morcover
only the firing dates of the reference inpui which occur before thie
mstant when the conirol is compuled are supposed svaiisble 1o
compute the control.

In the previous section, we have seen that the basic IMC principle
can be applied 10 a system when we can design a controller close
t the inverse of its model. Hence, the use of this principle for DES
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raises the problem of model inversion in max-aigebra. Due 1o the
feedback sipnal design, we can note that the IMC stucire induces
& nonlinearity in max-algebra,

Definition (Characteristic Number): For b = 1. -+, ¢, let vector
(7 be the hth row of matrix €, the characteristic pumber of the

madel vutput yar, whose behavior is described by (1) if it exisis, it

is the smallest integer, denoted 6y, such that €y A™ B # ¢
In the sequed to this paper, we assume that &, (B = 1, <+ -, g} exist.
Notation !: Let us define
[CLA*B]
A=
| C e B |

[Cy i1 ]

eyatet |

A and I are ¢ x p and ¢ % 0 matrices. respectively; & and Ty, are
the il row of matrices & and I, respectively.
Theorem: For h = 1, -+, q. we have

stk + 86 1) = Ca gy (K) © An s (k+1).
Proof: By definition of &,. we have
Cﬁg = ey == a‘hc’!‘*—lﬂ o

3

Ay #F &
Hence, (1) implies that
yar (k4 ) = Oy A% 25, (k)

for

F=0, 0 8
then

(k48 + 1) =0 .ﬁt“‘&u(ia-ﬁr 1)
=Faay (k) & &au(h + 1),
Remark 1: The first &, fring dates of the mwdel output Yy,
th =1, -, q) enly depend en initial model state. We have
gar, (J) = O A7z, (0)

for

=000, 8

According o (3) we see that control 2 (k + 1) can infiuence at the
exrliest the future model ontput yug, [k + 84 + Li{b =1, -+ )
Hence, the design of a controller that is as close as possible o the
model inverse requires the knowledge of the desired fure model
output. ie., the future modified referenee input o, (k + & + 1)
“ﬁ =, ew

ealb+én+1)(h=1,.--

future feedback sigoal da(k -+ -+ 1) (=1, -, y), iie., control

# (k4 1). Hence, the controller we propose is split into two blocks

ealied Prediction and fnversion (see Fig. 3.

Control u(k + 1) is caleulated in the fuversion block so that the
fum_re firing dates of the model output yar (k4 &4 + 1) (h =

+ §) ocour as close as possible w0 the onee defined by the
pteéncmi moditied reference inpit. Let us note thal in practice the
mﬂmntsmmmm&yeak&ﬁmdudmmmm

< ¢) when control w (k + 1) is calculated. But these
values are unknown since (hey depend on both future reference inpul
. 4) {not available by assumption) and

a2

&re
ol 3 idier 1o e ilianilie ol ) G L S l‘!i

e
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Fig. 3. Controller,

because their cccurmences can be differeat. Therefore, it is interesting
o estimate the futwe modified reference input cm (k + 8 + 1)
(h = 1,--+, ) in the Prediction block ai cach calcolation of i
emﬂuicampamme(k+l)mhawmﬂwpwhkpm values of
the modified reference inpus. For { = , P, the values of the
predicted modified reference input, which are used when the control
wilk + 1) is calculated, are denoted by

_y {wil k1)) -

Com

(NG 0+ 1) - GGG+ D). @

Practically, we compute the k + ith firing date of the control
component u, umnmmrmkmm&wdﬂm
control component «,.

The design of the Prediction block is pot the aim of this note even
if the prediction quality of the modified reference input is important
for the success of the model inversion method. In the example we
consider in Section ¥, the next firing date of the reference input, used
to calculate the controd, is supposed to be known. Hence, only the
feedback signal (d) needs to be predicted. To simply predict correctly
a constant behavior of the feedback signal, we use its latest-kncwn
value when the conwrol is caleolated. Ji is clear that such a prediction
method is rudimentary.

Let symbol & refer to the multiplication of two matrices in which
the min-operation is used rather than the max-operation [3]: for all
matrices F, G with eutries in ® U {—20. 400}, we have

(F ©G)ij = ming {Fig + Gy}

By convention, we have

(=00) @ (+00) = (=00)
but

{—2¢) & (4o0) s{+o).
Let us recafl an important result due 0 the Residuation theory

[1]-{3}: Given a ¢ x p mawrix ® and @ g-vecor 3 with eniries in
R U {00, 400}, the greatest subsolution of $a = [ exists and is
given by a = (-9") 0 2.
Corollary 1: Let &' be the ith column of the matix A
wi(k+ 1) =(-AY @ (" g Ppy (k)
g=1 0 p 5
eecurring at the latest so that &) u,(k -+ 1) occurs.at the latest date
hefore :
Tazpg () & S Mk 5 5, +1) b=,

The proof is a direct application of the Resaduation theory.
Notation 2: For b = 1, -+, g, let us define i such that

Alvug, (k4 1) = Anulk +1). )

We can note that the possible value of fi is not necessarily single, in
this case any possible value can be considersd.
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Corollary 2: Comirol ulk + 1) defined by (5) occurs af the hieest
so that
ua(k+on 1) =

murwa ((~a'*) Tzpik)h)
h=1 -, 73

fig Igﬁ,[..‘uﬂn oA

More precisely, either pag, (k -+ &4 + 1) coours at the latest before
ettty ¢ 6 #1), ie. ot

Al ((-ahy o et g rg mp
or yar, (k + 85 4 1} occurs at the earliest after

Ai"(( Alsy! @l '{"'“u“}l(ﬁi‘mu(k}}]

ie., @ Fpzy (k).

Proof: From (3) and {6}, and dug to (5), we casily obiaia (7).
If we suppose that

Ly (k) <A ((-a%) N & ra (0D
—A,, utk+ 1)
from (7) 3 is clear that
yar, (k + 8n + 1) = A ug, (k4 1) > Tz tk).

Om the sther hand, by using Corollary | wewezh:fa,, uy, (k+1)

ccouisan the Iaieas Delkie Ty 0N @ Ba e S kA S, k)

which implies that yas, (k + & + 1) cccm at the hiest before
fuy, (E+ v 3

D 8y 4 1) > Thzag(k). When

Prza (k) 2 Al ((~a%) @ {dn " Mo rz, ()
from (7) we see easily that yag, (k + & + 1) occurs at Tazy (k).
Remark 2: Control u(k 4 1) defined by (5) needs the model state
£, (k) which is easily availahie in the IMC structure,
Remark 3: In the particular case where the model is exacily known
mﬂﬂwvﬁmofihepx%ﬂedm&hﬂmfammmaml.

we ﬂaarly have &I DL = k4 a4+ 1) G = 1,

h=1,+ ,q)whuhyiﬁ!ﬂs according 1o Notation 2
St b )= otk b D) k=14

Hence, by using Corollazry 2 we see that yq (& + &, + 1) occurs at
the latest before cn(k 4 &, + 1), ie., at
_ elk+6+1)]
Apl(-a") @ : | @ Peglh)
ek 8, + 1)

or ai the cartiest after this ame. i.e., at Tpzy (k). Let us recall tha
the latter case is avoided when the adjoint systern can be used (see
Section f).
Remark 4: In single-input-singic-cugput (SIS0) case. Coroflary
2 is simplified. The solution of ®a = J exists and is given by
= (~@)3. Thus vontrol wl(k + 1) cocurs at the fates so that
wu 464 1) = Cap k) @ A Ok 45 4 1),

V. Exasins
We consider the two machines described in max-algebin by ().
Since OB = dandare # =, the charcteristic numher 8 exists and is
equal t zero; thus & = CB and I = C'A, From (5), we have

wlk + 1) = (=AM 4 1)@ Cayy (k) }
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with
(=4} = (—dan )(~=darz)
and
D=[e dandss  20m2)-

Hence, according 10 Remark 4 and owing to the IMC structure (see
Section 1H), we have

plk+1)—clk+1)=gulk+ )= cnik+1)
z(’-‘ﬂ““'”(**’“':’ Tz, (k))
—emlk+1)
in the simulation case, the reference input is defined by
clk)=clk=1) 41 fork=1,:-,9withe() =0
clk) =l - 1)+ 0.5 fork=10,--, 13 and
elki=clh=13+1 fork>W,

For convesience, onty the manufacturing time of machine 2 (dasz)
is supposed 1o be imperfectly modeled: The value daz of the modet,
used for contro! design, is equal 1o 0.7 s, while the tue value is
squal 10 0.6  during the first 19 samples and to 0.3 s afterwards, The
manufactunng time of machine | (dary }is exast and is equal v 0.2 5.

The reference input «(k+ 1) is supposed o be known when control
u(k + 1) is computed [just afier u(k)], and hence ouly the feedback
signal meeds 10 be predicied. To predict it correctly when its behavior
is constant, let 4 FUNE 4 1) = d(j), where d{J) is the last firing
date of the feedback signal we dispose of when control w(k + 1) is
computed.

Fig. 4 represents the behaviors of feedback signal and its ie-
tion. Initially, the model is supposed to'be perfect: Let d*™(Vi(1) =
(. We can obseive that the change of the feedback signai ac sample
20 causes a wrong prediction at sumples 20 and 21 which is duve te
the poomess of the prediction method.

Fig. 5 represents the behavior of conwol. Fig 6 represents the
behaviors of the error hetween the model output and the reference

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 41, NO. 3, MARCH 1996
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Fig. 6. Model outpulfefersice input emor {yay = #) o and precess owt-
put/refercnce tnput error (g — ¢} ®.

input and of the emor between the process outpul and the reference
input.

We observe in Fig. 5 that for samples 10-15. the comtrol occurs &
soon as possible, ie., u(k) = (=AM e . (k=§) fork = 14, ---, 10.
Two reasons induce this behavier:

+ For samples 10-13, machine 2 cannot produce enough pars to

satisfy the production rate desired by the reference mput. Such
a problem causes a divergence between the process output and
the reference input at the same samples (see Fig. 6),

+ At samples 14 and 15, the wackines produce parts a5 soon 23
possible 1o zero the emror between the provess output and the
reference input (see Fig, 6.

On the other hand, it can be segn in Fig. 6 that the process outpuy
is equal o the reference input i spite of a mavufacluriog time
mismateh, when for the same sample the prediction of feedback signal
is exact (see Fig. 4). and the controt does mot depend on the modet
state.

VI CoNCLUSION

We propose the use of IMU structure 1o try and take wlo account
imperfect muodeling for deterministic DIESs, Such systems are de-
scribed by linear equations in max-algebra. In the basic IMC structure,
the controlier design raises the probiem of model inversion because
the difference between the process output and the reference input
is equal to the oae between the model outpnt and the controiler
input. i.c., the modified reference input. Due 1o the IMC structure,
we cannot design the comtroller by using the adjoint system {2,
Section X], [3. Section 5.6] which is ideally adupted 1o an open-
loop control structure. The proposed controfler is based on the future
(predicted modifigd reference input, and it is split inte two blocks,
cailed Prediction and Invession. Our werk concems only the Inversion
block where Residuation theory plays an essential role. Firing the
muodel output as late as possible before desired dme instants is not
always assured, the control firkng dates oceur ol the Iatest, so that for
each model vutput:

» i the future firing date of the mexdel output can occur belore the
one defined by the predicted modified refercnce input. then it
occurs at the latest tine before the one defiued by the predicted
modified reference fnput (only at i SISO casej;

« Onherwise, the futare firing daie of the model outptt octurs
at the earliest after the one defined by the predicted modified
reference input.

An imporiant point s the robustress of the IMC. How can
we guarantee stability in spite of the important mismateh between
the process and its model? A possible approsch would consist in
predicting the reference input separately from the feedback signal.
Hence, robustmaess would depend on e technique used to predict ihe
feedback signal.
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Principle of Proportional Damuages in
a Multiple Criteria LQR Problem

Yuri B. Shiessel

Absteacd A multiple criteris Inear gquadratic regulator (LQR prablan
{5 considered, The principle of proportionsl danages is worked put to
mnimize & norm of a difference between ideal and optimal values of the
vegtor-perfarmance criferia, while the distribution of the losses (damages)
of the perfermance ceiteriz are under confrol A muliiple eriteria LUR
probiem sefution vin prisdpie of proportional damages is obtained as
# Hmar Torm of stide sarizbles sl i fnvariad (o the nerm which &
imimnlzed.

. IvmRODUCTION

The problem considered belongs to the domain of lincar systems
with quadratic performance criteria. This is, for cxample. a linearized
fight control problem [1]. The set of linearized equations of the
motion of a rigid aircrafi can be considered as three interacted
subsystems. Euach subsystem describes pitch, yaw, and ol angle
rutes. Behavior of these angle retes can be chamctenized by thuee
guadratic performance criteria. These criteria can be minimized by
means of carresponding choice of control functions: aileron, rudder,
and elevator pasitions. Appareniiy, each control function affects all

performance criteria. Cousexquently, an wir-vehicle flight control is a

typical mulugple criteria control problem. Decoupling control strategy,

when initially subsystems are decoupled via decoupling control and

then optimal comtrol functions are identified in each subsystem
separately, is very popular, Unlike this waditional approsch, we
propose to employ interconnections between subsystems {o tmprove
the performance of each subsystem. In this work we will look for
the compromise mimimization control solution based on a procedure
that calculates Pareto optimal solutions as the approximation o an
ideal point [2]-15]. The distance beltween ideal and actual values
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of the vector-performance criteria is fonped as some noim in the
criteria space. This norm is usuaily minimized [5] 10 synthesize the
compromised control strategy. This approach is afiractive because of
its muthematicel and physical clarity, However, some disadvantages
exist. First, it is not obvious how o specify the nosm i the ¢ritena
space. The compromised solution should depend on the form of this
norm. Second, minimizing the nuem we do not control the distzibution
of the differences between ideal and optimal (compromised) valoes
of each criterion. It can lesd o wnacceptable compromised behavior
in some subsystems. The principle of proportional damages is worked
out [6]. {7] 0 minimize a norny of a difference between sdeal and
optimal values of the vector-criteria. while the distribution of the
Eusses (damages) of each criterion is under control. A multiple critenia
tinear quadratic. regulator (LOQR) problem solution via priociple of
proportional damages is obtaimed as linear fonm of staie variatdes
and is mvariant to the norm which is mintsmized.

I Prosies FORMULATION
Suppose a hinear time-varying mubti-nput-multi-ouwput sysiem,
consisting of N interacting subsysioms, bs descibed by the systems
of the differeatial equations
&= A{tjelt) + B{ul(t)

2{0) =g it
where the eniries of matrices A{¢) € R"™", B{f) € B"*™ are
continuous furctions of tme.

Lach subsysiem is characierized by the quadratic performance
index (criterion)
)7 S o
Jilr,u) =1} f Ot () + v ) RAOu(t)] dt
0O
Yi=1: N {2)

where time-dependent matrices G (F) € B"™", H(t) € B™™"™ are
positive semidefinite and positive definite, correspondingly, while the
performance of (1} is charactenized by the vecior-criteria

Je. u) = {Hiz, a), Salz. ). vz u)). {3)
We wish to find an optima} feedback control law u’{#, )} such

that (3) is minimized. We will think of (3) as minimized ia the sense
of the principle of proportional damages (3], [6).

HI. PRINCIPLE OF PROPORTIONAL DAMAGES
One of the widespread approaches to fook for the compromise
feedback comtrol law «* (£, =) is based on a procedure that calculates
Pareto optimal solutions as an approximation 1o an ideal point J°
which is introduced in criteria space as follows [2)-5]:
PR e 4
whore
8 =il uwty Sl wt) € Tz, u)
vi=1 N. 5)

Very often a distance between (3) and (8) is represented as in the
following worm:

N i/p
pld, J"*)=[E |J&(I-H)—Jﬂ"] v REfL oos) (6

=l
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