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Abstract 

This paper deals with the modeling of the time behavior of 

discrete-event systems in (max, +) algebra. The systems we 

consider are linearly modeled in this algebra. The proposed 

method is inspired by conventional linear system theory : 

from an ARMA form of the model and the system impulse 

response, the model parameters are computed by using a 

basic result of Residuation Theory in order to minimize an 

error criterion. 

1  Introduction 

 In automatic control we need a mathematical model to 

characterize system properties (commandability, stability, ...) 

or to design the control law of a system. Therefore, it is 

important to obtain a model of the system which should, as 

far as possible, be both realistic and simple. 

 In conventional linear system theory many works deal 

with this problem. These studies have allowed to develop 

quite simple and relatively effective methods in order to 

identify conventional linear systems. The purpose of this 

paper is to propose a modeling method of discrete-event 

system (DES). This method uses the max-plus algebraic 

notation in order to do analogies with the conventional linear 

system theory. To have a linear representation of a system in 

(max, +) algebra (for shortness we will note max-algebra), 

we consider DES in which only synchronization phenomena 

appear. Moreover, they are deterministic and we restrict 

ourselves to single-input single-output (SISO) systems. 

 In the second section we briefly recall the max-

algebraic operations and the main representations of DES. A 

complete introduction to max-algebra can be found in [2], 

[3]. The third section is concerned with the identification 

method in max-algebra which is mainly based on the 

Residuation Theory [1], [2]. In the fourth section, we 

propose a practical modeling procedure. 

2 Notations and Descriptions of DES in Max- 

 Algebra 

We consider the semiring ( { }∞+∞−∪ℜ , , ⊕ , ⊗ ) where the 

laws ⊕ , ⊗  are defined by  

 

  a b a b a b a b⊕ = ⊗ = +max ( , ) ,  

 

The element −∞ is neutral for the law ⊕  and absorbing for 

⊗ , the element 0 noted e is neutral for ⊗ . We can note that 

⊕  is idempotent, i.e., a a a⊕ = . 

Firstly we recall the usual recurrent linear equations in max-

algebra  
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x x xn

t= ( )1!  is the n dimensional model state. u xi,  and y 

are called control, i th model state and model output 

respectively. The model described by Eq. (1) can also be 

represented by a timed event graph where u xi,  and y are 



 

 

transitions ; u j x ji( ), ( )  and y j( ) represent the dates when 

u xi,  and y are respectively fired for the j th time. 

In the following, the sign ⊗  will be omitted. The use of the 

γ-transform [2], [4], where γ operates as the z
−1

 operator of 

conventional system theory, leads to the following 

representation of Eq. (1) 
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where U X( ), ( )γ γ  and Y( )γ  are the γ-transform of u x,  

and y respectively. 

A basic theorem [2], [4] shows that the least solution of Eq. 

(2) is given by  

 

 Y C A B U( ) ( ) ( )
*γ γ γ=    with ( ) i

i

AA )(
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and thus the input-output behavior of Eq. (2) can also be 

described by the transfer function 

 

   h C A B( ) ( )
*γ γ=  

 

which can also be expressed as a polynomial expression of 

the form 

  h p q s
r

( ) ( ) ( ) ( )
*γ γ γ γ γν= ⊕    (3) 

 

where p pi i

i
( )γ γν= =

−⊕ 0
1

 , q qj
r

j

j
( )γ γ= =

−⊕ 0
1

 and s is a 

monomial [2]. Let us remind that h(γ) can be considered as 

the γ-transform of the impulse response of the model. 

Therefore, the h(γ) expression can express that the pattern 

represented by q(γ) is indefinitely reproduced because the 

multiplication by s
rγ  symbolizes a r unit abscissa shift and 

a s unit ordinate shift. This periodic behavior begins after a 

transient behavior which may be represented by p(γ). 

We must note that such a realization is not necessarily 

minimal [2,§6.5.4], however it allows a simple interpretation 

of h(γ). For example, the transfer function 

 

 h e( ) ( ) ( )
*γ γ γ γ γ γ γ= ⊕ ⊕ ⊕ ⊕ ⊕1 3 6 8 9 7

2 3 2 3
 

 

leads to the impulse response illustrated in Fig. 1. 

 

 The purpose is to identify parameters of the transfer 

function h( )γ  described by Eq. (3), i.e., parameters of 

polynomials p( )γ  and q( )γ  and monomial s, by using the 

system impulse response. The ( )
*

s
rγ term of the transfer 

function h( )γ  implies an infinite repetition of the q( )γ  

pattern which means an infinite number of parameters to 

compute. Hence as in conventional system theory, we 

transform the transfer function h( )γ  into an ARMA form to 

obtain a finite number of parameters. A solution is given in 

[2, § 9.2.2] to obtain this ARMA form, however we prefer a 

simpler method which is : 

 Assuming that h( )γ  is defined by Eq. (3), then Y( )γ   

 and U ( )γ  satisfy the ARMA equation  

Y s p U p q U s Y
r r

( ) ( ) ( ) ( ) ( ) ( ) ( )γ γ γ γ γ γ γ γ γ γυ⊕ = ⊕ ⊕

    (4) 

Proof is easily obtained by expressing Eq. (3) as 

 

Y p q e s s U
r r

( ) ( ) ( ) ( ( ) ) ( )γ γ γ γ γ γ γυ= ⊕ ⊕ ⊕ ⊕ 2
!  

 

which can be written as  
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On the other hand the multiplication of Eq. (3) by s
rγ  leads 

to  
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Because a a3 6=  , hence we have  

 

 a a a a a a a a a a1 5 2 3 5 2 5 6 2 4⊕ = ⊕ ⊕ = ⊕ ⊕ = ⊕   

 

which leads to the result. 
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Figure 1 : Impulse response corresponding to h( )γ . 
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3 Identification Method 

 In this section we develop an identification method of 

an ARMA model in max-algebra which will be used to 

compute the parameters of the transfer function h( )γ . The 

proposed approach offers an analogy with conventional 

discrete time system theory. Let us remind that a linear 

discrete time system can be expressed as the ARMA 

equation  
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To estimate the parameters of this ARMA equation, i.e., 

a a b bn m1 0, , , , ,! ! , some identification methods consider the 

following prediction error 

 

  ε( ) ( ) ' ( ) ' ( )k y k a y k j b u k iG j G
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where yG  is the measured system output and 

' , , ' , ' , , 'a a b bn m1 0! !  are the estimated parameters. Such a 

prediction error allows to define a criterion which is 

minimized for the set of parameters searched. For example a 

quadratic criterion is used in the well known least square 

method [5, chap. 7]. 

 

3.1 Identification Method of Max-Algebra  

 ARMA Model  

 

 Let us suppose that model can be described in max-

algebra by the ARMA equation  
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n
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  (5) 

The identification method we propose is based on the system 

impulse response, i.e., 
!
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the conventional system theory, we define the prediction 

error  

 

  ε ϕ θ( ) ( ) ( ' )k y kG k

t= − ⊗  

 

where yG  is the measured system output,  

  ϕ
k

t
G Gu k u k m y k y k n= − − −( ) ( ) ( ) ( )! !1   

is the regression vector at event k and 

' ' ' ' 'θ = b b a am n

t

0 1! !  is the estimated parameters vector. 

By using the data of u k( ) and y kG ( ) with k = 0 to N and 

N n m> + , one can obtain the matrix expression 

 

  ε θ= − ⊗Y MG G( ' )  

 

where ε ε ε= ( ) ( )n N
t

!  is the prediction error vector, 

Y y n y NG G G

t= ( ) ( )!  is the measured system output 

vector and MG  is the matrix ϕ ϕ
n N

t

! . Vector ε  makes 

possible to define a criterion J as  

 

   J ( ' ) ( )θ ε=
=
% k
k n

N

 

 

To determine the estimated parameters vector 'θ  which 

minimizes this criterion, we consider a basic result of 

Residuation Theory [1], [2] which states that 

 

  ( ) G
t

G YM  � −=θ  (6) 

 

is the greatest subsolution of  Y MG G= ⊗ 'θ  where ! refers 

to the multiplication of two matrices in which the min-

operation is used rather than the max-operation [2]. Thus, by 

using this greatest subsolution, each element of the 

prediction error vector ε  is always positive and J ( ' )θ  is 

minimized. 

 

3.2 Identification Method of Transfer 

 Function h(γγγγ)  
 

 The identification method proposed in the previous 

section needs to have a particular linear ARMA form (see 

Eq. (5)). Because this condition is not verified by the ARMA 

equation (4) (owing to the s p U
rγ γ γ( ) ( ) term), we propose 

to identify transient part and periodic part separately. This 

procedure leads us to consider the two following equations 

rather than Eq. (4). 

When we consider an impulse response without periodic 

behavior, i.e., q( )γ = − ∞, Eq. (3) is reduced to the simple 

MA equation  

 

 Y p U( ) ( ) ( )γ γ γ=  (7) 

 

Similarly, an impulse response without transient behavior, 

i.e., p( )γ = − ∞ , leads by using Eq. (4) to  

 

 Y q U s Y
r
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 Let us remind that ν −1 and r −1 are the polynomial 

orders of p( )γ  and q( )γ  respectively. Therefore we obtain 

an estimation of the p( )γ  parameters by applying the result 

of section 3.1 to Eq. (7)  

 

 'θ ϕ ϕ
ν

= − −
−0 1

! !Y G  (9) 

where  ' ' 'θ ν= −p p
t

0 1!  

 

is the estimated vector of the p( )γ  parameters and 

 

   ϕ ν
k

t
u k u k= − +( ) ( )! 1  

   Y y yG G G

t= −( ) ( )0 1! ν  

 

Let us note that we naturally need the first data of the 

measured system output to correctly identify the transient 

part. 

Similarly, we obtain an estimation of the parameters of q( )γ  

and s by applying the result of section 3.1 to Eq. (8)  

 

 'θ ϕ ϕ
ν

= − −!
N GY!  (10) 

   with N r≥ +ν    

where  ' ' ' 'θ = −q q sr

t

0 1!  

 

is the estimated vector of the parameters of q( )γ  and s 

and 

 

   Y y y NG G G

t= ( ) ( )ν !  

   ϕ ν ν
k G

t
u k u k r y k r= − − − + −( ) ( ) ( )! 1  

 

 According to the assumption which leads to Eq. (8) 

p( )γ = − ∞ , we consider that y yG G( ) ( )0 1= = − = − ∞! ν  

to compute ϕ
k
. 

4 Practical Modeling of h ( )γγγγ  

 As in conventional linear system theory [5, chap. 16], 

the identification of the transfer function h( )γ  by using Eqs. 

(9) and (10) imposes to know the number of coefficients of 

polynomials p( )γ  and q( )γ , i.e., ν and r respectively. 

In practice the knowledge of these values is an important 

problem of the modeling. Indeed the model structure should 

as far as possible be both complex enough to correctly 

qualify the system and simple enough to reduce the number 

of parameters to be identified. 

To obtain this compromise we need a preliminary analysis to 

have an estimation of ν noted lp, it can be coarser but it must 

be greater than the exact transient length. Then we propose a 

modeling method based on the analysis of the criterion J (see 

section 3.1) as a function of lp and lq (defined as the 

estimation of the pattern length r). 

In order to estimate r : 

  - we initiate lq  to 1 ; 

  - we compute qi ( , , )i lq= −0 1!  and s by using  

  Eq. (10) ; 

we repeat the latter calculation with l lq q= +1 until criterion 

J is minimal. 

 

 To estimate ν we fix r to its previous estimation. Then 

we decrease lp and we calculate qi ( , , )i r= −0 1!  and s by 

using Eq. (10) until criterion J increases. 

This critical value of lp corresponds to the estimation of 

transient part length (ν). 

 

5 Conclusion 

 We have proposed an identification method of DES in 

max-algebra. This method makes possible the identification 

of SISO systems. It offers an analogy with the conventional 

linear system theory : it is based both on the analysis of the 

system impulse response and on a linear ARMA form of the 

model. To obtain this ARMA form we separate the transient 

behavior and the periodic one. Such property makes possible 

the use of a basic result of Residuation Theory which leads 

to a simple method of parameters model estimation. 

However we cannot guarantee the minimality of the model 

due to the considered expression of the transfer function, we 

keep working on this problem. On the other hand it will be 

interesting to characterize the action of disturbances on the 

method. 
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