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Formal asymptotic limit of a
diffuse-interface tumor-growth

model

Danielle Hilhorst∗, Johannes Kampmann†, Thanh Nam Nguyen‡

and Kristoffer G. van der Zee§

June 24, 2013

Abstract We consider a diffuse-interface tumor-growth model, which has
the form of a phase-field system. We discuss the singular limit of this prob-
lem. More precisely, we formally prove that as the reaction coefficient tends
to zero, the solution converges to the solution of a free boundary problem.

Keywords Reaction-diffusion system, singular perturbation, interface mo-
tion, matched asymptotic expansion, tumor-growth model.

1 Introduction

Diffuse-interface tumor-growth models have been modeled and studied
in several articles [33, 49, 20, 8, 37, 36]. We also refer to the overviews
in [19, 38, 21, 42]. The basic model is composed of a fourth order parabolic
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Cedex, France
§Technische Universiteit Eindhoven, Multiscale Engineering Fluid

Dynamics, Gem-Z 3.136, PO Box 513, 5600 MB Eindhoven, Netherlands

(k.g.v.d.zee@tue.nl)

1



equation for the tumor cell concentration u : Ω → R coupled to an elliptic
equation for the nutrient concentration σ : Ω→ R:

ut = ∆(−ε−1f(u)− ε∆u) + ε−1p0σu (1a)

−∆σ + ε−1p0σu = 0, (1b)

where ε2 is the diffusivity corresponding to the surface energy, the positive
constant p0 is a proliferation growth parameter, and f is a bistable function.

Introducing the chemical potential µ : Ω→ R, given by

µ := −ε−1f(u)− ε∆u,

(1a)-(1b) becomes

ut = ∆µ+ ε−1p0σu, (2a)

µ = −ε−1f(u)− ε∆u, (2b)

0 = ∆σ − ε−1p0σu. (2c)

The above system models the evolution of the first stage of a growing tu-
mor [44]. In this stage a tumor grows because of the consumption of nutrients
that diffuse through the surrounding tissue. This stage is referred to as avas-
cular growth, as the tumor has not yet acquired its own blood supply to
nurture itself. Consumption of nutrients is modeled in (2a) and (2c) via the
reactive terms. To describe the evolution of the tumor boundary a diffuse-
interface description is employed. This is classically modeled in (2a) with a
diffusion via the chemical potential µ which depends in a nonlinear manner
on u and contains the higher-order regularization ε∆u, see (2b).

Diffuse-interface tumor-growth models fall within the broader class of
multiconstituent tumor-growth models based on continuum mixture theory,
such as presented in [5, 4, 12, 34, 7]. The derivation of diffuse-interface mod-
els within continuum mixture theory has been reviewed in [42], and requires
the set up of balance laws for each constituent as well as the specification
of constraints on the constitutive choices imposed by the second law of ther-
modynamics. Typically, only the cellular and fluidic constituents of a tumor
are modeled as parts of a mixture, while nutrients are considered separately.
Recently however, a diffuse-interface tumor growth model has been proposed
that incorporates all constituents within the mixture and is proven to be
thermodynamically consistent, see [37]. In fact, the model is of gradient-flow
type.
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The model from [37] is a modification of (2) and has a natural four-
constituent interpretation: a tumorous phase u ≈ 1, a healthy cell phase
u ≈ −1, a nutrient-rich extracellular water phase σ ≈ 1 and a nutrient-poor
extracellular water phase σ ≈ 0. It is given by

ut = ∆µ+ ε−1p(u)(σ − δµ) (3a)

µ = −ε−1f(u)− ε∆u (3b)

σt = ∆σ − ε−1p(u)(σ − δµ) (3c)

where δ > 0 is a small regularization parameter, and the growth function
p(u) is defined by

p(u) :=

{
2p0

√
W (u) u ∈ [−1, 1]

0 elsewhere.

Here W (u) := −
∫ u
−1
f(s) ds is the classical Cahn–Hilliard double well free-

energy density. We assume that the bistable function f(u) has two stable

roots ±1, an unstable root 0 and mean zero:
∫ 1

−1
f(s)ds = 0. Note that,

compared to (2a)-(2c), the reactive terms have been modified to be thermo-
dynamically consistent. They include a regularization part δµ and they have
been localized to the interface (since p(u) is nonzero if u ∈ (−1, 1)); see [37]
for more details.

In this work, we shall be interested in the singular limit ε ↓ 0 of (3a)-
(3c) together with homogeneous Newmann boundary conditions. For articles
involving singular limits we refer to [3, 13, 17, 14, 46, 43, 9, 39, 26, 2, 23,
48, 15, 1]; we should also mention the overviews [18, 32, 41, 40], and the
numerical studies [28, 27, 29, 30, 31, 16].

The unknown pair (u, σ) is a dissipative gradient flow for the energy
functional

E(u, σ) :=

∫
Ω

(ε
2
|∇u|2 + εW (u) +

σ2

2δ

)
.

We refer to Theorem 1.1 for the proof of this property in a slightly more
general context.
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1.1 The main results

In order to study the singular limit of Problem (3a)-(3c) as ε ↓ 0, we
introduce the following phase-field model

αµεt + uεt = ∆µε + ε−1p(uε)(σε − δµε) in Ω× (0,+∞),

ε−1µε − αuεt = −ε−2f(uε)−∆uε in Ω× (0,+∞),

σεt = ∆σε − ε−1p(uε)(σε − δµε) in Ω× (0,+∞),

(4a)

(4b)

(4c)

together with the boundary and initial conditions

∂µε

∂ν
=
∂uε

∂ν
=
∂σε

∂ν
= 0 on ∂Ω× (0,+∞),

αµε(·, 0) = αµε0, uε(·, 0) = uε0, σε(·, 0) = σε0, on Ω.

(4d)

(4e)

Here, Ω is a smooth bounded domain of RN(N ≥ 2), ν is the outer unit
normal vector to ∂Ω and α is a positive constant. We denote by (Pε) the
problem (4a)-(4e). Setting α = 0 in the singular limit of Problem (Pε), we
will obtain the singular limit of Problem (3a)-(3c). Problem (Pε) possesses
the Lyaponov functional

Eε(u, µ, σ) :=

∫
Ω

(ε
2
|∇u|2 +

1

ε
W (u) +

αµ2

2
+
σ2

2δ

)
.

We will prove in section 2 that Problem (Pε) is a gradient flow associated to
the functional Eε(u, µ, σ).

Theorem 1.1. Let (uε, µε, σε) be a smooth solution of Problem (Pε). Then
Eε(u

ε, µε, σε) is decreasing along solution orbits.

We will show in the following that, if in some sense

µε −→ µ, uε −→ u, σε −→ σ,

then the triple (µ, u, σ) is characterized by a limit free boundary problem,
where the interface motion equation appears as the limit of the equation (4b).
A rigorous proof of the convergence of the solution of the equation (4b) may
for instance be found in [1]. According to [1], the function u only takes
the two values −1 or 1 and the interface which separates the regions where
{u = −1} and {u = 1} partially moves according to its mean curvature.
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Assumption on initial conditions: We assume that as ε ↓ 0,

µε0 −→ µ0, uε0 −→ u0, σε0 −→ σ0,

in some sense and that there exists a closed smooth hypersurface without
boundary Γ0 ⊂⊂ Ω which divides Ω into two subdomains Ω+(0) and Ω−(0)
such that

u0 =


−1 in Ω−(0),

1 in Ω+(0).

(5)

We also assume that Ω+(0) is the region enclosed by Γ0 and that Ω−(0) is
the region enclosed between ∂Ω and Γ0.

Now, we are ready to introduce a free boundary problem namely the
singular limit of Problem (Pε) as ε ↓ 0:

u(x, t) =

{
1 in Ω+(t), t ∈ (0, T )

−1 in Ω−(t), t ∈ (0, T )

αVn = −(N − 1)κ+ Cµ on Γ(t), t ∈ (0, T )

αµt + ut = ∆µ+ 2
√

2p0(σ − δµ)δ0(x− Γ(t)) in Ω× (0, T ),

σt = ∆σ − 2
√

2p0(σ − δµ)δ0(x− Γ(t)) in Ω× (0, T ),

(6a)

(6b)

(6c)

(6d)

together with the boundary and initial conditions

∂µ

∂ν
=
∂σ

∂ν
= 0 on ∂Ω× (0, T ),

αµ(·, 0) = αµ0, σ(·, 0) = σ0, on Ω,

Γ(0) = Γ0,

(6e)

(6f)

(6g)

Here, Γ(t) ⊂⊂ Ω is a closed hypersurface; Ω+(t) is the region enclosed by
Γ(t); Ω−(t) = Ω \ (Ω+(t)∪Γ(t)); δ0 is the Dirac distribution; Vn : Γ(t)→ RN

is the normal velocity of the evolving interface Γ(t), κ is the mean curvature
at each point of Γ(t) and

C =

[∫ 1

−1

√
W (s)/2 ds

]−1

.
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We denote by (P0) the problem (6a)-(6g) and define

ΓT :=
⋃

t∈(0,T )

Γ(t)× {t}.

Definition 1.2. We say that the triple (ΓT , µ, σ) is a solution of Problem
(P0) if

(i) ΓT is smooth,

(ii) for all test functions

ψ ∈ FT := {ψ ∈ C2,1(Ω×[0, T ]) such that
∂ψ

∂ν
= 0 on ∂Ω×[0, T ] and ψ(T ) = 0},

we have∫ T

0

∫
Ω

(−αµ− u)ψt −
∫

Ω

(αµ0 + u0)ψ(0) =

∫ T

0

∫
Ω

µ∆ψ + 2
√

2p0

∫ T

0

∫
Γ(t)

(σ − δµ)ψ,

and∫ T

0

∫
Ω

−σψt −
∫

Ω

σ0ψ(0) =

∫ T

0

∫
Ω

σ∆ψ − 2
√

2p0

∫ T

0

∫
Γ(t)

(σ − δµ)ψ.

Now, in order to state the next result, we need some notations. Let n+(t), n−(t)
be the outer unit normal vectors to ∂Ω+(t) and ∂Ω−(t), respectively. Note
that n+ = −n− on ΓT , so we may define n := n+ = −n− on ΓT . We define
[[·]] the jump across Γ(t), by [[φ]] := φ+− φ−, where φ± should be understood
as the following limit

φ±(·) := lim
ρ→0−

φ(·+ ρn±(t)) on Γ(t).

We also define

Q+
T :=

⋃
t∈(0,T )

Ω+(t)× {t}, and Q−T :=
⋃

t∈(0,T )

Ω−(t)× {t}.
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Theorem 1.3. Assume that Problem (P0) possesses a solution (ΓT , µ, σ)
such that ΓT is smooth on the time interval (0, T ) and that µ and σ are
smooth up to ΓT on both sides of ΓT . Then the triple (ΓT , µ, σ) satisfies:

αµt = ∆µ in Q+
T ∪Q

−
T ,

σt = ∆σ on Q+
T ∪Q

−
T ,

[[µ]] = [[σ]] = 0 on ΓT ,

[[
∂µ

∂n
]] = −2Vn + 2

√
2p0(σ − δµ) on ΓT ,

[[
∂σ

∂n
]] = −2

√
2p0(σ − δµ) on ΓT ,

αVn = −(N − 1)κ+ Cµ on ΓT ,

(7a)

(7b)

(7c)

(7d)

(7e)

(7f)

together with the boundary and initial conditions

∂µ

∂ν
=
∂σ

∂ν
= 0 on ∂Ω× (0, T ),

µ(·, 0) = µ0, σ(·, 0) = σ0, on Ω,

Γ(0) = Γ0.

(7g)

(7h)

(7i)

In this case, we say that (ΓT , µ, σ) is a classical solution of Problem (P0) on
the time interval [0, T ].

Problem (P0) possesses the Lyapunov functional

E(Γ, µ, σ) :=
2

C

∫
Γ

1 dΓ +

∫
Ω

(αµ2

2
+
σ2

2δ

)
,

which is analogous to the Lyapunov functional satisfied by Problem (Pε).

Theorem 1.4. Let (ΓT , µ, σ) be a classical solution of Problem (P0). Then
E(Γ, µ, σ) is decreasing along solution orbits.

Finally, we will formally prove the following result.

Theorem 1.5. Let (µε, uε, σε) be solution of Problem (Pε). We suppose that
Problem (P0) possesses a unique classical solution on the interval [0, T ]. If
ε→ 0,

µε −→ µ, uε −→ u, σε −→ σ in a strong enough sense,

then (ΓT , µ, σ) coincide with the classical solution of Problem (P0) and u is
given by (6a).
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We note that the singular limit corresponds to a moving boundary prob-
lem which is similar to other sharp-interface tumor-growth models [35, 22,
10, 11].

The remainder of the paper is organized as follows: in section 2 we prove
Theorem 1.1 and Theorem 1.3; in section 3, we formally justify Theorem 1.5.

2 Proof of the main results

2.1 Proof of Theorem 1.1

It is sufficient to prove that

d

dt
Eε(u

ε, µε, σε) ≤ 0. (8)

For simplicity, we write u, µ, σ instead of uε, µε, σε. Now, the inequality (8)
follows from the following computations:

d

dt
Eε(u, µ, σ) =

∫
Ω

(
ε∇u∇ut + ε−1W ′(u)ut + αµµt +

σσt
δ

)
=

∫
Ω

(
[−ε−1f(u)− ε∆u]ut + αµµt +

σσt
δ

)
=

∫
Ω

(
(µ− αεut)ut + αµµt

)
+

∫
Ω

σ

δ

(
∆σ − ε−1p(u)(σ − δµ)

)
= −

∫
Ω

αεu2
t +

∫
Ω

µ(ut + αµt) +

∫
Ω

σ

δ

(
∆σ − ε−1p(u)(σ − δµ)

)
= −

∫
Ω

αεu2
t +

∫
Ω

µ
(

∆µ+ ε−1p(u)(σ − δµ)
)

+

∫
Ω

σ

δ

(
∆σ − ε−1p(u)(σ − δµ)

)
= −

∫
Ω

αεu2
t −

∫
Ω

|∇µ|2 −
∫

Ω

|∇σ|2

δ
+ ε−1

∫
Ω

p(u)
(
µ(σ − δµ)− σ

δ
(σ − δµ)

)
= −

∫
Ω

αεu2
t −

∫
Ω

|∇µ|2 −
∫

Ω

|∇σ|2

δ
− ε−1

∫
Ω

p(u)
(√

δµ− σ√
δ

)2

≤ 0.

2.2 Proof of Theorem 1.3

First, we recall that n+(t), n−(t) are the outer unit normal vectors to
∂Ω+(t) and ∂Ω−(t), respectively and n := n+ = −n− on ΓT . We define
Vn = V.n+, where V is the velocity of displacement of the interface ΓT .
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2.2.1 Equations for µ

We recall that u, µ satisfy∫ T

0

∫
Ω

(−αµ− u)ψt −
∫

Ω

(αµ0 + u0)ψ(0) =

∫ T

0

∫
Ω

µ∆ψ + 2
√

2p0

∫ T

0

∫
Γ(t)

(σ − δµ)ψ,

(9)

for all ψ ∈ FT . We define the terms A1, A2 and the diffusion term B by

A1 :=

∫ T

0

∫
Ω

−αµψt, A2 :=

∫ T

0

∫
Ω

−uψt, and B :=

∫ T

0

∫
Ω

µ∆ψ.

Analysis of the terms A1 and A2: Our analysis of the terms A1 and A2

relies on the Reynolds transport theorem, by which we have

d

dt

∫
Ω±(t)

φψ =

∫
Ω±(t)

(
φtψ + φψt

)
±
∫

Γ(t)

Vnφ
±ψ,

for all smooth function ψ and for function φ. These equations for the integrals
over Ω±(t) yield

d

dt

∫
Ω+(t)∪Ω−(t)

φψ =

∫
Ω+(t)∪Ω−(t)

(
φtψ + φψt

)
+

∫
Γ(t)

Vn[[φ]]ψ.

Hence we have∫
Ω+(t)∪Ω−(t)

−φψt =

∫
Ω+(t)∪Ω−(t)

φtψ +

∫
Γ(t)

Vn[[φ]]ψ − d

dt

∫
Ω+(t)∪Ω−(t)

φψ.

(10)

In our case, we chose φ := αµ in (10) and integrate from 0 to T . This yields

A1 =

∫ T

0

∫
Ω+(t)∪Ω−(t)

αµtψ +

∫ T

0

∫
Γ(t)

Vn[[αµ]]ψ −
∫ T

0

d

dt

∫
Ω+(t)∪Ω−(t)

αµψ

=

∫ T

0

∫
Ω+(t)∪Ω−(t)

αµtψ +

∫ T

0

∫
Γ(t)

αVn[[µ]]ψ +

∫
Ω+(0)∪Ω−(0)

αµ(0)ψ(0).

(11)
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Similarily, we apply the formula (10) for φ := u to obtain

A2 =

∫ T

0

∫
Ω+(t)∪Ω−(t)

utψ +

∫ T

0

∫
Γ(t)

Vn[[u]]ψ +

∫
Ω+(0)∪Ω−(0)

u(0)ψ(0)

= 2

∫ T

0

∫
Γ(t)

Vnψ +

∫
Ω+(0)∪Ω−(0)

u(0)ψ(0). (12)

Analysis of the term B: We write B as the sum

B =

∫ T

0

(∫
Ω+(t)

µ∆ψ +

∫
Ω−(t)

µ∆ψ
)
.

Integration by parts yields∫
Ω−(t)

µ∆ψ = −
∫

Ω−(t)

∇µ∇ψ +

∫
Γ(t)

∂ψ

∂n−
µ−

=

∫
Ω−(t)

∆µψ −
∫

Γ(t)

∂µ−

∂n−
ψ −

∫
∂Ω

∂µ

∂ν
ψ +

∫
Γ(t)

∂ψ

∂n−
µ−

=

∫
Ω−(t)

∆µψ +

∫
Γ(t)

∂µ−

∂n
ψ −

∫
∂Ω

∂µ

∂ν
ψ −

∫
Γ(t)

∂ψ

∂n
µ−

and ∫
Ω+(t)

µ∆ψ =

∫
Ω+(t)

∆µψ −
∫

Γ(t)

∂µ+

∂n
ψ +

∫
Γ(t)

∂ψ

∂n
µ+

which implies that∫
Ω+(t)∪Ω−(t)

µ∆ψ =

∫
Ω+(t)∪Ω−(t)

∆µψ −
∫

Γ(t)

[[
∂µ

∂n
]]ψ +

∫
Γ(t)

∂ψ

∂n
[[µ]]−

∫
∂Ω

∂µ

∂ν
ψ.

Integrating this identity from 0 to T , we obtain

B =

∫ T

0

∫
Ω+(t)∪Ω−(t)

∆µψ−
∫ T

0

∫
Γ(t)

[[
∂µ

∂n
]]ψ+

∫ T

0

∫
Γ(t)

∂ψ

∂n
[[µ]]−

∫ T

0

∫
∂Ω

∂µ

∂ν
ψ.

(13)
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Conclusion: Combining (9), (11) (12) and (13), we then have for all ψ ∈ FT ,∫ T

0

∫
Ω+(t)∪Ω−(t)

αµtψ +

∫ T

0

∫
Γ(t)

Vn(α[[µ]] + 2)ψ

+

∫
Ω+(t)∪Ω−(t)

α(µ(0)− µ0)ψ(0) +

∫
Ω+(t)∪Ω−(t)

(u(0)− u0)ψ(0)

=

∫ T

0

∫
Ω+(t)∪Ω−(t)

∆µψ −
∫ T

0

∫
Γ(t)

[[
∂µ

∂n
]]ψ +

∫ T

0

∫
Γ(t)

∂ψ

∂n
[[µ]]−

∫ T

0

∫
∂Ω

∂µ

∂ν
ψ

+

∫ T

0

∫
Γ(t)

2
√

2p0(σ − δµ)ψ.

(14)
By using test functions with suitable supports, namely ψ ∈ C∞0 (Q+

T ) and
ψ ∈ C∞0 (Q−T ), we obtain

αµt = ∆µ in Q+
T ∪Q

−
T . (5b)

Similarly, by using ψ ∈ C∞0 (QT ) such that
∂ψ

∂n
= 0 on ΓT , we obtain

Vn(2 + α[[µ]]) = −[[
∂µ

∂n
]] + 2

√
2p0(σ − δµ) on ΓT . (15)

Now, we use ψ ∈ C∞0 (QT ), to deduce that∫ T

0

∫
Γ(t)

∂ψ

∂n
[[µ]] = 0 for all ψ ∈ C∞0 (QT ). (16)

Therefore,
[[µ]] = 0 on ΓT . (17)

It follows from (15) and (17) that

2Vn = −[[
∂µ

∂n
]] + 2

√
2p0(σ − δµ) on ΓT .

Now, for the initial conditions, we use the test function ψ ∈ FT such that
ψ = 0 on ∂Ω× (0, T ) to obtain

u(0) + αµ(0) = u0 + αµ0,
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which in view of (5) implies that

µ(0) = µ0, u(0) = u0

Finally, the remaining term in (14) allows us to conclude that

∂µ

∂ν
= 0.

Therefore, µ satisfies the equations:

αµt = ∆µ in Q+
T ∪Q

−
T ,

2Vn = −[[
∂µ

∂n
]] + 2

√
2p0(σ − δµ) on ΓT ,

[[µ]] = 0 on ΓT ,

together with the boundary condition and the initial condition:

∂µ

∂ν
= 0, µ(0) = µ0.

2.2.2 Equations for σ

Since the computations in this section are similar to the previous ones,
we will only give a sketch of the necessary steps. For ψ ∈ C∞0 (QT ), we have∫ T

0

∫
Ω

−σψt =

∫ T

0

∫
Ω

σ∆ψ − 2
√

2p0

∫ T

0

∫
Γ(t)

(σ − δµ)ψ. (18)

We define two terms

C :=

∫ T

0

∫
Ω

−σψt and D :=

∫ T

0

∫
Ω

σ∆ψ.

One can easily deduce that

C =

∫ T

0

∫
Ω+(t)∪Ω−(t)

σtψ +

∫ T

0

∫
Γ(t)

Vn[[σ]]ψ,

and

D =

∫ T

0

∫
Ω+(t)∪Ω−(t)

∆σψ −
∫ T

0

∫
Γ(t)

[[
∂σ

∂n
]]ψ +

∫ T

0

∫
Γ(t)

∂ψ

∂n
[[σ]].
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It follows that∫ T

0

∫
Ω+(t)∪Ω−(t)

σtψ +

∫ T

0

∫
Γ(t)

Vn[[σ]]ψ =

∫ T

0

∫
Ω+(t)∪Ω−(t)

∆σψ

−
∫ T

0

∫
Γ(t)

[[
∂σ

∂n
]]ψ +

∫ T

0

∫
Γ(t)

∂ψ

∂n
[[σ]]− 2

√
2p0

∫ T

0

∫
Γ(t)

(σ − δµ)ψ.

and hence we have

σt = ∆σ in Q+
T ∪Q

−
T ,

[[
∂σ

∂n
]] = −2

√
2p0(σ − δµ) on ΓT ,

[[σ]] = 0 on ΓT ,

This concludes the proof of Theorem 1.3

2.3 Proof of Theorem 1.4

We prove below that
d

dt
E(Γ, µ, σ) ≤ 0. (19)

The inequality (19) follows from the following computations and [24, Theo-
rem 4.3 p.355 and formula 4.12 p.356]):

d

dt
E(Γ, µ, σ)

=
2

C

∫
Γ

(N − 1)κVn +

∫
Ω+∪Ω−

(
αµµt + δ−1σσt

)
=

2

C

∫
Γ

[Cµ− αVn]Vn +

∫
Ω+∪Ω−

(
αµµt + δ−1σσt

)
=

∫
Γ

2µVn −
∫

Γ

2α

C
V 2
n +

∫
Ω+∪Ω−

(
µ∆µ+ δ−1σ∆σ

)
=

∫
Γ

µ
(
− [[

∂µ

∂n
]] + 2

√
2p0(σ − δµ)

)
−
∫

Γ

2α

C
V 2
n +

∫
Ω+∪Ω−

(
µ∆µ+ δ−1σ∆σ

)
=

∫
Γ

2
√

2p0µ(σ − δµ)−
∫

Γ

2α

C
V 2
n −

∫
Ω+∪Ω−

|∇µ|2 +

∫
Ω+∪Ω−

δ−1σ∆σ

=

∫
Γ

2
√

2p0µ(σ − δµ)−
∫

Γ

2α

C
V 2
n −

∫
Ω+∪Ω−

|∇µ|2 −
∫

Ω+∪Ω−

|∇σ|2

δ
+

∫
Γ

δ−1σ[[
∂σ

∂n
]]

13



which in turn implies that

d

dt
E(Γ, µ, σ)

=

∫
Γ

2
√

2p0

(
µ(σ − δµ)− δ−1σ(σ − δµ)

)
−
∫

Γ

2α

C
V 2
n −

∫
Ω+∪Ω−

|∇µ|2 −
∫

Ω+∪Ω−

|∇σ|2

δ

= −
∫

Γ

2α

C
V 2
n −

∫
Ω+∪Ω−

|∇µ|2 −
∫

Ω+∪Ω−

|∇σ|2

δ
−
∫

Γ

2
√

2p0

(√
δµ− σ√

δ

)2

≤ 0.

3 Formal derivation of Theorem 1.5

This section is devoted to prove formally theorem 1.5. We shall derive in
turn equations for u,Γ(t), µ, σ.

3.1 Equation for u

First, we formally show that u only takes two values ±1. To that purpose,
we rewrite Equation (4b) in the form

αuεt = ∆uε + ε−2f(uε) + ε−1µε.

By setting τ := t/ε2, we obtain

αuετ = ε2∆uε + f(uε) + εµε.

When ε is small, we neglect the effect of diffusion term ε2∆uε and of the term
εµε with respect to the term f(uε), which yields the ordinary differential
equation

α
duε

dτ
∼= f(uε). (20)

Note that τ → ∞ as ε → 0. Remembering that ±1 are two stable zeros of
this equation. We formally deduce that as ε ↓ 0

uε(x, t) approaches − 1 if uε(x, 0) < 0

uε(x, t) approaches 1 if uε(x, 0) > 0.

(21)
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3.2 Formal derivation of the interface equation

We define

Ω−(t) = {x ∈ Ω : u(x, t) = −1}, Ω+(t) = {x ∈ Ω : u(x, t) = 1},

and
Γ(t) := Ω\(Ω−(t) ∪ Ω+(t)).

Since roughly speaking, the regions {u = −1} and {u = 1} are the ”limit”
of the regions {uε ≈ −1} and {uε ≈ 1} as ε → 0, Γ(t) can be considered as
the limit as ε→ 0 of Γε(t) which is the interface between the two regions

{x ∈ Ω : uε(x, t) ≈ −1} and {x ∈ Ω : uε(x, t) ≈ 1}.

We recall that 0 is an unstable equilibria of Equation (20), and define

Γε(t) = {x ∈ Ω : uε(x, t) = 0} for each t ≥ 0.

In what follows, we will use an formal asymptotic expansion to derive the
equation describing Γ(t). We need some preparations.

1. Signed distance function: We assume that the interface Γ(t) is a smooth,
closed hypersurface without boundary of RN . Further, we suppose that Ω+(t)
is the region enclosed by Γ(t) and that Ω−(t) is the region enclosed between
∂Ω and Γ(t). Let d̃(x, t) be the signed distance function to Γ(t) defined by

d̃(x, t) =


dist(x,Γ(t)) for x ∈ Ω−(t),

− dist(x,Γ(t)) elsewhere.

Note that d̃ = 0 on ΓT and |∇d̃| = 1 in a neighborhood of ΓT .

2. Outer expansion: It is reasonable to assume that outside a neighbourhood
of ΓT , uε has the expansion

uε(x, t) = ±1 + εu±1 (x, t) + ε2u±2 (x, t) + . . . (22)

3. Inner expansion: Near ΓT , we assume that uε has form

uε(x, t) = U0(x, t, ξ) + εU1(x, t, ξ) + ε2U2(x, t, ξ) + . . . (23)
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Here Uj(x, t, z), j ≥ 0 are defined for x ∈ Ω, t ≥ 0, z ∈ R and ξ := d̃(x, t)/ε.

4. Normalization conditions: The stretched space variable ξ gives exactly
the right spatial scaling to describe the rapid transition between the regions
{uε ≈ −1} and {uε ≈ 1}. We normalize U0 in such a way that

U0(x, t, 0) = 0.

5. Matching conditions: For ξ → ±∞, we require two expansions (22) and
(23) to be consistent, i.e.

U0(x, t,−∞) = 1, U0(x, t,+∞) = −1;

and
Uk(x, t,−∞) = u+

k (x, t), Uk(x, t,+∞) = u−k (x, t)

for all k ≥ 1.

Formal interface motion equation We will substite the inner expansion
(23) into (4b). We will then compare the terms of the same order to determine
equations of U0 and U1. To that purpose, we start by some computations.

uεt = U0t + U0z
d̃t
ε

+ εU1t + U1zd̃t + . . . ,

∇uε = ∇U0 + U0z
∇d̃
ε

+ ε∇U1 + U1z∇d̃+ . . . ,

∆uε = ∆U0 + 2
∇d̃
ε
· ∇U0z + U0z

∆d̃

ε
+ U0zz

|∇d̃|
ε2

+ ε∆U1

+ 2∇d̃ · ∇U1z + U1z∆d̃+ U1zz
|∇d̃|
ε

+ . . . ,

f(uε) = f(U0) + εf ′(U0)U1 +O(ε2),

µε = µ+O(ε).

Substituting uεt ,∆u
ε, f(uε), µε in (4b), collecting all terms of order ε−2 then

yields 
U0zz + f(U0) = 0

U0(−∞) = 1, U0(0) = 0, U0(+∞) = −1.

(24)

16



Because of
∫ 1

−1
f(s) ds = 0, this problem has a unique solution U0. Further-

more, U0 is independent of (x, t), i.e. U0(x, t, z) = U0(z) and thus, we write
U ′0, U

′′
0 instead of U0z, U0zz. We have the following lemma.

Lemma 3.1. The solution U0 of equation (24) also fulfills the differential
equation

U ′0 = −
√

2W (U0).

As a consequence,
∫
R(U ′0(z))2 dz can be written in the form:∫

R
(U ′0(z))2 dz =

√
2

∫ 1

−1

√
W (s) ds.

Proof. Multiplying the above mentioned differential equation (24) for U0 by
U ′0, we get

U ′′0U
′
0 + f(U0)U ′0 = 0. (25)

Keeping in mind that W ′(u) = −f(u), (25) can be read as(
(U ′0)2

2

)′
− (W (U0))′ = 0. (26)

Integrating this equation from −∞ to z, we obtain

(U ′0(z))2

2
= W (U0(z)). (27)

Moreover, U0 is non increasing, therefore, we deduce that

U ′0(z) = −
√

2W (U0(z)).

Consequently, we have∫
R
(U ′0(z))2 dz = −

∫
R
U ′0(z)

√
2W (U0(z)) dz =

√
2

∫ 1

−1

√
W (s) ds.

This completes the proof of Lemma 3.1.

We now collect the terms of order ε−1 in the substituted equation (4b).

Because we have |∇d̃| = 1 in a neighbourhood of Γ(t), we obtain

U1zz + f ′(U0)U1 = U ′0(αd̃t −∆d̃)− µ. (28)

A solvability condition for this equation is given by the following lemma.
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Lemma 3.2 (see [1, Lemma 2.2]). Let A(z) be a bounded function for z ∈ R.
Then the existence of a solution φ for the problem{

φzz + f ′(U0(z))φ = A(z) , z ∈ R
φ(0) = 0, φ ∈ L∞(R)

(29)

is equivalent to ∫
R
A(z)U ′0(z) dz = 0. (30)

Therefore, the existence of a solution U1 of (28) is equivalent to∫
R

[
(U ′0)2(z)(αd̃t −∆d̃)(x, t)− µ(x, t)U ′0(z)

]
dz = 0 (31)

for all (x, t) in a neighbourhood of the interface ΓT . Thus,

(αd̃t −∆d̃)(x, t) =
µ(x, t)

∫
R U

′
0(z) dz∫

R (U ′0(z))2 dz
= − 2µ(x, t)∫

R (U ′0(z))2 dz
. (32)

It follows from Lemma 3.1 that

(αd̃t −∆d̃)(x, t) = −
√

2µ(x, t)∫ 1

−1

√
W (s) ds

. (33)

Note that, on Γ(t) we have n = n+|Γ = ∇d̃, κ =
div(n)

N − 1
=

∆d̃

N − 1
, and

d̃t = −Vn. Therefore, we deduce that Γ(t) satisfies indeed the interface
motion equation (6b):

αVn = −(N − 1)κ+

√
2µ∫ 1

−1

√
W (s) ds

= −(N − 1)κ+ Cµ on ΓT ,

where C :=
[∫ 1

−1

√
W (s)/2 ds

]−1

.
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3.3 Equations for µ, σ

We will suppose that the following convergence holds in a strong enough
sense:

µε −→ µ, σε −→ σ

as ε ↓ 0 and derive the limit of the reaction term in (4a) and (4c). To that
purpose, we first prove a stronger version of Lemma 2.1 by Du et al. [25]
(see also [6, 39]).

Lemma 3.3. Let γ ⊂⊂ Ω be a smooth hypersuface without boundary, d be
the signed distance to γ, and let g ∈ L1(R). Furthermore, let φε ∈ L∞(Ω)
and V ⊂ Ω be a neighborhood γ such that

‖φε‖L∞(Ω) ≤ C,

φε is continuous on V,

φε −→ φ uniformly in V.

We then have

lim
ε↓0

1

ε

∫
U

g
(
d(x)/ε

)
φε(x) dx =

∫ ∞
−∞

g(τ) dτ

∫
γ

φdγ,

for a small enough neighborhood U ⊂ V of γ.

Proof. For simplicity, we prove this lemma in three-dimensional space and
assume that γ has a parametrization α. More precisely, we assume that there
exists an open set W of R2 such that the mapping α from W onto γ is smooth
and that α−1 is also a smooth mapping. We write the function α as

α(z1, z2) = (α1(z1, z2), α2(z1, z2), α3(z1, z2)) for all (z1, z2) ∈ W.

For δ > 0 small enough, we consider η from W × [−δ, δ] to R3, which satisfies{
ητ (z1, z2, τ) = ∇d(η(z1, z2, τ)),

η(z1, z2, 0) = α(z1, z2).

We write

η(z1, z2, τ) = (η1(z1, z2, τ), η2(z1, z2, τ), η3(z1, z2, τ))
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with ηi : W × [−δ, δ] → R. We define U := η({W × [−δ, δ]}) and choose δ
small enough so that U ⊂ V . Note that

d

dτ
d(η(z1, z2, τ)) = ∇d(η(z1, z2, τ))ητ (z1, z2, τ) = |∇d(η(z1, z2, τ))|2 = 1,

and that d(η(z1, z2, 0)) = d(α(z1, z2)) = 0. Thus we conclude that d(η(z1, z2, τ)) =
τ . We define J(z1, z2, τ) as the determinant of the Jacobian matrix of η at
(z1, z2, τ) and perform the change of coordinates η(z1, z2, τ) = x to obtain∫

U

g

(
d(x)

ε

)
φε(x) dx

=

∫ δ

−δ
dτ

∫
W

g

(
d(η(z1, z2, τ))

ε

)
φε(η(z1, z2, τ))|J(z1, z2, τ)|dudv

=

∫ δ

−δ
dτ

∫
W

g
(τ
ε

)
φε(η(z1, z2, τ))|J(z1, z2, τ)|dudv.

By applying the change of coordinates τ = ετ̃ , we have∫
U

g

(
d(x)

ε

)
φε(x) dx

=ε

∫ δ
ε

− δ
ε

dτ̃

∫
W

g (τ̃)φε(η(z1, z2, ετ̃))|J(z1, z2, ετ̃)| dz1dz2.

Therefore,

Aε :=
1

ε

∫
U

g

(
d(x)

ε

)
φε(x) dx

=

∫ ∞
−∞

∫
W

1(− δ
ε
, δ
ε

)(τ̃) g (τ̃)φε(η(z1, z2, ετ̃))|J(z1, z2, ετ̃)|dτ̃dz1dz2.

In the following, we will apply the dominated convergence theorem to deduce
the limit of Aε as ε ↓ 0. Set

Hε(z1, z2, τ̃) := 1(− δ
ε
, δ
ε

)(τ̃) g (τ̃)φε(η(z1, z2, ετ̃))|J(z1, z2, ετ̃)|.

For − δ
ε
≤ τ̃ ≤ δ

ε
, we have −δ ≤ ετ̃ ≤ δ, so that for all ε > 0∣∣∣1(− δ

ε
, δ
ε

)(τ̃) |J(z1, z2, ετ̃)|
∣∣∣ ≤ sup

z1,z2∈W, −δ≤τ≤δ
|J(z1, z2, τ)| =: C1.
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Moreover, ‖φε‖L∞(Ω) ≤ C for all ε > 0, therefore,

|Hε(z1, z2, τ̃)| ≤ C|g(τ̃)| on W × R. (34)

Next, since φε converges uniformly to φ on U and since J is continuous, we
have for all τ ∈ R, (z1, z2) ∈ W ,

1(− δ
ε
, δ
ε

)(τ̃)φε(η(z1, z2, ετ̃))→ φ(η(z1, z2, 0)) = φ(α(z1, z2)),

J(z1, z2, ετ̃)→ J(z1, z2, 0),

as ε ↓ 0. It follows that as ε ↓ 0,

Hε(z1, z2, τ̃)→ g(τ̃)φ(η(z1, z2, 0))|J(z1, z2, 0)| for all τ̃ ∈ R, (z1, z2) ∈ W.
(35)

Combining (34) and (35), we have

lim
ε↓0

Aε =

∫ ∞
−∞

g(τ̃)dτ̃

∫
W

φ(α(z1, z2))|J(z1, z2, 0)| dz1dz2. (36)

Next, we computes |J(z1, z2, 0)|. For this purpose, we write

∂η

∂z1

= (
∂η1

∂z1

,
∂η2

∂z1

,
∂η3

∂z1

),

∂η

∂z2

= (
∂η1

∂z2

,
∂η2

∂z2

,
∂η3

∂z2

),

∂η

∂τ
= (

∂η1

∂τ
,
∂η2

∂τ
,
∂η3

∂τ
).

Note that
∂η

∂τ
(z1, z2, 0) is the outer normal vector to γ at the point η(z1, z2, 0) =

α(z1, z2) and that {∂η
∂u

(z1, z2, 0),
∂η

∂v
(z1, z2, 0)} is a basis of the tangent space

of γ at point η(z1, z2, 0) = α(z1, z2). Therefore,

|J(z1, z2, 0)| =
∣∣∣∣( ∂η∂z1

∧ ∂η

∂z2

).
∂η

∂τ

∣∣∣∣ =

∣∣∣∣ ∂η∂z1

∧ ∂η

∂z2

∣∣∣∣ ∣∣∣∣∂η∂τ
∣∣∣∣

=

∣∣∣∣ ∂η∂z1

∧ ∂η

∂z2

∣∣∣∣ |∇d(η(z1, z2, 0))| =
∣∣∣∣ ∂η∂z1

∧ ∂η

∂z2

∣∣∣∣ (z1, z2, 0)

=

∣∣∣∣∂α∂u ∧ ∂α∂v
∣∣∣∣ (z1, z2)
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where ∧ is the vector product. This together with (36) implies that

lim
ε↓0

Aε =

∫ ∞
−∞

g(τ̃)dτ̃

∫
W

φ(α(z1, z2))

∣∣∣∣∂α∂u ∧ ∂α∂v
∣∣∣∣ dz1dz2.

On the other hand, in view of the definition of the integral of surface (see
[47, Formula (131), p. 283]), we have∫

γ

φ dγ =

∫
W

φ(α(z1, z2))

∣∣∣∣ ∂α∂z1

∧ ∂α

∂z2

∣∣∣∣ dz1dz2.

Therefore,

lim
ε↓0

Aε =

∫ ∞
−∞

g(τ̃)dτ̃

∫
γ

φ dγ

which completes the proof of the lemma.

Application to reaction term: Now we apply Lemma 3.3 to formally
compute the limit as ε ↓ 0 of

1

ε

∫ T

0

∫
Ω

p(uε)(σε − δµε)ψ, for ψ ∈ FT .

Because of the outer and inner expression of uε in (22) and (23), we deduce
that for ε small enough

uε(x, t) ≈


±1 if (x, t) is far from ΓT

U0(
d̃(x, t)

ε
) if (x, t) is closed to ΓT .

Therefore

p(uε(x, t)) ≈


0 if (x, t) is far from ΓT

p(U0(
d̃(x, t)

ε
)) if (x, t) is closed to ΓT .

Thus we can apply Lemma 3.3 by setting

g(ξ) := p(U0(ξ)) and φε := (σε − δµε)ψ,
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where ψ ∈ FT . This yields

P 0(ψ(t)) := lim
ε↓0

1

ε

∫
Ω

p(uε)(σε − δµε)ψ = lim
ε↓0

1

ε

∫
U

p(uε)(σε − δµε)ψ

=

∫ ∞
−∞

p(U0(ξ)) dξ

∫
Γ(t)

(σ(t)− δµ(t))ψ(t) dΓ(t),

where U is a small enough neighborhood of Γ(t). Recalling that in view of
the definition of p and of Lemma 3.1

p(U0) = 2p0

√
W (U0) = −

√
2p0 U

′
0,

we get

P 0(ψ(t)) = −
√

2p0

∫ ∞
−∞

U ′0(ξ) dξ

∫
Γ(t)

(σ(t)− δµ(t))ψ(t) dΓ(t)

= 2
√

2p0

∫
Γ(t)

(σ(t)− δµ(t))ψ(t) dΓ(t).

Hence, we formally conclude that, for all ψ ∈ FT

lim
ε↓0

1

ε

∫ T

0

∫
Ω

p(uε)(σε − δµε)ψ = 2
√

2p0

∫ T

0

dt

∫
Γ(t)

(σ(t)− δµ(t))ψ(t) dΓ(t).

(37)
Conclusion: Now, we recall the definition of a weak solution of the equation
for µε:∫ T

0

∫
Ω

(−αµε − uε)ψt −
∫

Ω

(αµε0 + uε0)ψ(0) =

∫ T

0

∫
Ω

(
µε∆ψ + ε−1p(uε)(σε − δµε)ψ

)
for ψ in FT and take the limit ε→ 0 on both sides, to obtain in view of (37)∫ T

0

∫
Ω

(−αµ−u)ψt −
∫

Ω

(αµ0+u0)ψ(0) =

∫ T

0

∫
Ω

µ∆ψ+2
√

2p0

∫ T

0

dt

∫
Γ(t)

(σ−δµ)(t)ψ(t) dΓ(t).

This together a similar argument for the equation for σ completes the proof
of Theorem 1.5.
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