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We consider a diffuse-interface tumor-growth model, which has the form of a phase-field system. We discuss the singular limit of this problem. More precisely, we formally prove that as the reaction coefficient tends to zero, the solution converges to the solution of a free boundary problem.

Introduction

Diffuse-interface tumor-growth models have been modeled and studied in several articles [START_REF] Frieboes | Computer simulation of glioma growth and morphology[END_REF][START_REF] Wise | Three-dimensional multispecies nonlinear tumor growth-I Model and numerical method[END_REF][START_REF] Cristini | Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching[END_REF][START_REF] Bearer | Multiparameter computational modeling of tumor invasion[END_REF][START_REF] Hawkins-Daarud | Numerical simulation of a thermodynamically consistent four-species tumor growth model[END_REF][START_REF] Hawkins-Daarud | Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth[END_REF]. We also refer to the overviews in [START_REF] Cristini | Selected Topics in Cancer Modeling: Genesis, Evolution, Immune Competition[END_REF][START_REF] Lowengrub | Nonlinear modeling of cancer: Bridging the gap between cells and tumors[END_REF][START_REF] Cristini | Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach[END_REF][START_REF] Oden | General diffuseinterface theories and an approach to predictive tumor growth modeling[END_REF]. The basic model is composed of a fourth order parabolic equation for the tumor cell concentration u : Ω → R coupled to an elliptic equation for the nutrient concentration σ : Ω → R:

u t = ∆(-ε -1 f (u) -ε∆u) + ε -1 p 0 σu (1a) -∆σ + ε -1 p 0 σu = 0, ( 1b 
)
where ε 2 is the diffusivity corresponding to the surface energy, the positive constant p 0 is a proliferation growth parameter, and f is a bistable function.

Introducing the chemical potential µ : Ω → R, given by

µ := -ε -1 f (u) -ε∆u, (1a) 
-(1b) becomes

u t = ∆µ + ε -1 p 0 σu, (2a) µ = -ε -1 f (u) -ε∆u, (2b) 0 = ∆σ -ε -1 p 0 σu. (2c) 
The above system models the evolution of the first stage of a growing tumor [START_REF] Roose | Mathematical models of avascular tumor growth[END_REF]. In this stage a tumor grows because of the consumption of nutrients that diffuse through the surrounding tissue. This stage is referred to as avascular growth, as the tumor has not yet acquired its own blood supply to nurture itself. Consumption of nutrients is modeled in (2a) and (2c) via the reactive terms. To describe the evolution of the tumor boundary a diffuseinterface description is employed. This is classically modeled in (2a) with a diffusion via the chemical potential µ which depends in a nonlinear manner on u and contains the higher-order regularization ε∆u, see (2b). Diffuse-interface tumor-growth models fall within the broader class of multiconstituent tumor-growth models based on continuum mixture theory, such as presented in [START_REF] Ambrosi | On the closure of mass balance models for tumor growth[END_REF][START_REF] Ambrosi | Mechanical models in tumour growth[END_REF][START_REF] Byrne | Modelling solid tumour growth using the theory of mixtures[END_REF][START_REF] Graziano | Mechanics in tumor growth[END_REF][START_REF] Astanin | Selected Topics in Cancer Modeling: Genesis, Evolution, Immune Competition[END_REF]. The derivation of diffuse-interface models within continuum mixture theory has been reviewed in [START_REF] Oden | General diffuseinterface theories and an approach to predictive tumor growth modeling[END_REF], and requires the set up of balance laws for each constituent as well as the specification of constraints on the constitutive choices imposed by the second law of thermodynamics. Typically, only the cellular and fluidic constituents of a tumor are modeled as parts of a mixture, while nutrients are considered separately. Recently however, a diffuse-interface tumor growth model has been proposed that incorporates all constituents within the mixture and is proven to be thermodynamically consistent, see [START_REF] Hawkins-Daarud | Numerical simulation of a thermodynamically consistent four-species tumor growth model[END_REF]. In fact, the model is of gradient-flow type.

The model from [START_REF] Hawkins-Daarud | Numerical simulation of a thermodynamically consistent four-species tumor growth model[END_REF] is a modification of [START_REF] Alikakos | Convergence of the Cahn-Hilliard equation to the Hele-Shaw model[END_REF] and has a natural fourconstituent interpretation: a tumorous phase u ≈ 1, a healthy cell phase u ≈ -1, a nutrient-rich extracellular water phase σ ≈ 1 and a nutrient-poor extracellular water phase σ ≈ 0. It is given by

u t = ∆µ + ε -1 p(u)(σ -δµ) (3a) µ = -ε -1 f (u) -ε∆u (3b) σ t = ∆σ -ε -1 p(u)(σ -δµ) (3c)
where δ > 0 is a small regularization parameter, and the growth function p(u) is defined by

p(u) := 2p 0 W (u) u ∈ [-1, 1] 0 elsewhere.
Here W (u) := -u -1 f (s) ds is the classical Cahn-Hilliard double well freeenergy density. We assume that the bistable function f (u) has two stable roots ±1, an unstable root 0 and mean zero:

1 -1 f (s)ds = 0. Note that, compared to (2a)-(2c), the reactive terms have been modified to be thermodynamically consistent. They include a regularization part δµ and they have been localized to the interface (since p(u) is nonzero if u ∈ (-1, 1)); see [START_REF] Hawkins-Daarud | Numerical simulation of a thermodynamically consistent four-species tumor growth model[END_REF] for more details.

In this work, we shall be interested in the singular limit ε ↓ 0 of (3a)-(3c) together with homogeneous Newmann boundary conditions. For articles involving singular limits we refer to [START_REF] Allen | A microscopic theory for antiphase boundary motion and its application to anitphase domain coarsening[END_REF][START_REF] Caginalp | An analysis of a phase field model of a free boundary[END_REF][START_REF] Caginalp | Dynamics of layered interfaces arising from phase boundaries[END_REF][START_REF]Shaw type models as asymptotic limits of the phase-field equations[END_REF][START_REF] Rubinstein | Fast reaction, slow diffusion, and curve shortening[END_REF][START_REF] Pego | Front migration in the nonlinear Cahn-Hilliard equation[END_REF][START_REF] Bronsard | Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics[END_REF][START_REF] Lowengrub | Quasi-incompressible Cahn-Hilliard fluids and topological transitions[END_REF][START_REF] Evans | Phase transitions and generalized motion by mean curvature[END_REF][START_REF] Alikakos | Convergence of the Cahn-Hilliard equation to the Hele-Shaw model[END_REF][START_REF] De Mottoni | Geometrical evolution of developed interfaces[END_REF][START_REF] Stoth | Convergence of the Cahn-Hilliard equation to the Mullins-Sekerka problem in spherical symmetry[END_REF][START_REF] Caginalp | Convergence of the phase field model to its sharp interface limits[END_REF][START_REF] Alfaro | The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system[END_REF]; we should also mention the overviews [START_REF] Chen | Global asymptotic limit of solutions of the Cahn-Hilliard equation[END_REF][START_REF] Fife | Dynamics of Internal Layers and Diffusive Interfaces[END_REF][START_REF] Nishiura | Far-From-Equilibrium Dynamics[END_REF][START_REF] Mimura | Reaction-diffusion systems arising in biological and chemical systems: Application of singular limit procedures[END_REF], and the numerical studies [START_REF]Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows[END_REF][START_REF] Feng | Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits[END_REF][START_REF]Numerical analysis of the Cahn-Hilliard equation and approximation for the Hele-Shaw problem[END_REF][START_REF] Feng | A posteriori error estimates and an adaptive finite element method for the Allen-Cahn equation and the mean curvature flow[END_REF][START_REF]A posteriori error estimates for finite element approximations of the Cahn-Hilliard equation and the Hele-Shaw flow[END_REF][START_REF] Caginalp | Numerical tests of a phase field model with second order accuracy[END_REF].

The unknown pair (u, σ) is a dissipative gradient flow for the energy functional

E(u, σ) := Ω ε 2 |∇u| 2 + εW (u) + σ 2 2δ .
We refer to Theorem 1.1 for the proof of this property in a slightly more general context.

The main results

In order to study the singular limit of Problem (3a)-(3c) as ε ↓ 0, we introduce the following phase-field model

αµ ε t + u ε t = ∆µ ε + ε -1 p(u ε )(σ ε -δµ ε ) in Ω × (0, +∞), ε -1 µ ε -αu ε t = -ε -2 f (u ε ) -∆u ε in Ω × (0, +∞), σ ε t = ∆σ ε -ε -1 p(u ε )(σ ε -δµ ε ) in Ω × (0, +∞), (4a) (4b) (4c)
together with the boundary and initial conditions

∂µ ε ∂ν = ∂u ε ∂ν = ∂σ ε ∂ν = 0 on ∂Ω × (0, +∞), αµ ε (•, 0) = αµ ε 0 , u ε (•, 0) = u ε 0 , σ ε (•, 0) = σ ε 0 , on Ω. ( 4d 
) (4e)
Here, Ω is a smooth bounded domain of R N (N ≥ 2), ν is the outer unit normal vector to ∂Ω and α is a positive constant. We denote by (P ε ) the problem (4a)-(4e). Setting α = 0 in the singular limit of Problem (P ε ), we will obtain the singular limit of Problem (3a)-(3c). Problem (P ε ) possesses the Lyaponov functional

E ε (u, µ, σ) := Ω ε 2 |∇u| 2 + 1 ε W (u) + αµ 2 2 + σ 2 2δ .
We will prove in section 2 that Problem (P ε ) is a gradient flow associated to the functional E ε (u, µ, σ).

Theorem 1.1. Let (u ε , µ ε , σ ε ) be a smooth solution of Problem (P ε ). Then E ε (u ε , µ ε , σ ε ) is decreasing along solution orbits.

We will show in the following that, if in some sense

µ ε -→ µ, u ε -→ u, σ ε -→ σ,
then the triple (µ, u, σ) is characterized by a limit free boundary problem, where the interface motion equation appears as the limit of the equation (4b).

A rigorous proof of the convergence of the solution of the equation (4b) may for instance be found in [START_REF] Alfaro | The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system[END_REF]. According to [START_REF] Alfaro | The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system[END_REF], the function u only takes the two values -1 or 1 and the interface which separates the regions where {u = -1} and {u = 1} partially moves according to its mean curvature.

Assumption on initial conditions: We assume that as ε ↓ 0,

µ ε 0 -→ µ 0 , u ε 0 -→ u 0 , σ ε 0 -→ σ 0 ,
in some sense and that there exists a closed smooth hypersurface without boundary Γ 0 ⊂⊂ Ω which divides Ω into two subdomains Ω + (0) and Ω -(0) such that

u 0 =      -1 in Ω -(0), 1 in Ω + (0). (5) 
We also assume that Ω + (0) is the region enclosed by Γ 0 and that Ω -(0) is the region enclosed between ∂Ω and Γ 0 . Now, we are ready to introduce a free boundary problem namely the singular limit of Problem (P ε ) as ε ↓ 0:

u(x, t) = 1 in Ω + (t), t ∈ (0, T ) -1 in Ω -(t), t ∈ (0, T ) αV n = -(N -1)κ + Cµ on Γ(t), t ∈ (0, T ) αµ t + u t = ∆µ + 2 √ 2p 0 (σ -δµ)δ 0 (x -Γ(t)) in Ω × (0, T ), σ t = ∆σ -2 √ 2p 0 (σ -δµ)δ 0 (x -Γ(t)) in Ω × (0, T ), (6a) (6b) (6c) (6d) 
together with the boundary and initial conditions

∂µ ∂ν = ∂σ ∂ν = 0 on ∂Ω × (0, T ), αµ(•, 0) = αµ 0 , σ(•, 0) = σ 0 , on Ω, Γ(0) = Γ 0 , (6e) (6f) (6g) 
Here, Γ(t) ⊂⊂ Ω is a closed hypersurface; Ω + (t) is the region enclosed by

Γ(t); Ω -(t) = Ω \ (Ω + (t) ∪ Γ(t)); δ 0 is the Dirac distribution; V n : Γ(t) → R N
is the normal velocity of the evolving interface Γ(t), κ is the mean curvature at each point of Γ(t) and

C = 1 -1 W (s)/2 ds -1
.

We denote by (P 0 ) the problem (6a)-(6g) and define

Γ T := t∈(0,T ) Γ(t) × {t}.
Definition 1.2. We say that the triple (Γ T , µ, σ) is a solution of Problem

(P 0 ) if (i) Γ T is smooth, (ii) for all test functions ψ ∈ F T := {ψ ∈ C 2,1 (Ω×[0, T ]) such that ∂ψ ∂ν = 0 on ∂Ω×[0, T ] and ψ(T ) = 0}, we have T 0 Ω (-αµ -u)ψ t - Ω (αµ 0 + u 0 )ψ(0) = T 0 Ω µ∆ψ + 2 √ 2p 0 T 0 Γ(t) (σ -δµ)ψ,
and

T 0 Ω -σψ t - Ω σ 0 ψ(0) = T 0 Ω σ∆ψ -2 √ 2p 0 T 0 Γ(t) (σ -δµ)ψ.
Now, in order to state the next result, we need some notations. Let n + (t), n -(t) be the outer unit normal vectors to ∂Ω + (t) and ∂Ω -(t), respectively. Note that n + = -n -on Γ T , so we may define n :

= n + = -n -on Γ T . We define [[•]] the jump across Γ(t), by [[φ]] := φ + -φ -
, where φ ± should be understood as the following limit

φ ± (•) := lim ρ→0 -φ(• + ρn ± (t)) on Γ(t).
We also define

Q + T := t∈(0,T ) Ω + (t) × {t}, and 
Q - T := t∈(0,T ) Ω -(t) × {t}.
Theorem 1.3. Assume that Problem (P 0 ) possesses a solution (Γ T , µ, σ) such that Γ T is smooth on the time interval (0, T ) and that µ and σ are smooth up to Γ T on both sides of Γ T . Then the triple (Γ T , µ, σ) satisfies:

αµ t = ∆µ in Q + T ∪ Q - T , σ t = ∆σ on Q + T ∪ Q - T , [[µ]] = [[σ]] = 0 on Γ T , [[ ∂µ ∂n ]] = -2V n + 2 √ 2p 0 (σ -δµ) on Γ T , [[ ∂σ ∂n ]] = -2 √ 2p 0 (σ -δµ) on Γ T , αV n = -(N -1)κ + Cµ on Γ T , (7a) 
(7b) (7c) (7d) (7e) (7f)
together with the boundary and initial conditions

∂µ ∂ν = ∂σ ∂ν = 0 on ∂Ω × (0, T ), µ(•, 0) = µ 0 , σ(•, 0) = σ 0 , on Ω, Γ(0) = Γ 0 . (7g) (7h) (7i) 
In this case, we say that (Γ T , µ, σ) is a classical solution of Problem (P 0 ) on the time interval [0, T ].

Problem (P 0 ) possesses the Lyapunov functional

E(Γ, µ, σ) := 2 C Γ 1 dΓ + Ω αµ 2 2 + σ 2 2δ ,
which is analogous to the Lyapunov functional satisfied by Problem (P ε ).

Theorem 1.4. Let (Γ T , µ, σ) be a classical solution of Problem (P 0 ). Then E(Γ, µ, σ) is decreasing along solution orbits.

Finally, we will formally prove the following result.

Theorem 1.5. Let (µ ε , u ε , σ ε ) be solution of Problem (P ε ). We suppose that Problem (P 0 ) possesses a unique classical solution on the interval

[0, T ]. If ε → 0, µ ε -→ µ, u ε -→ u, σ ε -→ σ in a strong enough sense,
then (Γ T , µ, σ) coincide with the classical solution of Problem (P 0 ) and u is given by (6a).

We note that the singular limit corresponds to a moving boundary problem which is similar to other sharp-interface tumor-growth models [START_REF] Greenspan | On the growth and stability of cell cultures and solid tumors[END_REF][START_REF] Cristini | Nonlinear simulation of tumor growth[END_REF][START_REF] Byrne | Modelling avascular tumour growth[END_REF][START_REF] Byrne | A twophase model of solid tumour growth[END_REF].

The remainder of the paper is organized as follows: in section 2 we prove Theorem 1.1 and Theorem 1.3; in section 3, we formally justify Theorem 1.5.

2 Proof of the main results

Proof of Theorem 1.1

It is sufficient to prove that

d dt E ε (u ε , µ ε , σ ε ) ≤ 0. ( 8 
)
For simplicity, we write u, µ, σ instead of u ε , µ ε , σ ε . Now, the inequality (8) follows from the following computations:

d dt E ε (u, µ, σ) = Ω ε∇u∇u t + ε -1 W (u)u t + αµµ t + σσ t δ = Ω [-ε -1 f (u) -ε∆u]u t + αµµ t + σσ t δ = Ω (µ -αεu t )u t + αµµ t + Ω σ δ ∆σ -ε -1 p(u)(σ -δµ) = - Ω αεu 2 t + Ω µ(u t + αµ t ) + Ω σ δ ∆σ -ε -1 p(u)(σ -δµ) = - Ω αεu 2 t + Ω µ ∆µ + ε -1 p(u)(σ -δµ) + Ω σ δ ∆σ -ε -1 p(u)(σ -δµ) = - Ω αεu 2 t - Ω |∇µ| 2 - Ω |∇σ| 2 δ + ε -1 Ω p(u) µ(σ -δµ) - σ δ (σ -δµ) = - Ω αεu 2 t - Ω |∇µ| 2 - Ω |∇σ| 2 δ -ε -1 Ω p(u) √ δµ - σ √ δ 2 ≤ 0.

Proof of Theorem 1.3

First, we recall that n + (t), n -(t) are the outer unit normal vectors to ∂Ω + (t) and ∂Ω -(t), respectively and n := n + = -n -on Γ T . We define V n = V.n + , where V is the velocity of displacement of the interface Γ T .

Equations for µ

We recall that u, µ satisfy

T 0 Ω (-αµ -u)ψ t - Ω (αµ 0 + u 0 )ψ(0) = T 0 Ω µ∆ψ + 2 √ 2p 0 T 0 Γ(t) (σ -δµ)ψ, (9) 
for all ψ ∈ F T . We define the terms A 1 , A 2 and the diffusion term B by

A 1 := T 0 Ω -αµψ t , A 2 := T 0 Ω -uψ t , and 
B := T 0 Ω µ∆ψ.
Analysis of the terms A 1 and A 2 : Our analysis of the terms A 1 and A 2 relies on the Reynolds transport theorem, by which we have

d dt Ω ± (t) φψ = Ω ± (t) φ t ψ + φψ t ± Γ(t) V n φ ± ψ,
for all smooth function ψ and for function φ. These equations for the integrals over Ω ± (t) yield

d dt Ω + (t)∪Ω -(t) φψ = Ω + (t)∪Ω -(t) φ t ψ + φψ t + Γ(t) V n [[φ]]ψ.
Hence we have

Ω + (t)∪Ω -(t) -φψ t = Ω + (t)∪Ω -(t) φ t ψ + Γ(t) V n [[φ]]ψ - d dt Ω + (t)∪Ω -(t) φψ. (10) 
In our case, we chose φ := αµ in [START_REF] Byrne | Modelling avascular tumour growth[END_REF] and integrate from 0 to T . This yields

A 1 = T 0 Ω + (t)∪Ω -(t) αµ t ψ + T 0 Γ(t) V n [[αµ]]ψ - T 0 d dt Ω + (t)∪Ω -(t) αµψ = T 0 Ω + (t)∪Ω -(t) αµ t ψ + T 0 Γ(t) αV n [[µ]]ψ + Ω + (0)∪Ω -(0) αµ(0)ψ(0). (11) 
Similarily, we apply the formula [START_REF] Byrne | Modelling avascular tumour growth[END_REF] for φ := u to obtain

A 2 = T 0 Ω + (t)∪Ω -(t) u t ψ + T 0 Γ(t) V n [[u]]ψ + Ω + (0)∪Ω -(0) u(0)ψ(0) = 2 T 0 Γ(t) V n ψ + Ω + (0)∪Ω -(0) u(0)ψ(0). ( 12 
)
Analysis of the term B: We write B as the sum

B = T 0 Ω + (t) µ∆ψ + Ω -(t)
µ∆ψ .

Integration by parts yields

Ω -(t) µ∆ψ = - Ω -(t) ∇µ∇ψ + Γ(t) ∂ψ ∂n -µ - = Ω -(t)
∆µψ -

Γ(t) ∂µ - ∂n -ψ - ∂Ω ∂µ ∂ν ψ + Γ(t) ∂ψ ∂n -µ - = Ω -(t) ∆µψ + Γ(t) ∂µ - ∂n ψ - ∂Ω ∂µ ∂ν ψ - Γ(t) ∂ψ ∂n µ -
and

Ω + (t) µ∆ψ = Ω + (t)
∆µψ -

Γ(t) ∂µ + ∂n ψ + Γ(t) ∂ψ ∂n µ +
which implies that

Ω + (t)∪Ω -(t) µ∆ψ = Ω + (t)∪Ω -(t) ∆µψ - Γ(t) [[ ∂µ ∂n ]]ψ + Γ(t) ∂ψ ∂n [[µ]] - ∂Ω ∂µ ∂ν ψ.
Integrating this identity from 0 to T , we obtain

B = T 0 Ω + (t)∪Ω -(t) ∆µψ - T 0 Γ(t) [[ ∂µ ∂n ]]ψ + T 0 Γ(t) ∂ψ ∂n [[µ]] - T 0 ∂Ω ∂µ ∂ν ψ. (13) 
Conclusion: Combining ( 9), (11) ( 12) and ( 13), we then have for all ψ ∈ F T ,

T 0 Ω + (t)∪Ω -(t) αµ t ψ + T 0 Γ(t) V n (α[[µ]] + 2)ψ + Ω + (t)∪Ω -(t) α(µ(0) -µ 0 )ψ(0) + Ω + (t)∪Ω -(t) (u(0) -u 0 )ψ(0) = T 0 Ω + (t)∪Ω -(t) ∆µ ψ - T 0 Γ(t) [[ ∂µ ∂n ]]ψ + T 0 Γ(t) ∂ψ ∂n [[µ]] - T 0 ∂Ω ∂µ ∂ν ψ + T 0 Γ(t) 2 √ 2p 0 (σ -δµ)ψ.
(14) By using test functions with suitable supports, namely

ψ ∈ C ∞ 0 (Q + T ) and ψ ∈ C ∞ 0 (Q - T )
, we obtain

αµ t = ∆µ in Q + T ∪ Q - T . (5b) 
Similarly, by using ψ ∈ C ∞ 0 (Q T ) such that ∂ψ ∂n = 0 on Γ T , we obtain

V n (2 + α[[µ]]) = -[[ ∂µ ∂n ]] + 2 √ 2p 0 (σ -δµ) on Γ T . (15) 
Now, we use ψ ∈ C ∞ 0 (Q T ), to deduce that

T 0 Γ(t) ∂ψ ∂n [[µ]] = 0 for all ψ ∈ C ∞ 0 (Q T ). (16) 
Therefore,

[[µ]] = 0 on Γ T . (17) 
It follows from ( 15) and ( 17) that

2V n = -[[ ∂µ ∂n ]] + 2 √ 2p 0 (σ -δµ) on Γ T .
Now, for the initial conditions, we use the test function ψ ∈ F T such that ψ = 0 on ∂Ω × (0, T ) to obtain

u(0) + αµ(0) = u 0 + αµ 0 ,
which in view of (5) implies that

µ(0) = µ 0 , u(0) = u 0
Finally, the remaining term in [START_REF]Shaw type models as asymptotic limits of the phase-field equations[END_REF] allows us to conclude that ∂µ ∂ν = 0.

Therefore, µ satisfies the equations:

αµ t = ∆µ in Q + T ∪ Q - T , 2V n = -[[ ∂µ ∂n ]] + 2 √ 2p 0 (σ -δµ) on Γ T , [[µ]] = 0 on Γ T ,
together with the boundary condition and the initial condition:

∂µ ∂ν = 0, µ(0) = µ 0 .

Equations for σ

Since the computations in this section are similar to the previous ones, we will only give a sketch of the necessary steps. For ψ ∈ C ∞ 0 (Q T ), we have

T 0 Ω -σψ t = T 0 Ω σ∆ψ -2 √ 2p 0 T 0 Γ(t) (σ -δµ)ψ. (18) 
We define two terms

C := T 0 Ω -σψ t and D := T 0 Ω σ∆ψ.
One can easily deduce that

C = T 0 Ω + (t)∪Ω -(t) σ t ψ + T 0 Γ(t) V n [[σ]]ψ,
and

D = T 0 Ω + (t)∪Ω -(t) ∆σψ - T 0 Γ(t) [[ ∂σ ∂n ]]ψ + T 0 Γ(t) ∂ψ ∂n [[σ]].
It follows that

T 0 Ω + (t)∪Ω -(t) σ t ψ + T 0 Γ(t) V n [[σ]]ψ = T 0 Ω + (t)∪Ω -(t) ∆σψ - T 0 Γ(t) [[ ∂σ ∂n ]]ψ + T 0 Γ(t) ∂ψ ∂n [[σ]] -2 √ 2p 0 T 0 Γ(t) (σ -δµ)ψ.
and hence we have

σ t = ∆σ in Q + T ∪ Q - T , [[ ∂σ ∂n ]] = -2 √ 2p 0 (σ -δµ) on Γ T , [[σ]] = 0 on Γ T ,
This concludes the proof of Theorem 1.3

Proof of Theorem 1.4

We prove below that

d dt E(Γ, µ, σ) ≤ 0. ( 19 
)
The inequality [START_REF] Cristini | Selected Topics in Cancer Modeling: Genesis, Evolution, Immune Competition[END_REF] follows from the following computations and [24, Theorem 4.3 p.355 and formula 4.12 p.356]):

d dt E(Γ, µ, σ) = 2 C Γ (N -1)κ V n + Ω + ∪Ω - αµµ t + δ -1 σσ t = 2 C Γ [Cµ -αV n ] V n + Ω + ∪Ω - αµµ t + δ -1 σσ t = Γ 2µV n - Γ 2α C V 2 n + Ω + ∪Ω - µ∆µ + δ -1 σ∆σ = Γ µ -[[ ∂µ ∂n ]] + 2 √ 2p 0 (σ -δµ) - Γ 2α C V 2 n + Ω + ∪Ω - µ∆µ + δ -1 σ∆σ = Γ 2 √ 2p 0 µ(σ -δµ) - Γ 2α C V 2 n - Ω + ∪Ω - |∇µ| 2 + Ω + ∪Ω - δ -1 σ∆σ = Γ 2 √ 2p 0 µ(σ -δµ) - Γ 2α C V 2 n - Ω + ∪Ω - |∇µ| 2 - Ω + ∪Ω - |∇σ| 2 δ + Γ δ -1 σ[[ ∂σ ∂n ]]
which in turn implies that

d dt E(Γ, µ, σ) = Γ 2 √ 2p 0 µ(σ -δµ) -δ -1 σ(σ -δµ) - Γ 2α C V 2 n - Ω + ∪Ω - |∇µ| 2 - Ω + ∪Ω - |∇σ| 2 δ = - Γ 2α C V 2 n - Ω + ∪Ω - |∇µ| 2 - Ω + ∪Ω - |∇σ| 2 δ - Γ 2 √ 2p 0 √ δµ - σ √ δ 2 ≤ 0.
3 Formal derivation of Theorem 1.5

This section is devoted to prove formally theorem 1.5. We shall derive in turn equations for u, Γ(t), µ, σ.

Equation for u

First, we formally show that u only takes two values ±1. To that purpose, we rewrite Equation (4b) in the form

αu ε t = ∆u ε + ε -2 f (u ε ) + ε -1 µ ε .
By setting τ := t/ε 2 , we obtain

αu ε τ = ε 2 ∆u ε + f (u ε ) + εµ ε .
When ε is small, we neglect the effect of diffusion term ε 2 ∆u ε and of the term εµ ε with respect to the term f (u ε ), which yields the ordinary differential equation

α du ε dτ ∼ = f (u ε ). ( 20 
)
Note that τ → ∞ as ε → 0. Remembering that ±1 are two stable zeros of this equation. We formally deduce that as ε ↓ 0

     u ε (x, t) approaches -1 if u ε (x, 0) < 0 u ε (x, t) approaches 1 if u ε (x, 0) > 0. ( 21 
)

Formal derivation of the interface equation

We define

Ω -(t) = {x ∈ Ω : u(x, t) = -1}, Ω + (t) = {x ∈ Ω : u(x, t) = 1}, and Γ(t) := Ω\(Ω -(t) ∪ Ω + (t)).
Since roughly speaking, the regions {u = -1} and {u = 1} are the "limit" of the regions {u ε ≈ -1} and {u ε ≈ 1} as ε → 0, Γ(t) can be considered as the limit as ε → 0 of Γ ε (t) which is the interface between the two regions {x ∈ Ω : u ε (x, t) ≈ -1} and {x ∈ Ω :

u ε (x, t) ≈ 1}.
We recall that 0 is an unstable equilibria of Equation ( 20), and define

Γ ε (t) = {x ∈ Ω : u ε (x, t) = 0} for each t ≥ 0.
In what follows, we will use an formal asymptotic expansion to derive the equation describing Γ(t). We need some preparations.

Signed distance function:

We assume that the interface Γ(t) is a smooth, closed hypersurface without boundary of R N . Further, we suppose that Ω + (t) is the region enclosed by Γ(t) and that Ω -(t) is the region enclosed between ∂Ω and Γ(t). Let d(x, t) be the signed distance function to Γ(t) defined by

d(x, t) =      dist(x, Γ(t)) for x ∈ Ω -(t),
-dist(x, Γ(t)) elsewhere.

Note that d = 0 on Γ T and |∇ d| = 1 in a neighborhood of Γ T .

Outer expansion:

It is reasonable to assume that outside a neighbourhood of Γ T , u ε has the expansion

u ε (x, t) = ±1 + εu ± 1 (x, t) + ε 2 u ± 2 (x, t) + . . . ( 22 
)
3. Inner expansion: Near Γ T , we assume that u ε has form

u ε (x, t) = U 0 (x, t, ξ) + εU 1 (x, t, ξ) + ε 2 U 2 (x, t, ξ) + . . . (23) 
Here U j (x, t, z), j ≥ 0 are defined for x ∈ Ω, t ≥ 0, z ∈ R and ξ := d(x, t)/ε.

Normalization conditions:

The stretched space variable ξ gives exactly the right spatial scaling to describe the rapid transition between the regions {u ε ≈ -1} and {u ε ≈ 1}. We normalize U 0 in such a way that U 0 (x, t, 0) = 0.

Matching conditions:

For ξ → ±∞, we require two expansions ( 22) and ( 23) to be consistent, i.e.

U 0 (x, t, -∞) = 1, U 0 (x, t, +∞) = -1; and U k (x, t, -∞) = u + k (x, t), U k (x, t, +∞) = u - k (x, t) for all k ≥ 1.
Formal interface motion equation We will substite the inner expansion ( 23) into (4b). We will then compare the terms of the same order to determine equations of U 0 and U 1 . To that purpose, we start by some computations.

u ε t = U 0t + U 0z d t ε + εU 1t + U 1z d t + . . . , ∇u ε = ∇U 0 + U 0z ∇ d ε + ε∇U 1 + U 1z ∇ d + . . . , ∆u ε = ∆U 0 + 2 ∇ d ε • ∇U 0z + U 0z ∆ d ε + U 0zz |∇ d| ε 2 + ε∆U 1 + 2∇ d • ∇U 1z + U 1z ∆ d + U 1zz |∇ d| ε + . . . , f (u ε ) = f (U 0 ) + εf (U 0 )U 1 + O(ε 2 ), µ ε = µ + O(ε). Substituting u ε t , ∆u ε , f (u ε ), µ ε in (4b)
, collecting all terms of order ε -2 then yields

     U 0zz + f (U 0 ) = 0 U 0 (-∞) = 1, U 0 (0) = 0, U 0 (+∞) = -1. (24) 
Because of 1 -1 f (s) ds = 0, this problem has a unique solution U 0 . Furthermore, U 0 is independent of (x, t), i.e. U 0 (x, t, z) = U 0 (z) and thus, we write U 0 , U 0 instead of U 0z , U 0zz . We have the following lemma.

Lemma 3.1. The solution U 0 of equation (24) also fulfills the differential equation

U 0 = -2W (U 0 ).
As a consequence, R (U 0 (z)) 2 dz can be written in the form:

R (U 0 (z)) 2 dz = √ 2 1 -1 W (s) ds.
Proof. Multiplying the above mentioned differential equation ( 24) for U 0 by U 0 , we get

U 0 U 0 + f (U 0 )U 0 = 0. ( 25 
)
Keeping in mind that W (u) = -f (u), ( 25) can be read as

(U 0 ) 2 2 -(W (U 0 )) = 0. (26) 
Integrating this equation from -∞ to z, we obtain

(U 0 (z)) 2 2 = W (U 0 (z)). (27) 
Moreover, U 0 is non increasing, therefore, we deduce that

U 0 (z) = -2W (U 0 (z)).
Consequently, we have

R (U 0 (z)) 2 dz = - R U 0 (z) 2W (U 0 (z)) dz = √ 2 1 -1 W (s) ds.
This completes the proof of Lemma 3.1.

We now collect the terms of order ε -1 in the substituted equation (4b). Because we have |∇ d| = 1 in a neighbourhood of Γ(t), we obtain

U 1zz + f (U 0 )U 1 = U 0 (α d t -∆ d) -µ. (28) 
A solvability condition for this equation is given by the following lemma.

Lemma 3.2 (see [1, Lemma 2.2]).

Let A(z) be a bounded function for z ∈ R.

Then the existence of a solution φ for the problem

φ zz + f (U 0 (z))φ = A(z) , z ∈ R φ(0) = 0, φ ∈ L ∞ (R) (29) 
is equivalent to R A(z)U 0 (z) dz = 0. ( 30 
)
Therefore, the existence of a solution U 1 of ( 28) is equivalent to

R (U 0 ) 2 (z)(α d t -∆ d)(x, t) -µ(x, t)U 0 (z) dz = 0 (31) 
for all (x, t) in a neighbourhood of the interface Γ T . Thus,

(α d t -∆ d)(x, t) = µ(x, t) R U 0 (z) dz R (U 0 (z)) 2 dz = - 2µ(x, t) R (U 0 (z)) 2 dz . (32) 
It follows from Lemma 3.1 that

(α d t -∆ d)(x, t) = - √ 2µ(x, t) 1 -1 W (s) ds . ( 33 
)
Note that, on Γ(t) we have n

= n + | Γ = ∇ d, κ = div(n) N -1 = ∆ d N -1
, and dt = -V n . Therefore, we deduce that Γ(t) satisfies indeed the interface motion equation (6b):

αV n = -(N -1)κ + √ 2µ 1 -1 W (s) ds = -(N -1)κ + Cµ on Γ T ,
where C := 

Equations for µ, σ

We will suppose that the following convergence holds in a strong enough sense:

µ ε -→ µ, σ ε -→ σ as ε ↓ 0 and derive the limit of the reaction term in (4a) and (4c). To that purpose, we first prove a stronger version of Lemma 2.1 by Du et al. [START_REF] Du | A phase field formulation of the Willmore problem[END_REF] (see also [START_REF] Anderson | Diffuseinterface methods in fluid mechanics[END_REF][START_REF] Lowengrub | Quasi-incompressible Cahn-Hilliard fluids and topological transitions[END_REF]).

Lemma 3.3. Let γ ⊂⊂ Ω be a smooth hypersuface without boundary, d be the signed distance to γ, and let g ∈ L 1 (R). Furthermore, let φ ε ∈ L ∞ (Ω) and V ⊂ Ω be a neighborhood γ such that

φ ε L ∞ (Ω) ≤ C, φ ε is continuous on V, φ ε -→ φ uniformly in V.
We then have

lim ε↓0 1 ε U g d(x)/ε φ ε (x) dx = ∞ -∞ g(τ ) dτ γ φdγ,
for a small enough neighborhood U ⊂ V of γ.

Proof. For simplicity, we prove this lemma in three-dimensional space and assume that γ has a parametrization α. More precisely, we assume that there exists an open set W of R 2 such that the mapping α from W onto γ is smooth and that α -1 is also a smooth mapping. We write the function α as

α(z 1 , z 2 ) = (α 1 (z 1 , z 2 ), α 2 (z 1 , z 2 ), α 3 (z 1 , z 2 )) for all (z 1 , z 2 ) ∈ W .
For δ > 0 small enough, we consider η from W × [-δ, δ] to R 3 , which satisfies

η τ (z 1 , z 2 , τ ) = ∇d(η(z 1 , z 2 , τ )), η(z 1 , z 2 , 0) = α(z 1 , z 2 ).
We write

η(z 1 , z 2 , τ ) = (η 1 (z 1 , z 2 , τ ), η 2 (z 1 , z 2 , τ ), η 3 (z 1 , z 2 , τ ))
with η i : W × [-δ, δ] → R. We define U := η({W × [-δ, δ]}) and choose δ small enough so that U ⊂ V . Note that

d dτ d(η(z 1 , z 2 , τ )) = ∇d(η(z 1 , z 2 , τ ))η τ (z 1 , z 2 , τ ) = |∇d(η(z 1 , z 2 , τ ))| 2 = 1,
and that d(η(z 1 , z 2 , 0)) = d(α(z 1 , z 2 )) = 0. Thus we conclude that d(η(z 1 , z 2 , τ )) = τ . We define J(z 1 , z 2 , τ ) as the determinant of the Jacobian matrix of η at (z 1 , z 2 , τ ) and perform the change of coordinates η(z 1 , z 2 , τ ) = x to obtain

U g d(x) ε φ ε (x) dx = δ -δ dτ W g d(η(z 1 , z 2 , τ )) ε φ ε (η(z 1 , z 2 , τ ))|J(z 1 , z 2 , τ )|dudv = δ -δ dτ W g τ ε φ ε (η(z 1 , z 2 , τ ))|J(z 1 , z 2 , τ )|dudv.
By applying the change of coordinates τ = ε τ , we have

U g d(x) ε φ ε (x) dx =ε δ ε -δ ε d τ W g ( τ ) φ ε (η(z 1 , z 2 , ε τ ))|J(z 1 , z 2 , ε τ )| dz 1 dz 2 .
Therefore,

A ε := 1 ε U g d(x) ε φ ε (x) dx = ∞ -∞ W 1 (-δ ε , δ ε ) ( τ ) g ( τ ) φ ε (η(z 1 , z 2 , ε τ ))|J(z 1 , z 2 , ε τ )|d τ dz 1 dz 2 .
In the following, we will apply the dominated convergence theorem to deduce the limit of A ε as ε ↓ 0. Set

H ε (z 1 , z 2 , τ ) := 1 (-δ ε , δ ε ) ( τ ) g ( τ ) φ ε (η(z 1 , z 2 , ε τ ))|J(z 1 , z 2 , ε τ )|. For -δ ε ≤ τ ≤ δ ε , we have -δ ≤ ε τ ≤ δ, so that for all ε > 0 1 (-δ ε , δ ε ) ( τ ) |J(z 1 , z 2 , ε τ )| ≤ sup z 1 ,z 2 ∈W , -δ≤τ ≤δ |J(z 1 , z 2 , τ )| =: C 1 . 20 Moreover, φ ε L ∞ (Ω) ≤ C for all ε > 0, therefore, |H ε (z 1 , z 2 , τ )| ≤ C|g( τ )| on W × R. (34) 
Next, since φ ε converges uniformly to φ on U and since J is continuous, we have for all τ ∈ R, (z 1 , z 2 ) ∈ W ,

1 (-δ ε , δ ε ) ( τ ) φ ε (η(z 1 , z 2 , ε τ )) → φ(η(z 1 , z 2 , 0)) = φ(α(z 1 , z 2 )), J(z 1 , z 2 , ε τ ) → J(z 1 , z 2 , 0), as ε ↓ 0. It follows that as ε ↓ 0, H ε (z 1 , z 2 , τ ) → g( τ )φ(η(z 1 , z 2 , 0))|J(z 1 , z 2 , 0)| for all τ ∈ R, (z 1 , z 2 ) ∈ W. (35) 
Combining ( 34) and ( 35), we have Therefore,

lim ε↓0 A ε = ∞ -∞ g( τ )d τ W φ(α(z 1 , z 2 ))|J(z 1 , z 2 , 0)| dz 1 dz 2 . (36) 
lim ε↓0 A ε = ∞ -∞ g( τ )d τ γ φ dγ
which completes the proof of the lemma.

Application to reaction term: Now we apply Lemma 3.3 to formally compute the limit as ε ↓ 0 of

1 ε T 0 Ω p(u ε )(σ ε -δµ ε )ψ, for ψ ∈ F T .
Because of the outer and inner expression of u ε in ( 22) and ( 23), we deduce that for ε small enough Thus we can apply Lemma 3. (σ(t) -δµ(t))ψ(t) dΓ(t).

u ε (x, t) ≈        ±1 if (x,
Hence, we formally conclude that, for all ψ ∈ F T lim ε↓0

1 ε T 0 Ω p(u ε )(σ ε -δµ ε )ψ = 2 √ 2p 0 T 0 dt Γ(t)
(σ(t) -δµ(t))ψ(t) dΓ(t). (σ-δµ)(t)ψ(t) dΓ(t).

This together a similar argument for the equation for σ completes the proof of Theorem 1.5.

  3 by setting g(ξ) := p(U 0 (ξ)) and φ ε := (σ ε -δµ ε )ψ, where ψ ∈ F T . This yieldsP 0 (ψ(t)) := lim ε↓0 1 ε Ω p(u ε )(σ ε -δµ ε )ψ = lim ε↓0 1 ε U p(u ε )(σ ε -δµ ε )ψ = t) -δµ(t))ψ(t) dΓ(t),where U is a small enough neighborhood of Γ(t). Recalling that in view of the definition of p and of Lemma 3.1p(U 0 ) = 2p 0 W (U 0 ) = -√ 2p 0 U 0 ,we getP 0 (ψ(t)) = -√ 2p 0 ∞ -∞ U 0 (ξ) dξ Γ(t)(σ(t) -δµ(t))ψ(t) dΓ(t)

( 37 )µ

 37 Conclusion: Now, we recall the definition of a weak solution of the equation for µε : ε -u ε )ψ t -ε ∆ψ + ε -1 p(u )(σ ε -δµ ε )ψfor ψ in F T and take the limit ε → 0 on both sides, to obtain in view of[START_REF] Hawkins-Daarud | Numerical simulation of a thermodynamically consistent four-species tumor growth model[END_REF] 

  , z 2 , 0) is the outer normal vector to γ at the point η(z 1 , z 2 , 0) = On the other hand, in view of the definition of the integral of surface (see[START_REF] Rudin | Principles of Mathematical Analysis[END_REF] Formula (131), p. 283]), we have

	where ∧ is the vector product. This together with (36) implies that
	lim ε↓0	A ε =	∞ -∞	g( τ )d τ	W	φ(α(z 1 , z 2 ))	∂α ∂u	∧	∂α ∂v	dz 1 dz 2 .
		γ	φ dγ =		W	φ(α(z 1 , z 2 ))	∂α ∂z 1	∧	∂α ∂z 2	dz 1 dz 2 .
								∂η ∂z 1	= (	∂η 1 ∂z 1	,	∂η 2 ∂z 1	,	∂η 3 ∂z 1	),
								∂η ∂z 2	= (	∂η 1 ∂z 2	,	∂η 2 ∂z 2	,	∂η 3 ∂z 2	),
								∂η ∂τ	= (	∂η 1 ∂τ	,	∂η 2 ∂τ	,	∂η 3 ∂τ	).
	Note that (z 1 α(z 1 , z 2 ) and that { ∂η ∂τ of γ at point η(z 1 , z 2 , 0) = α(z 1 , z 2 ). Therefore, ∂η ∂u (z 1 , z 2 , 0), ∂η (z 1 , z 2 , 0)} is a basis of the tangent space ∂v
	|J(z 1 , z 2 , 0)| = (	∂η ∂z 1	∧	∂η ∂z 2	).	∂η ∂τ	=	∂η ∂z 1	∧	∂η ∂z 2	∂η ∂τ
		=	∂η ∂z 1	∧	∂η ∂z 2	|∇d(η(z 1 , z 2 , 0))| =	∂η ∂z 1	∧	∂η ∂z 2	(z 1 , z 2 , 0)
		=	∂α ∂u	∧	∂α ∂v	(z 1 , z 2 )

Next, we computes |J(z 1 , z 2 , 0)|. For this purpose, we write

  t) is far from Γ T

		U 0 (	d(x, t) ε	)	if (x, t) is closed to Γ T .
	Therefore				
	p(u ε (x, t)) ≈	 0       p(U 0 (	d(x, t) ε	))	if (x, t) is far from Γ T if (x, t) is closed to Γ T .
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