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Abstract

In this paper we model shape objects variability and spatial relationships between characteristics of this object. What

is an object? We consider that an object is a set of shapes and points. We establish here a formalism unifying shapes

and points by approximating shape contours by composite Bézier curves. These are equivalent to their control points. We

then propose a non linear invariant statistical model and we learn the average object, it’s variability and relationships. We

finally evaluate our methodology in cephalometry, by modeling anatomical structures and points.

1 Introduction

In this paper we are interested in modeling the variability of points and shapes for pattern recognition. Our first goal is to

find a formalism that allows us to consider simultaneously points and shapes. We propose to approximate shapes by composite

Bézier curves, that are equivalent to their control points. Our second goal is to build a non linear model, invariant up to affine

transformations, including the average object (points and shapes), variability allowed around this object, and finally spatial

relationships between all the characteristics of the studied object. Evaluation of our methodology is done in cephalometry,

that consists in landmarking anatomical points on radiographs. Those points are defined relatively to anatomical structures,

that we modeled with composite Bézier curves. We then learned simultaneously anatomical points and relative structures

position.

2 Shape representation

We are interested in finding an optimal representation for shapes. Shape learning requires a compact and efficient com-

puter oriented representation, allowing a correct modeling of a population of shapes. This representation must also translate

the non-rigidity of studied shapes. The appearance of an object can change when its geometric properties change. Most of

the authors treating the problem of recognition of a set of shape characteristic points propose to represent the outline of the

shape by a set of points [1][3][10]. The simplest idea is to sample the contour of the shape. The problem is that sampling is

not equivalent to the shape.

2.1 Bézier curves

We propose in this paper to chose Bézier curves [7] to approximate shape contours. This proposal is due to the properties

of these curves. Three major aspects can be taken to the fore:

- Equivalence between control points of the curve and the curve;

- Analytic definition of the curve and its derivatives;
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- Invariance of the curve up to affine transformations.

This formalism allows us to unify two different notions: the point notion and shape notion.

Let    !  ! !"""!#" be an ordered set of point in 2D. These points, called control points, define a polygonal line ". We

can coligate to this line a parametric curve (Bézier curve) defined by the equation:

 ! ! #$" %℄   !! '
# 

 ! 

  # !#  !! " (1)

# !#  !! are the Bernstein polynomials and $ is the degree of the curve.

There are two different ways to approximate a set of ordered points by a Bézier curve: the first one is interpolation, the

second smoothing. Both of them imply parameterization of the curve. This step consists in finding a good repartition of the

parameter ! (cf. equation (1)). Two different methods exist. The first type of parameterization gives a uniform repartition of

the parameter, the second one gives a repartition proportional to the distance between the points that we want to approximate.

2.1.1 Interpolation

Let  %$!$ ! !"""!%" be a set of points that we want to interpolate. The problem is to find a curve going exactly thought this

set of points. This problem can be formulated by the system of equations:

%$ '

# 
 ! 

  # !#  !$! " & ! "$" ' ' ' " (# " !$ ! #$" %℄ ' (2)

We want to find here the position of the points   . At first we must define the degree $ of the curve. For this method the

degree is fixed: $ ' (. We must then solve the system of linear equations:

!
"#
  
...

 #

$
%& '

!
"#
# !#  ! ! ' ' ' ##!#  ! !

...
. . .

...

# !#  !%! ' ' ' ##!#  !%!

$
%&
#" !
"#
% 

...

%%

$
%& ' (3)

This method is interesting when the degree $ is small. A high degree will cause spurious oscillations.

2.1.2 Smoothing

Let
'
%$&
(
& ! !"""!'"

be a set of points that we want to smooth. The problem in this case is to find a curve   ! $! in the

nearest neighborhood of the set of point
'
%$&
(
. The classical method consists in minimizing distances between points % $

& and

the curve   !$!, defined as:

)& '  
'
!$&
(
$%$& " * ! "$" ' ' ' " +# ' (4)

Control points   can be computed by solving the system:

!
"#
  
...

 #

$
%& '
)
###!'℄

(
###!'℄
*#"

###!'℄
(

!
"#
%$ 
...

%$'

$
%& " (5)

where:

###!'℄ '

!
"#
# !#  !$ ! ' ' ' ##!#  !$'!

...
. . .

...

# !#  !$'! ' ' ' ##!#  !$'!

$
%& '

The choice of the degree must verify the constraint: $ , +. If $ ' + and all distances ) & are reduced to zero, the solution

is the same as the one obtained by interpolation.
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2.1.3 Interpolation and Smoothing

It is also possible to mix both of the methods. Let    !  ! !"""!#" be passage constraints, and
 
 #$

!
$ ! !"""!%"

points to

smooth. Control points !& procure  " " #! equations for smoothing. The degree of the curve is defined as: # $ $ " " " #%
The equation to solve is:

"
#$
! 
...

!'

%
&' $

(
&

'(

)$! (
)* %
% '

) (
 

 #

)
(6)

where )* is a  $ " #!  $ " #! identity matrix, and &, ' and( defined as:

& $

"
#$
+ !'  , ! % % % +'!'  , !

...
. . .

...

+ !'  ,#! % % % +'!'  ,#!
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...
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+%!'  ,# ! % % % +%!'  ,#%!
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"
#$
+ !'  ,# ! % % % +'!'  ,# !

...
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...

+ !'  ,#%! % % % +'!'  ,#%!

%
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2.2 Composite Bézier curves: constraints used to join two curves    !
 
!

  !
!
and   !!

 
!

 !!
!

Approximating a shape by a Bézier curve implies a compromise between fidelity (# hight) and robustness (. $ height). It

is possible to solve this problem using composite Bézier curve. It consists in separating the set of points defining the shape to

approximate several subsets, each of them defining one Bézier curve. All of them will have to verify joining constraints. Let

#"(# and #")# be respective degrees of curves ! "(#
 
,"(#

!
and ! ")#

 
,")#

!
. Associate sets of control points are

*
!
"(#

&  !

+
and*

!
")#

& !!

+
. These two polynoms:

1. are continuous when their extremities coninside (last point of ! "(#
 
,"(#

!
is also the first of ! ")#

 
,")#

!
):

! "(#  #! $ ! ")#  %! !" !
"(#

'  ! $ !
")#
 - (7)

2. have continuous derivatives at the junction points. This implies the continuity of the vector tangent at those points. We

have the proportionality between first derivatives. The relation between !  , !! and ! #  ,$! can be written as:

#"(#
,
!
"(#

'  !$!
# !'  !

-
$ /#")#

,
!
")#
! # !

")#
 

-
(8)

if the connected extremities are ! "(#  #! and ! ")#  %!.

3. have a constant curvature radius at the junction. This implies the continuity of the second derivative of the curves. For

the continuity of the osculator plane must be verified at the junction:

,
!
"(#
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# !

"(#

'  !$!

-
$
,
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"(#
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# !

"(#
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-/
- 0 %  % % (9)

The equality of the curvature radius is assumed by the relation:

#"(#
000! "(#

'  !$!
# !

"(#

'  !

000%,
#"(# # #

-000,! "(#

'  !$$
# !

"(#
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-
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,
!
"(#

'  !$!
# !

"(#

'  !

-000 $
#")#

000! ")#
! # !

")#
 

000%,
#")# # #

-000,! ")#
$ # !

")#
!

-
$
,
!
")#
! # !

")#
 

-000 %
(10)

Parameters / and 0 define the shape of each curve. Different situations are presented in figure 1. Parameters / and 0 are

generally fixed to # or ##.
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Figure 1: Influence of parameters  and  on the junction appearance between two curves

2.3 Optimization and generalization of the representation

We formulate here the problem of joining ! composite Bézier curves and determining all control points. We consider

here the case "   ! and    !. The junction problem of ! curves with this same criterion implies the resolution of the

system:
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with:
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Only two control points belong to the shape. We model the passage of the curve by the points '
 $"
$ and '

  "

$  " , where

(  " is the number of points that the curve &   "$)  "% has to approximate. We can then conclude that *  !"  + !" ,, where

,  ! when - ( )!# + !"* and ,  # in other cases.

3 Modeling variability and spatial relationships

Once we have defined how to represent a shape by a set of points, we can now see how to model shape variability. Our

model will enclose three different aspects. The first one is the average shape, the second one the variability allowed around

this average shape, and finally the last one correspond to the existing relationships between all features of the shape.

3.1 Existing methods

The shape variability definition that we used is the one proposed by [4]: shape variability relative to a model is the shape

difference that we obtain after alignment of this shape on the model. The alignment consists in eliminating similarity group

transformations.

    Icisp'2003, Agadir - Morocco, June 25-27, 2003

Table of Contents Index



We then have to define shape representation, the alignment and invariance, and finally variability. Previous section in

the paper treats on the representation on the shape using composite Bézier curves. We represent a shape by a finite set of

points that we call characteristic points of the shape. The alignment can be assumed by the analysis of Procrustes [1][10].

Data is then projected in the shape space, that is invariant to similarity group transformations. This space called manifold

of Proscustes is not Euclidean. When shape variability is not important, it’s more interesting to work in the tangent space to

the shape space. Euclidean properties of the tangent space are often statistically more appropriate than non-Euclidean ones

of the shape space[6]. Methods used for features extraction consist in finding an   dimensional subspace of the original  

dimensional space (    ). We can use for this two types of methods: linear methods or non-linear methods.

The most popular linear method is the Principal Components Analysis (PCA). PCA gives principal axis of clouds of dots

defined by the data. These principal axis approximate all the points issued from the learning set using the defined model.

PCA can be resumed by three steps: compute centered data; compute their covariance matrix !; compute the eigenvectors "  

and the eigenvalues # of the matrix !, where # ! #  !. Let  be the matrix composed of $ eigenvectors "  . A shape %

from the training set can be approximate by % ! "% # &' where & is the vector of variability parameters of shape.

There are many non-linear methods for feature extraction. Kernel PCA [2][9] is issued from PCA. The main idea of this

method is to transfer data in a new feature space ( using a non linear function). In this new space is then applied a PCA. ( is

often a space of high dimensionality   . Defining the function ) is problematic. Many authors propose to use Mercer kernel,

that converts the projection problem to: *$%'+ % ! )$%%,)$+ %, Kernel PCA is used for classification. Back-projection in

the original space is not simple, kernels are the not often used for shape variability modeling.

3.2 Non linear model of variability in pattern recognition

In pattern recognition, a shape is often represented by its average, implying Gaussian modeling. Recent works insert a

second parameter : variability. We will present here the model that we adopted. Four major axes define the modelization:

- invariance up to affine transformations using a non-linear space;

- representation of the variability and relationships between features of the shape;

- general formalism mixing points and shapes;

- possibility to use the model for pattern recognition.
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Figure 2: General view : modeling shape variability

Figure 2 summarizes our approach. We start with a training set composed of expertised data. This data is then projected
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in a feature space. A statistical model provides the average shape and its variability. The average shape can be an estimation

of this shape on an unknown image, and can also be the initial shape for an iterative process of shape recognition. In this

case, each deformation must verify learned constraints on authorized variability around the average shape. In this paper we

suppose that every image contains a reference shape that provides a basis for a common feature space. Three different models

were build: a linear one and two non-linears [8]. We will only present the last one.

3.2.1 Feature space definition

The first step consists in the detection of the reference shape. This shape is then sampled in  equi-distant points. The

non-linear feature space is defined by ratio of surfaces of triangles obtained from the previous sampling. The coordinates of

an image point ! "# $! are defined by %, & et Æ computed for each possible triangle:

% "
( !(!

("( (!

& " (!!("

("( (!

Æ "
("!( 

("( (!

where ("( (! is the algebraic area of the triangle ("( (!) This coordinates satisfy: % 
!!"
!("#& 

!!!"
!( #Æ 

!!!"
!(! "

!"
$

Let * be the number of triangles obtained from the set of points ( ". New coordinates of a point ! are:

+  " %% & Æ ) ) ) %#&#Æ#℄
$
" , +#

where , is the matrix used to project the data from the Cartesian to our new feature space.

3.2.2 Model: Variability and Relationships

Learning is done on a basis composed of - expertised images. For each image we detect the reference shape, and

we sample it. For each image ., we have: a set of points #( "
!$!!" %&&&%'#, a matrix , " and the set of / coordinates of the

characteristic points #+ "
 $. We compute the mean position of each characteristic point. Let 0 " be the vector representing a

characteristic point of the image . in the new space. The mean position of this point is:

'0 "
(

-

( 
"! 

0")

The variance '1 of vectors 0" is also computed. We deduce from this the weighting matrix ( :

( "

!
"�

 
") 

% % % $
...

. . .
...

$ % % %  
")! 

$
%& )

When the sampling of the reference shape gives an important number of points, only some of them are important. We

then propose to apply a PCA on the covariance matrix of vectors 0 ". Only the most important 2
 

components are retained.

These components are those the eigenvalues of which are the highest, and they form the matrix ).

3.2.3 Pattern recognition: localization of points

Let 0 be the vector representing the characteristic point + in the new coordinate space. Landmarking + on a new

image consists in resolving the system: '0 " , +# where '0 is the average learned vector, , the matrix defined relatively

to characteristics of the new image. We solve this problem using weighted least squares. The estimated position *+ of the

characteristic point + on an unknown image is given by the equation:

*+ "  , $( $))$(, !$ , $( $)'0)
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4 Results: Evaluation of the method in cephalometry

4.1 Goals of cephalometry

The evaluation of our methodology was made in cephalometry. What is cephalometry? It is a discipline used in orthodon-

tics for predicting dental dysharmonies of the patient. This prediction is done on cranial radiographs on which the practitioner

landmarks anatomical points. He then obtain a set of distances and angles, and obtain from this the diagnosis. In our case we

focalize on landmarking. One of our goals in this project was the automation of landmarking of cephalometric points on a

consequent database. All the points that we have to localize have anatomical definitions: their position is defined relatively

to anatomical structures such as bones and sutures.

4.2 A priori knowledge

The first step consists in defining the set of structures that we have to identify. This was possible with the a priori

knowledge of the practitioner: position of each cephalometric point depends on skull biodynamics. We conclude that our

reference shape should be the external contour of the skull. A fully automated method [5] provides us with this shape (figure

3 (a)).

(a) Reference shape (b) Sella turcica region

Figure 3: Position of the region of sella turcica relatively to the detected reference shape

4.3 Approximation and learning of the sella turcica

The practitioner provides the expertise of the anatomical structures to identify. In this paper we will focalize on the region

of sella turcica (figure 3 (b)) and cephalometric points TPS and CLP (figure 4 (c)).

(a) Original Image (b) Contrasted Image (c) Expertise (d) Approximation

Figure 4: Expertise of the sella turcica (cephalometric points TPS and CLP)

Figure 4 presents the expertise of the sella turcica. Images (a) and (b) present the region of the structure, image (c)

presents the expertise of the sella and the points positioned on it, and finally image (d) is the result of the approximation of

the sella with four composites Bézier curves. We obtained for this structures 28 control points.

Once we have obtained the approximation of the structure, we can learn in the same model the structures and cephalo-

metric points.
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4.4 Results

Figure 5: Position of the average shape (black) relatively to the expertise (white) on two images

This study was evaluated on 80 expertised images. Figure 5 presents results obtained with our model. We can see on these

two images the position of the average shape relatively to the expertise. It’s interesting to notice that our model is adaptive.

Average shapes are not the same on images, even if they are in the feature space.

5 Conclusion

In this paper, we treated the problem of modeling the variability of a shape. We decompose our study in two parts. The

first one concerns the representation of the shape by a set of points, the second one concerns the non linear model that we

build. Our shape is represented by a set of points. We approximate the contour of the shape using composite Bézier curves.

This approximation is invariant, and provides us with a set of representative control points equivalent to the analytic equation

of the polynom. The adopted formalism allows to learn simultaneously points and shapes. Our second goal was to build a

non linear model of variability and spatial relationships. We propose here a model based on the detection of a reference shape

that defines the projection in a feature space, in which we learn the model. Our methodology was validated in cephalometry

and presents interesting results. This model can be used to identify partially occulted data, using learned spatial relationships

and visible part of the shape.
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