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In this paper, we deal with the pattern recognition problem using non-linear statistical models based on Kernel Principal Component Analysis. Objects that we try to recognize are defined by ordered sets of points. We present here two types of models: the first one uses an explicit projection function, the second one uses the Kernel trick. The present work attempts to estimate the localization of partially visible objects. Both are applied to the cephalometric problem with good results.

INTRODUCTION 1.Cephalometry

The goal of cephalometry is the study of the skull growth of young children in order to improve orthodontic therapy. It is based on the landmarking of cephalometric points on tele-radiographs, two-dimensional X-ray images of the sagittal skull projection. These points are used for the computation of features, such as the length or the angles between lines. The interpretation of these features is used to diagnose the deviation of the patient form from an ideal one. It is also used to evaluate the results of different orthodontic treatments. The cephalometry was initially introduced in the thirties. It consisted in manual landmarking directly on radiographs. The conclusion of these studies was that the location process is subject to a great subjectivity and that the landmarking quality depends on image quality. Three categories of approaches was proposed for landmarking automation: reproduction of expert landmarking; statistical modeling and finally appearance models. The first landmarking automation method was proposed in 1986 by Lévy-Mandel et al. [START_REF] Levy-Mandel | A Methodology for Knowledge-Based Landmarking of Cephalograms[END_REF]. He used a-priori knowledge on anatomical structures lying near the anatomical points to localize them. Contours are identified in a predetermined order based on algorithms introduced to the system by ad hoc criteria. Parthasarathy and al. [START_REF] Parthasarathy | Automatic landmarking of cephalograms[END_REF], Davis and al. [START_REF] Davis | Knowledge-based cephalometric analysis: A comparison with clinicians using interactive methods[END_REF] Ong and al. [START_REF] Ong | Identification of feature points in cephalograms[END_REF] presented similar knowledge based systems. However all these studies were carried out on different small sets of images. Moreover the training was made on the same images that tests. These methods give good results for well defined and located on strong contours points. However they are subject to failure in images containing artifacts or low quality images and when anatomical structures variability is very high. For any new landmark that the practitioner need to introduce new rules have to be formulated, and then introduced in the system. Another type of approach was proposed simultaneously with our in 2000 by Hutton et al. [START_REF] Hutton | An Evaluation of Active Shape Models for the Automatic Identification of Cephalometric Landmarks[END_REF]. Authors propose a method based on active contours. This method consists in learning a model composed of the mean observation and the variability authorized around the mean. This model is then positioned statistically on an image and is deformed in order to correspond as well as possible to reality. The third type of approach appears in 1994 Cardillo and Sid-Ahmed [START_REF] Cardillo | An Image Processing System for Locating Craniofacial Landmarks[END_REF] and propose an alternative solution. They develop an algorithm using the mathematical morphology based on grey levels. During training some structuring elements are identified and the probability density of each point position that is relative to the structuring element is evaluated. Recognition of the landmark is given by the intersection of these probability distributions. All these studies have a common point: the images on which these studies were done where all scanned radiographs. Most on them treat images with an insufficient resolution and the number of studied images did not allow to model anatomical variability. Only Hutton et al. work on high resolution images, however they assume their localization is only an estimate. It is also important to notice that all these studies where done on different points especially located in the facial part where the landmarking is easiest than in the central part.

Shape modeling

The pioneers of shape analysis are Kendall [START_REF] Kendall | Shape manifold, Procrustean metrics and complex projective spaces[END_REF] [10] and Bookstein [START_REF] Bookstein | Principal Warps: Thin-Plate Splines and the Decomposition of Deformations[END_REF]. In these works, shape is defined as the remaining information after alignment (rotation, translation, scaling) between two objects. In image analysis, Pentland [START_REF] Sclaroff | Modal Matching for Correspondence and Recognition[END_REF] has defined modal analysis and a similar idea has been used by Cootes [START_REF] Cootes | Active Appearance Models[END_REF] in the Active Shape Model (ASM) and Active Appearance Model (AAM). They both involve a Principal Component Analysis (PCA) to build a statistical shape model. In this model, the mean object and the variation around this mean position are both represented. The multi resolution approaches is a key feature of in this method. The non linear classification is also found in [START_REF] De Bruijne | Image Segmentation by Shape Particle Filtering[END_REF], with a shape particle filtering algorithm to fit the model on the image. Unfortunately, the key assumption under theses approaches needs that the landmark is localized on a visible edge or contour. As we can see in figure 2, this is not the case in the cephalometric problem: our landmarks are not delimited by clear and visible contour. This is also the conclusion of Hutton [START_REF] Hutton | An Evaluation of Active Shape Models for the Automatic Identification of Cephalometric Landmarks[END_REF]: AAM are not adequate for cephalometric landmarking. Of course, variability modeling with ASM or AAM is an important feature that will be used in our approach. We also retain the idea of non linear modeling, but it will be applied on the shape model itself.

Our approach

As we've seen previously, in cephalometry the anatomical definition of cephalometric point is difficult to apply on radiographs. The manual landmarking is hard and an important inter and intra expert variability is to be noticed. The manual location has a minimal variability of about 2 millimeters.

To reduce this variability, we will use statistical pattern recognition. We dispose of an expertise made by an expert that consist on landmarked radiographs (cephalometric points). In our approach we also use some a priori knowledge that consists in saying that the landmark position is relative to cranial shape1 . The cranial contour is then automatically extracted from the image. Our training set of points is composed of the cephalometric points and the sampled cranial contour. A statistical model is learned on this training set. To retrieve landmarks on a new image, the cranial contour is detected: the problem is now to retrieve the unknown points (cephalometric) of this image using the known points (cranial contour) and the model. Our goal is then to solve the problem of partial occultation of an observation, the partial occultation corresponding to the set of anatomical points and the visible part to the cranial contour. Some works on Kernel PCA [START_REF] Mika | Kernel PCA and de-noising in feature spaces[END_REF] are very close to our method. Briefly, Kernel PCA maps non-linearly the input data in a Feature Space (F-Space). PCA is then performed in F. The non linear principal components are given by the eigenvectors corresponding to the largest eigenvalues.

In a localization problem, mean shape in the F -space must be back-projected in the input space. The choice of the mapping and the back projection are difficult problems and are still open issues. In this paper, we address the problem of retrieving the position of non visible parts of a partially visible object. The key idea is to use the authorized variation around the mean shape of the model to localize these parts. We present a comparison of three non-linear methods based on KPCA representation. They are applied to the cephalometric problem.

In this paper we first present kernel principal component analysis, then our method which goal is to estimate an observation in the input space supposing a part of it subject to an occultation. We propose a method using a explicit mapping function and then a second approach using the kernel trick. We finally explain our experiments, results and conclude.

KERNEL PRINCIPAL COMPONENT ANALYSIS

Kernel PCA consists in data mapping in a high dimensional feature space F and then performs PCA in F. The mapping function is non linear. This method extracts non linear characteristics from the dataset. 2 , where X i is an observation. This function is used to compute the kernel matrix K from all the observations. This matrix is a positive definite matrix. The use of this function can be used to rewrite data mapping in terms of a dot product. Let ϕ be the non linear mapping function. We can then write:

Mercer Kernels

A Mercer kernel is a function k(X i , X j ) (i,j)∈{1,••• ,n}
k(X i , X j ) = ϕ(X i ), ϕ(X j ) . ( 1 
)
The three most popular kernels are:

• polynomial: k(X, Y ) = ( X, Y + c) d . • gaussian: k(X, Y ) = exp -X-Y 2σ 2 . • sigmoid: k(X, Y ) = tanh (κ X, Y + θ) .
For most of kernels the non linear mapping functions is implicit.

PCA in the feature space F

Let n be the number of observations in our dataset. Let X i i ∈ {1, • • • , n} be the observations. Let ϕ be the non linear mapping function such as:

ϕ : R n → F X → ϕ(X)
We suppose that our mapped data is centered in F . Let C be the covariance matrix computed on that mapped data:

C = 1 n n i=1 ϕ(X i )ϕ(X i ) t . ( 2 
)
Let λ k be the eigenvalues and V k be the eigenvectors of the matrix C:

λ k V k = CV k . ( 3 
)
There exist coefficients α k for k ∈ {1, • • • , n} such that:

V k = n i=1 α k i ϕ(X i ). (4) 
We then obtain:

λ k n i=1 α k i ϕ(X k ), ϕ(X i ) = (5) 1 n n i=1 α k i ϕ(X k ), n j=1 ϕ(X j ) ϕ(X j ), ϕ(X i ) .
We can then define the kernel matrix K:

K ij = ϕ(X i ), ϕ(X j ) .
Equation ( 5) becomes:

nλ k Kα k = K 2 α k , (6) 
that is equivalent to:

nλ k α k = Kα k . ( 7 
)
As K is a positive definite matrix we know that its eigenvalues are positive. nλ k are the the solutions of the equation [START_REF] Davis | Knowledge-based cephalometric analysis: A comparison with clinicians using interactive methods[END_REF].

We then preserve only the l eigenvalues that are not zero. For all k ∈ {1, • • • , l} we have V k , V k = 1. We normalize α k respectively to their eigenvectors in F :

V k , V k = 1 = n i,j=1 α k i α k j ϕ(X i ), ϕ(X j ) = n i,j=1 α k i α k j K ij = α k , Kα k = λ k α k , α k
It is then possible to compute the map of an observation on the k st principal component:

β k = V k , ϕ(X) = n i=1 α k i ϕ(X i ), ϕ(X) = n i=1 α k i k(X i , X).
The map associated to ϕ is:

P l ϕ(X) = l i=1 β i V i . ( 8 
)

Kernel PCA algorithm

Here we present the algorithm proposed by Schölkopf, it allows instead of computing the covariance matrix of the data to compute the Kernel matrix. The algorithm can be presented in three steps :

• 1. Compute the Kernel matrix: K ij = ϕ(X i ), ϕ(X j ) .
• 2. Compute the eigenvectors and eigenvalues of K.

Normalize them: λ k α k , α k = 1.

• 3. Compute projections on the principal components:

β k = n i=1 α k i k(X i , X).
Schölkopf algorithm stops here. To solve the input space mapping problem we need to define a function that we will minimize relatively to the function ϕ. This function is:

P l ϕ(X) = l i=1 β i V i . ( 9 
)

Centering

Previously we made the assumption that the observations were centered:

n i=1 ϕ(X i ) = 0. ( 10 
)
This assumption is important for the computation of the matrix K. When observations are not centered the relation [START_REF] Davis | Knowledge-based cephalometric analysis: A comparison with clinicians using interactive methods[END_REF] is no more satisfied. Observations centering is easy to achieve in the input space, but more difficult in the feature space F, as we cannot explicitly compute the mean of the mapped observations in the space. There is a way to do it, computing Gram matrix instead of the kernel matrix2 . The matrix to diagonalize is then:

G = K -1 n K -K1 n + 1 n K1 n , ( 11 
)
where

1 nij = 1 n for all {i, j} ∈ {1, • • • , n} 2 .

OBSERVATIONS ESTIMATION IN THE INPUT SPACE

Applied to the cephalometric problem, X is partially known: it is composed by the sampled cranial contour which is automatically extracted and well defined and the unknown cephalometric points. Then, the problem that we want to solve in this section is the reconstruction of partially unknown examples from the KPCA model and from the known data (sampled cranial contour). Let X be an example to reconstruct, with the first coordinates being known.

We can see the statistical model as some variability parameters around a mean shape. Finding the unknown part of X is equivalent to find the shape belonging to the model (i.e. variability parameters) whose first coordinates are given by the known part of X. 

. Mapping Function

The first step consists in the detection of the reference shape. This shape is then sampled in p equidistant points P i, i∈{1,••• ,p} . The non-linear feature space is defined by ratio of surfaces of triangles obtained from the previous sampling. The coordinates of an image point M (x, y) are defined by β, γ et δ computed for each possible triangle: β = P j M P k P i P j P k γ = P k M P i P i P j P k δ = P i M P j P i P j P k where P i P j P k is the algebraic area of the triangle P i P j P k . This coordinates satisfy:

β × --→ M P i + γ × ---→ M P j + δ × ---→ M P k = -→ 0 i P k M P j P Figure 4: New coordinates of a point M
Let n be the number of triangles obtained from the set of points P i . New coordinates of a point M are:

X = [β 1 γ 1 δ 1 . . . β n γ n δ n ] t = A X,
where A is the matrix used to project the data from the Cartesian to our new feature space.

Variability and Relationships Modeling.

Learning is done on a basis composed of N expertised images. For each image we detect the reference shape, and we sample it. For each image i, we have: a set of points {P i k } k∈{1,...,p} , a matrix A i and the set of q coordinates of the characteristic points {X i j }. We compute the mean position of each characteristic point. Let ϑ i be the vector representing a characteristic point of the image i in the new space. The mean position of this point is:

θ = 1 N N i=1 ϑ i .
The variance σ of vectors ϑ i is also computed. We deduce from this the weighting matrix P :

P =    1 σ1 • • • 0 . . . . . . . . . 0 • • • 1 σ3n    .
When the sampling of the reference shape gives an important number of points, only some of them are important. We then propose to apply a PCA on the covariance matrix of vectors ϑ i . Only the most important d components are retained. These components are those the eigenvalues of which are the highest, and they form the matrix Φ.

Points estimation

Let ϑ be the vector representing the characteristic point X in the new coordinate space. Landmarking X on a new image consists in resolving the system: θ = A X, where θ is the average learned vector, A the matrix defined relatively to characteristics of the new image. We solve this problem using weighted least squares. The estimated position X of the characteristic point X on an unknown image is given by the equation:

X = (A t P t ΦΦ t P A ) -1 A t P t Φ θ.

Implicit mapping and pseudo-inverse using Kernel Trick

We are interested in solving the problem which goal is the estimation of an observation in the input space, using a model learned in the feature space F. We suppose a part of the observation known. To solve this problem we use spatial relationships existing between the known part of the observation and the unknown one. Those relationships are also learned in our model. There are two possible approaches to solve this problem.

The first one use an explicit mapping function ϕ, the second one use Kernel PCA making ϕ implicit. In the first case estimation consists in computing the inverse of ϕ, in the second case the problem is much more complicate.

Our model is trained on n observation, each composed of m characteristics. Our goal is to identify p characteristics of an observation, where p < m 2 . In this part we work in three different spaces (figure 5). The first one is the input space that is m dimensional (number of observation characteristics), the second one is the feature space F of dimension L > m, and finally the third one is the Kernel PCA space which dimension is n. This type of scheme was already proposed in literature by Romdhani and al. [START_REF] Romdhani | Multi-View Nonlinear Active Shape Model using Kernel PCA[END_REF]. We propose here to add one supplementary item: mapping from the Kernel PCA space into the input space (step 5, figure 5). Let X be an observation in the input space, X i the i st observation from the training set. Let ϕ be the non linear mapping function and β the coordinates of an observation in the Kernel PCA space. Let Z kpca be the pre-image, that is the reconstructed observation X in the input space starting from the Kernel PCA space.
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Pseudo-inverse using β

Using an observation X kpca in the Kernel PCA space we can compute its image Z kpca by minimizing:

X kpca -β 2 ,
with β the projections of X KP CA on the first l principal components:

β = (β 1 , • • • , β l ), β k = n i=1 α k i k(X i , X kpca ).
By developing this equation we obtain the pseudo-inverse using β:

n i=1 α i k(X i , Z kpca ) -β 2 . ( 12 
)

Pseudo-inverse using Z kpca

We can also rewrite the previous formula trying to express k(X i , Z kpca ) relatively to β. We know that:

β k = n i=1 α k i k(X i , Z kpca ).
We can rewrite it using matrix formalism:

   β 1 . . . β n    =    α 1 1 • • • α 1 n . . . . . . . . . α n 1 • • • α n n       k(X 1 , Z kpca ) . . . k(X n , Z kpca )    .
(13) Let B be the matrix:

B ij = α i , α j .
α i are the pseudo-eigenvectors of the kernel matrix computed relatively to its eigenvectors V i and eigenvalues λ i :

α i = V i √ λ i , α i , α j = V i ,V j √ λ i λ j .
We know that V i form an orthonormal basis, i.e. V i , V j = 0 for i = j and V i , V j = 1 for i = j. We then obtain:

α i , α i = 1 λ i .
and :

B =    1 λ 1 • • • 0 . . . . . . . . . 0 • • • 1 λ n    .
We deduce B -1 :

B -1 =    λ 1 • • • 0 . . . . . . . . . 0 • • • λ n    .
We can then compute α -1 :

α -1 α = Id α -1 αα t = α t α -1 B = α t α -1 = α t B -1 .
Equation ( 13) and α -1 value leads to:

   k(X 1 , Z kpca ) . . . k(X n , Z kpca )    = (14)    α 1 1 • • • α n 1 . . . . . . . . . α 1 n • • • α n n       λ 1 • • • 0 . . . . . . . . . 0 • • • λ n       β 1 . . . β n    .
The pseudo-inverse relative to Z kpca can finally be defined:

k(X j , Z kpca ) - n i=1 α j i λ j β j 2 . ( 15 
)

EXPERIMENTS

To test the feasibility of the algorithm, we have run several simulated and real world experiments. We have compared the distance between the computed points and the real points, using the different methods, with the gaussian kernel for Kernel PCA based method. The minimization in this case was done with Powell algorithm [START_REF] Fletcher | A Rapidly Convergent Descent Method for Minimization[END_REF].

On the cephalometric problem, the cranial contour is approximated by 6 points, and we have tested the methods on the reconstruction of 14 cephalometric points. Models are built with 80 radiographs. We use a leave-one out approach to test the accuracy of the models. Table 1 presents the results obtained with the explicit mapping function that makes data invariant to affine transformations, table 2 presents results obtained with the pseudoinverse using β and the Kernel trick. Obtained results shows that the first method is better and near the interexpert variability that is about 2 millimeters. The second method using kernels is less accurate, but the model is not invariant to affine transformations. 

CONCLUSION

In this paper, we have presented and compared two methods to reconstruct non visible parts of an object with a statistical model. The statistical framework offers an elegant way to solve this problem, using the variability authorized by the model. It seems that Kernel PCA models are interesting to solve this problem, even if an explicit mapping in the feature space F gives better results, but is very hard to define.
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 1 Figure 1: Cephalometric points position define relatively to anatomical structures position.

Figure 2 :

 2 Figure 2: Greylevels in the vicinity of the point Clp. (a) are greylevels in a region centered on Clp. (b) are greylevels in a region lying in the neighborhood of the region (a).
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 331 Figure 3: Detection of the reference shape in the cephalometric problem : known part of the model

Figure 5 :

 5 Figure 5: Three different observation spaces.

Figure 6 :

 6 Figure 6: Cephalometric points estimation. In white expert position, in black our estimation.

Table 1 :

 1 Mean error and standard deviation (in millimeters) associated to the method with an explicit mapping function.

	pts E x E y	σ x	σ y

pts E x E y σ x σ y

Table 2 :

 2 Mean error and standard deviation (in millimeters) associated to the pseudo-inverse using β. Computation made with a gaussian kernel with σ = 0.005.

Cephalometric points are not necesseraly localized on the cranial contour. The goal here is to model the unknown relationship existing between the cranial system and the studied anatomical points.

If observations are centered in the feature space F the kernel matrix is the Gram matrix.
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