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ABSTRACT give good results for well defined and located on strong
. . i . contours points. However they are subject to failure inim-
In this paper, we deal with the pattern recognition problem using . . L

. L . ages containing artifacts or low quality images and when
non-linear statistical models based on Kernel Principal Compo- . S .

) . ) . anatomical structures variability is very high. For any new
nent Analysis. Objects that we try to recognize are defined by landmark that the practitioner need to introduce new rules
ordered sets of points. We present here two types of models:have to be formulated, and then introduced in the system
the first one uses an explicit projection function, the second one ' . )

. . Another type of approach was proposed simultaneously
uses the Kernel trick. The present work attempts to estimate the . .

o . iy . : with our in 2000 byHutton et al.[14]. Authors propose a
localization of partially visible objects. Both are applied to the method based on active contours. This method consists in
cephalometric problem with good results. . ’ .

P cp with g . learning a model composed of the mean observation and
the variability authorized around the mean. This model is

1. INTRODUCTION then positioned statistically on an image and is deformed
in order to correspond as well as possible to reality.
1.1. Cephalometry The third type of approach appears in 1984rdillo and

The goal of cephalometry is the study of the skull growth Sid-Ahmed4] and propose an alternative solution. They
of young children in order to improve orthodontic therapy. d€velop an algorithm using the mathematical morphology
It is based on the landmarking of cephalometric points Pas€d on grey levels. During training some structuring
on tele-radiographs, two-dimensional X-ray images of the ele.ments.e.lre |dent!f|ed aqd the probability QenS|ty of ea_ch
sagittal skull projection. These points are used for the point position that is relatlve to the structu_rlng_element is
computation of features, such as the length or the anglesSvaluated. Recognition of the landmark is given by the
between lines. The interpretation of these features is usedNt€rsection of these probability distributions.

to diagnose the deviation of the patient form from an ideal
one. Itis also used to evaluate the results of different or-
thodontic treatments.

The cephalometry was initially introduced in the thirties.
It consisted in manual landmarking directly on radiographs.
The conclusion of these studies was that the location pro-
cess is subject to a great subjectivity and that the land-
marking quality depends on image quality. Three cate-
gories of approaches was proposed for landmarking au-
tomation: reproduction of expert landmarking; statistical
modeling and finally appearance models.

The first landmarking automation method was proposed in
1986 bylLévy-Mandel et al[17]. He usedh-priori knowl- Figure 1. Cephalometric points position define relatively
edge on anatomical structures lying near the anatomicalto anatomical structures position.

points to localize them. Contours are identified in a prede-

termined order based on algorithms introduced to the sys-

tem byad hoccriteria. Parthasarathy and al[20], Davis All these studies have a common point: the images on
and al.[7] Ong and al[19] presented similar knowledge which these studies were done where all scanned radio-
based systems. However all these studies were carried ougraphs. Most on them treat images with an insufficient
on different small sets of images. Moreover the training resolution and the number of studied images did not allow
was made on the same images that tests. These methods model anatomical variability. Onlidutton et al. work




on high resolution images, however they assume their lo- AAM use the classical model of shape but adds a model
calization is only an estimate. Itis also important to notice of the profile intensity perpendicular to the object contour.
that all these studies where done on different points espe-Most of the work are based on the assumption of linear
cially located in the facial part where the landmarking is distribution [2] [8] [9] [26].

easiest than in the central part. Some recent work introduces non linear model of gray in-
tensity, based on a k-nearest neighbors classifier and on
local selected features similar to texture analysis [12] [13].
The multi resolution approaches is a key feature of in this

The pioneers of shape analysis are Kendall [16] [10] and method. The non linear classification is also found in [3],
Bookstein [1]. In these works, shape is defined as the re-With a shape particle filtering algorithm to fit the model on
maining information after alignment (rotation, translation, the image. Unfortunately, the key assumption under the-
scaling) between two objects. In image analysis, Pent-S€s approaches needs that the landmark is localized on a
land [25] has defined modal analysis and a similar idea Visible edge or contour. As we can see in figure 2, this is
has been used by Cootes [5] in the Active Shape Model N0t the case in the cephalometric problem: our landmarks
(ASM) and Active Appearance Model (AAM). They both ~ are not delimited by clear and visible contour. This is also
involve a Principal Component Analysis (PCA) to build the conclusion of Hutton [14]: AAM are not adequate for

a statistical shape model. In this model, the mean objectcephalometric landmarking. Of course, variability model-

and the variation around this mean position are both rep-ing with ASM or AAM is an important feature that will be
resented. used in our approach. We also retain the idea of non linear

modeling, but it will be applied on the shape model itself.

1.2. Shape modeling

1.3. Our approach
1
As we've seen previously, in cephalometry the anatomical
(@) definition of cephalometric point is difficult to apply on

176 176 177 178 177 175 176 178 181 178 radiographs. The manual landmarking is hard and an im-

174 176 177 177 173 176 178 180 181 178 . . . | . b t d

e ] P e ) P P portant inter and !ntra expert 'vgrlabl |ty' is 'tlo e noticed.

180 178 178 177 177 178 180 178 178 180 The manual location has a minimal variability of about 2

174 174 172 173 177 180 182 178 178 181 i

172 173 172 178 177 177 180 181 178 178 millimeters. . L . o

176 174 178 178 191 180 177 178 177 178 To reduce this variability, we will use statistical pattern

e il i e Rty e e | L7 e recognition. We dispose of an expertise made by an ex-

178 177 177 178 178 177 178 178 174 174 . .

e B ] I e e K e e pert that consist on landmarked radiographs (cephalomet-
ric points). In our approach we also use soaeriori
knowledge that consists in saying that the landmark po-
sition is relative to cranial shapeThe cranial contour is

H then automatically extracted from the image. Our train-
ing set of points is composed of the cephalometric points
(b) and the sampled cranial contour. A statistical model is

178 180 180 178 177 177 178 178 177 177 . . .

e W I e ) e e e e learned on this training set. To retrieve landmarks on a

178 178 177 176 173 177 180 178 174 178 new image, the cranial contour is detected: the problem

06|18 | (A7 R 7z (L | g s 7 is now to retrieve the unknown points (cephalometric) of

177 178 177 178 180 180 177 173 173 178 o X ! i

176 178 177 173 180 181 178 172 170 177 this image using the known points (cranial contour) and

178 177 178 177 177 178 178 174 171 174 the model. Our goal is then to solve the problem of partial

177 178 178 178 177 177 178 178 178 178 |t tl n f n b v tl n th rtl | |t tl n r-

178 178 177 178 178 178 177 178 178 174 occulta O or an observation, _e pa a occultatio _C_O

177 177 178 177 178 178 178 176 176 176 responding to the set of anatomical points and the visible
part to the cranial contour.

Figure 2: Greylevels in the vicinity of the poir@Ip. Some works on Kernel PCA [18] are very close to our

(a) are greylevels in a region centered Olp. (b) are  method. Briefly, Kernel PCA maps non-linearly the input

greylevels in a region lying in the neighborhood of the datain a Feature Spacg{Space). PCA is then performed

region (a). in F. The non linear principal components are given by
the eigenvectors corresponding to the largest eigenvalues.

. . . LCephalometric points are not necesseraly localized on the cranial
Extension of ASM introduce a model of the underlying contour. The goal here is to model the unknown relationship existing

distribution of intensity around landmark; it becomes AAM. between the cranial system and the studied anatomical points.



In alocalization problem, mean shape in fhespace must

be back-projected in the input space. The choice of the e: R" — F
mapping and the back projection are difficult problems X = pX)
and are still open issues. We suppose that our mapped data is centerdd ibet C

In this paper, we address the problem of retrieving the be the covariance matrix computed on that mapped data:
position of non visible parts of a partially visible object.

The key idea is to use the authorized variation around
the mean shape of the model to localize these parts. We
present a comparison of three non-linear methods based X i )
on KPCA representation. They are applied to the cephalo--€t A" be the eigenvalues arid; be the eigenvectors of

=13 p(Xel(Xa) @
=1

metric problem. the matrixC:
In this paper we first present kernel principal component X A
analysis, then our method which goal is to estimate an ob- AVE = OV @)
servation in the input space supposing a part of it subject There exist coefficients” for k € {1,--- ,n} such that:
to an occultation. We propose a method using a explicit .
mapping function and then a second approach using the k Fo(X, 4
kernel trick. We finally explain our experiments, results Vi = ;az P(Xi). “)
and conclude. We then obtain:
2. KERNEL PRINCIPAL COMPONENT n
ANALYSIS MY af (p(Xp), 0(X0)) = (5)
=1
Kernel PCA consists in data mapping in a high dimen- n n
sional feature spacg and then performs PCA iF. The = ok <90(Xk), D (X)) (p(X5), @(Xi)>> _
mapping function is non linear. This method extracts non " ;= j=1

linear characteristics from the dataset. We can then define the kernel matrix K-

2.1. Mercer Kernels Kij = (o(Xi), p(X;)) .

A Mercer kernel is a functiork(X;, X;) . j)e{1,-- .n}2 Equation (5) becomes:

whereX; is an observation. This function is used to com-

pute the kernel matri¥ from all the observations. This nA\ Kok = K?a", (6)

matrix is a positive definite matrix. The use of this func- that is equivalent to:
tion can be used to rewrite data mapping in terms of a dot
product. Lety be the non linear mapping function. We niga® = Kok, @

can then write: . . . . L
As K is a positive definite matrix we know that its eigen-

values are positivez \* are the the solutions of the equa-

The three most popular kernels are: We then preserve only theeigenvalues that are not zero.
Forallk € {1,---,1} we have(V* V¥) = 1. We nor-
e polynomial:k(X,Y) = ((X,Y) + c)d. malizea” respectively to their eigenvectors it
e gaussiank(X,Y) = exp XY
g ( ) p 20 <Vk, Vk> = 1
e sigmoid:k(X,Y) = tanh (x (X,Y) 4+ 0). n
_ , o = > afaf {p(X), (X))
For most of kernels the non linear mapping functions is ij=1
implicit. n
= Z OéfOé?Kij

2.2. PCA in the feature spaceFr b=l

. . = <ak, Kak>
Let n be the number of observations in our dataset. Let P
X; i € {1,---,n} be the observations. Letbe the non = A (a",a")
linear mapping function such as:



It is then possible to compute the map of an observation instead of the kernel matdx The matrix to diagonalize is
on the K! principal component: then:

. G=K-1,K — K1, +1,K1,, (11)
ﬂk = <V aSD(X)> 1 .. 2
n wherel,,;; = ~ forall {1,5} € {1,--- ,n}*.
= ) oF (p(Xy), p(X))
=1 3. OBSERVATIONS ESTIMATION IN THE INPUT

Y kXL ). SPACE

=1 Applied to the cephalometric problen, is partially known:

The map associated tois: itis composed by the sampled cranial contour which is au-
tomatically extracted and well defined and the unknown
! _ cephalometric points. Then, the problem that we want
Po(X) = Zﬂivl- (8) to solve in this section is the reconstruction of partially
i=1 unknown examples from the KPCA model and from the
known data (sampled cranial contour). Léte an exam-
2.3. Kernel PCA algorithm ple to reconstruct, with the first coordinates being known.
We can see the statistical model as some variability param-
eters around a mean shape. Finding the unknown part of
X is equivalent to find the shape belonging to the model
(i.e. variability parameters) whose first coordinates are
given by the known part oX.

Here we present the algorithm proposed by &@kbpf, it
allows instead of computing the covariance matrix of the
data to compute the Kernel matrix. The algorithm can be
presented in three steps :

¢ 1. Compute the Kernel matrid{;; = (p(X;), o(X;)) .

e 2. Compute the eigenvectors and eigenvaluei of
Normalize them:\;, (¥, o*) = 1.

e 3. Compute projections on the principal compo-
nents:3, = Y., afk(X;, X).

Schblkopf algorithm stops here. To solve the input space
mapping problem we need to define a function that we
will minimize relatively to the functionp. This function

is:

I
Po(X) = Zﬂivi- 9)
=1

2.4. Centering Figure 3: Detection of the reference shape in the cephalo-

metric problem : known part of the model
Previously we made the assumption that the observations

were centered:

Z o(X;) = 0. (10) 3.1. Explicit mapping function for cephalometry
=1

3.1.1. Mapping Function
This assumption is important for the computation of the

matrix k. When observations are not centered the relation The first step consists in the detection of the reference
(7) is no more satisfied. shape. This shape is then sampleg iquidistant points
Observations centering is easy to achieve in the input spacé,:. ic{1,-- .p}- 1he non-linear feature space is defined by
but more difficult in the feature spadg as we cannotex-  ratio of surfaces of triangles obtained from the previous
plicitly compute the mean of th? mapped_observations i_n 2|f observations are centered in the feature spécke kernel matrix

the space. There is a way to do it, computing Gram matrix is the Gram matrix.




sampling. The coordinates of an image paifitz, y) are 3.1.3. Points estimation

fi f h ible triangle: . -
defined byj, v eto computed for each possible triangle Let 9 be the vector representing the characteristic p&int

8= P; M Py, = P.MP; 5= P,MP; in the new coordinate space. Landmarkikigon a new
PyP; Py, PyP; Py, P;P; Py image consists in resolving the systeth= A’X, where

where P; P; Py, is the algebraic area of the triangeP; Py v IS the average Iegrr!ed vectdr, the _matnx defined rel- .

: : e atively to characteristics of the new image. We solve this
This coordinates satisfy: . . ;

problem using weighted least squares. The estimated po-

sition X of the characteristic poinX’ on an unknown im-
age is given by the equation:

Bx MP;,+~yx MP;+5x MP, = 0

X = (A"PodtPA) A PLOY.

3.2. Implicit mapping and pseudo-inverse using Ker-
nel Trick

We are interested in solving the problem which goal is the
estimation of an observation in the input space, using a
model learned in the feature spa€e We suppose a part
Figure 4: New coordinates of a poinf of the observation known. To solve this problem we use
spatial relationships existing between the known part of
the observation and the unknown one. Those relationships
Let n be the number of triangles obtained from the set of are also learned in our model.
points P;. New coordinates of a point/ are: There are two possible approaches to solve this problem.
X' = [B1 7101+ B §n]t — A'X, The first one use an explicit mapping fpnct@nthe sec-
. . _ ond one use Kernel PCA making implicit. In the first
where 4’ is the matrix used to prOject the data from the case estimation consists in Computing the inversp,d”h

Cartesian to our new feature space. the second case the problem is much more complicate.
Our model is trained on observation, each composed of
3.1.2. Variability and Relationships Modeling. m characteristics. Our goal is to identifiycharacteristics

i m
Learning is done on a basis composedNofexpertised of an observation, whepe < 3.

images. For each image we detect the reference shape, and

we sample it. For each imagewe have: a set of points Festure
{P{}1eq1... py» @ Matrix A’ and the set off coordinates Space
of the characteristic pointsX}. We compute the mean
position of each characteristic point. L#tbe the vector Input
representing a characteristic point of the imaga the S
new space. The mean position of this point is:

I=y 2 | | |

i=1 Figure 5: Three different observation spaces.

The variancé of vectorsy’ is also computed. We deduce

from this the weighting matrix’: In this part we work in three different spaces (figure 5).

5%1 e 0 The first one is the input space thatns dimensional

p— - . _ (number of observation characteristics), the second one is
(') ES the feature spacé& of dimension. > m, and finally the
G3n third one is the Kernel PCA space which dimension.is

When the sampling of the reference shape gives an impor-This type of scheme was already proposed in literature
tant number of points, only some of them are important. by Romdhani and al[22]. We propose here to add one
We then propose to apply a PCA on the covariance matrix supplementary item: mapping from the Kernel PCA space
of vectorsy?. Only the most important’ components are  into the input space (step 5, figure 5).

retained. These components are those the eigenvalues dfet X be an observation in the input spacg, the & ob-
which are the highest, and they form the matbix servation from the training set. Let be the non linear



mapping function and the coordinates of an observation

in the Kernel PCA space. Léfty,., be the pre-image, % o 0
that is the reconstructed observati&nin the input space B = : e
starting from the Kernel PCA space. 0o ... L
)\'n.
We deduceB!:
3.2.1. Pseudo-inverse usimgy
Al 0
Using an observatioX ., in the Kernel PCA space we B-1—
can compute its imaggy,., by minimizing: - : IR
0 --- A"
| Xkpea — 617, We can then compute !
with 3 the projections ofX x pc4 0on the firstl principal o ta = Id
componentsg = (B, ,54), Bk = Z:L:l afk(Xi7kaca)~ alaat = ot
By developing this equation we obtain the pseudo-inverse a !B = of
using3: a ! = ofB7L
. 9 Equation (13) andk—! value leads to:
aik(Xi7 Zk:pca) - ﬁ (12)
i:zl k(Xh kaca)
: = (14
3.2.2. Pseudo-inverse usitif},cq k(Xns Zipea)
We can also rewrite the previous formula trying to express ap -oaof AL 0 B
k(X;, Zipea) relatively tog. : . : oo :
We know that: al oan 0 - A" B
n The pseudo-inverse relative t0,., can finally be de-
ﬂk = Zafk(Xthpca) fined:
=1
n 2
We can rewrite it using matrix formalism: (X, Zipea) — Z a{f)\jﬁj ) (15)
=1
1 . e 1 .
ﬂ_l “ “n F( X1, _Z’W“) 4. EXPERIMENTS
BIn 0;711 oz.Z k(Xn,.kam) To test the feasibility of the algorithm, we have run sev-
(13) eral simulated and real world experiments. We have com-
Let B be the matrix: pared the distance between the computed points and the
real points, using the different methods, with the gaussian
B — <ai aj> kernel for Kernel PCA based method. The minimization
1] ) .

in this case was done with Powell algorithm [11].
o' are the pseudo-eigenvectors of the kernel matrix com- On the cephalometric problem, the cranial contour is ap-

puted relatively to its eigenvectold and eigenvalues’: proximated by 6 points, and we have tested the methods
on the reconstruction of 14 cephalometric points. Mod-
ot — L’f’ els are built with 80 radiographs. We use a leave-one out
. (v ﬁ,ﬂ) approach to test the accuracy of the models.
<0‘ ’ 0‘J> = v Table 1 presents the results obtained with the explicit map-

ping function that makes data invariant to affine transfor-

We know tha/™* form an orthonormal basise. <V17 VJ> ~ mations, table 2 presents results obtained with the pseudo-

0fori+# jand(V’,V/) = 1fori= j. We then obtain: inverse using3 and the Kernel trick. Obtained results
1 shows that the first method is better and near the inter-
(o a") = e expert variability that is about 2 millimeters. The second

method using kernels is less accurate, but the model is not
and : invariant to affine transformations.



[ Pts|E:[By [ ool o]
NA || 0.6 | 1.6 | 0.73| 1.83
M| 1117|094 1.84
FM || 1.3 | 1.6 | 1.00| 1.78
SE|21]23]168]| 191
TPS| 23] 22| 1.87| 1.63
CLP || 25| 23] 185]| 1.70
SSO| 28| 25| 217 | 1.94
BA || 41| 23| 3.22| 1.82
CT| 34]20]| 267|161
OP| 49| 22| 4.37]| 1.87
OB | 46| 21| 4.04| 173
PTS || 25| 22| 2.09| 1.77
PTI || 34| 23| 283 1.82
BR || 45| 12| 3.70| 0.90

[Mean] 2.9] 2.0 ] 2.93] 1.78]

Table 1: Mean error and standard deviation (in millime- Figure 6: Cephalometric points estimation. In white ex-
ters) associated to the method with an explicit mapping Pert position, in black our estimation.

function.

[ Pts|E:[By [ oo] o]
NA || 3.8 | 4.2 | 2.93| 3.37
M| 39|42 283| 3.44
FM || 41| 40| 3.10| 3.36
SE|| 46| 35| 3.37| 3.63
TPS| 4.8 | 3.8 | 3.77| 3.54
CLP || 49| 43| 3.45]| 3.79
SSO| 4.8 | 39| 3.70 | 3.47
BA || 5.8 | 3.8 | 3.76 | 3.50
CT | 54]33]352| 290
OP | 72| 48| 4.78| 3.65
OB | 65| 45| 456| 3.38
PTS | 46| 3.3 | 3.23| 3.25
PTI || 45| 3.2 | 342]| 251
BR | 74| 51| 4.87]| 3.88

[ Mean[ 5.2]4.0]3.66] 3.41|

Table 2: Mean error and standard deviation (in millime-
ters) associated to the pseudo-inverse ugin@omputa-
tion made with a gaussian kernel with= 0.005.

5. CONCLUSION

In this paper, we have presented and compared two meth-
ods to reconstruct non visible parts of an object with a sta-
tistical model. The statistical framework offers an elegant
way to solve this problem, using the variability authorized
by the model. It seems that Kernel PCA models are inter-
esting to solve this problem, even if an explicit mapping
in the feature spac# gives better results, but is very hard

to define.
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