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ABSTRACT

In this paper, we deal with the pattern recognition problem using
non-linear statistical models based on Kernel Principal Compo-
nent Analysis. Objects that we try to recognize are defined by
ordered sets of points. We present here two types of models:
the first one uses an explicit projection function, the second one
uses the Kernel trick. The present work attempts to estimate the
localization of partially visible objects. Both are applied to the
cephalometric problem with good results.

1. INTRODUCTION

1.1. Cephalometry

The goal of cephalometry is the study of the skull growth
of young children in order to improve orthodontic therapy.
It is based on the landmarking of cephalometric points
on tele-radiographs, two-dimensional X-ray images of the
sagittal skull projection. These points are used for the
computation of features, such as the length or the angles
between lines. The interpretation of these features is used
to diagnose the deviation of the patient form from an ideal
one. It is also used to evaluate the results of different or-
thodontic treatments.
The cephalometry was initially introduced in the thirties.
It consisted in manual landmarking directly on radiographs.
The conclusion of these studies was that the location pro-
cess is subject to a great subjectivity and that the land-
marking quality depends on image quality. Three cate-
gories of approaches was proposed for landmarking au-
tomation: reproduction of expert landmarking; statistical
modeling and finally appearance models.
The first landmarking automation method was proposed in
1986 byLévy-Mandel et al.[17]. He useda-priori knowl-
edge on anatomical structures lying near the anatomical
points to localize them. Contours are identified in a prede-
termined order based on algorithms introduced to the sys-
tem byad hoccriteria. Parthasarathy and al.[20], Davis
and al.[7] Ong and al.[19] presented similar knowledge
based systems. However all these studies were carried out
on different small sets of images. Moreover the training
was made on the same images that tests. These methods

give good results for well defined and located on strong
contours points. However they are subject to failure in im-
ages containing artifacts or low quality images and when
anatomical structures variability is very high. For any new
landmark that the practitioner need to introduce new rules
have to be formulated, and then introduced in the system.
Another type of approach was proposed simultaneously
with our in 2000 byHutton et al.[14]. Authors propose a
method based on active contours. This method consists in
learning a model composed of the mean observation and
the variability authorized around the mean. This model is
then positioned statistically on an image and is deformed
in order to correspond as well as possible to reality.
The third type of approach appears in 1994Cardillo and
Sid-Ahmed[4] and propose an alternative solution. They
develop an algorithm using the mathematical morphology
based on grey levels. During training some structuring
elements are identified and the probability density of each
point position that is relative to the structuring element is
evaluated. Recognition of the landmark is given by the
intersection of these probability distributions.

Figure 1: Cephalometric points position define relatively
to anatomical structures position.

All these studies have a common point: the images on
which these studies were done where all scanned radio-
graphs. Most on them treat images with an insufficient
resolution and the number of studied images did not allow
to model anatomical variability. OnlyHutton et al.work



on high resolution images, however they assume their lo-
calization is only an estimate. It is also important to notice
that all these studies where done on different points espe-
cially located in the facial part where the landmarking is
easiest than in the central part.

1.2. Shape modeling

The pioneers of shape analysis are Kendall [16] [10] and
Bookstein [1]. In these works, shape is defined as the re-
maining information after alignment (rotation, translation,
scaling) between two objects. In image analysis, Pent-
land [25] has defined modal analysis and a similar idea
has been used by Cootes [5] in the Active Shape Model
(ASM) and Active Appearance Model (AAM). They both
involve a Principal Component Analysis (PCA) to build
a statistical shape model. In this model, the mean object
and the variation around this mean position are both rep-
resented.

(a)

(b)

Figure 2: Greylevels in the vicinity of the pointClp.
(a) are greylevels in a region centered onClp. (b) are
greylevels in a region lying in the neighborhood of the
region (a).

Extension of ASM introduce a model of the underlying
distribution of intensity around landmark; it becomes AAM.

AAM use the classical model of shape but adds a model
of the profile intensity perpendicular to the object contour.
Most of the work are based on the assumption of linear
distribution [2] [8] [9] [26].
Some recent work introduces non linear model of gray in-
tensity, based on a k-nearest neighbors classifier and on
local selected features similar to texture analysis [12] [13].
The multi resolution approaches is a key feature of in this
method. The non linear classification is also found in [3],
with a shape particle filtering algorithm to fit the model on
the image. Unfortunately, the key assumption under the-
ses approaches needs that the landmark is localized on a
visible edge or contour. As we can see in figure 2, this is
not the case in the cephalometric problem: our landmarks
are not delimited by clear and visible contour. This is also
the conclusion of Hutton [14]: AAM are not adequate for
cephalometric landmarking. Of course, variability model-
ing with ASM or AAM is an important feature that will be
used in our approach. We also retain the idea of non linear
modeling, but it will be applied on the shape model itself.

1.3. Our approach

As we’ve seen previously, in cephalometry the anatomical
definition of cephalometric point is difficult to apply on
radiographs. The manual landmarking is hard and an im-
portant inter and intra expert variability is to be noticed.
The manual location has a minimal variability of about 2
millimeters.
To reduce this variability, we will use statistical pattern
recognition. We dispose of an expertise made by an ex-
pert that consist on landmarked radiographs (cephalomet-
ric points). In our approach we also use somea priori
knowledge that consists in saying that the landmark po-
sition is relative to cranial shape1. The cranial contour is
then automatically extracted from the image. Our train-
ing set of points is composed of the cephalometric points
and the sampled cranial contour. A statistical model is
learned on this training set. To retrieve landmarks on a
new image, the cranial contour is detected: the problem
is now to retrieve the unknown points (cephalometric) of
this image using the known points (cranial contour) and
the model. Our goal is then to solve the problem of partial
occultation of an observation, the partial occultation cor-
responding to the set of anatomical points and the visible
part to the cranial contour.
Some works on Kernel PCA [18] are very close to our
method. Briefly, Kernel PCA maps non-linearly the input
data in a Feature Space (F-Space). PCA is then performed
in F . The non linear principal components are given by
the eigenvectors corresponding to the largest eigenvalues.

1Cephalometric points are not necesseraly localized on the cranial
contour. The goal here is to model the unknown relationship existing
between the cranial system and the studied anatomical points.



In a localization problem, mean shape in theF -space must
be back-projected in the input space. The choice of the
mapping and the back projection are difficult problems
and are still open issues.
In this paper, we address the problem of retrieving the
position of non visible parts of a partially visible object.
The key idea is to use the authorized variation around
the mean shape of the model to localize these parts. We
present a comparison of three non-linear methods based
on KPCA representation. They are applied to the cephalo-
metric problem.
In this paper we first present kernel principal component
analysis, then our method which goal is to estimate an ob-
servation in the input space supposing a part of it subject
to an occultation. We propose a method using a explicit
mapping function and then a second approach using the
kernel trick. We finally explain our experiments, results
and conclude.

2. KERNEL PRINCIPAL COMPONENT
ANALYSIS

Kernel PCA consists in data mapping in a high dimen-
sional feature spaceF and then performs PCA inF . The
mapping function is non linear. This method extracts non
linear characteristics from the dataset.

2.1. Mercer Kernels

A Mercer kernel is a functionk(Xi, Xj)(i,j)∈{1,··· ,n}2 ,
whereXi is an observation. This function is used to com-
pute the kernel matrixK from all the observations. This
matrix is a positive definite matrix. The use of this func-
tion can be used to rewrite data mapping in terms of a dot
product. Letϕ be the non linear mapping function. We
can then write:

k(Xi, Xj) = 〈ϕ(Xi), ϕ(Xj)〉 . (1)

The three most popular kernels are:

• polynomial:k(X,Y ) = (〈X,Y 〉+ c)d
.

• gaussian:k(X, Y ) = exp −‖X−Y ‖
2σ2 .

• sigmoid:k(X, Y ) = tanh (κ 〈X, Y 〉+ θ) .

For most of kernels the non linear mapping functions is
implicit.

2.2. PCA in the feature spaceF
Let n be the number of observations in our dataset. Let
Xi i ∈ {1, · · · , n} be the observations. Letϕ be the non
linear mapping function such as:

ϕ : Rn 7→ F
X 7→ ϕ(X)

We suppose that our mapped data is centered inF . Let C
be the covariance matrix computed on that mapped data:

C =
1
n

n∑

i=1

ϕ(Xi)ϕ(Xi)t. (2)

Let λk be the eigenvalues andVk be the eigenvectors of
the matrixC:

λkV k = CV k. (3)

There exist coefficientsαk for k ∈ {1, · · · , n} such that:

V k =
n∑

i=1

αk
i ϕ(Xi). (4)

We then obtain:

λk

n∑

i=1

αk
i 〈ϕ(Xk), ϕ(Xi)〉 = (5)

1
n

n∑

i=1

αk
i

〈
ϕ(Xk),

n∑

j=1

ϕ(Xj) 〈ϕ(Xj), ϕ(Xi)〉
〉

.

We can then define the kernel matrix K:

Kij = 〈ϕ(Xi), ϕ(Xj)〉 .
Equation (5) becomes:

nλkKαk = K2αk, (6)

that is equivalent to:

nλkαk = Kαk. (7)

As K is a positive definite matrix we know that its eigen-
values are positive.nλk are the the solutions of the equa-
tion (7).
We then preserve only thel eigenvalues that are not zero.
For all k ∈ {1, · · · , l} we have

〈
V k, V k

〉
= 1. We nor-

malizeαk respectively to their eigenvectors inF :

〈
V k, V k

〉
= 1

=
n∑

i,j=1

αk
i αk

j 〈ϕ(Xi), ϕ(Xj)〉

=
n∑

i,j=1

αk
i αk

j Kij

=
〈
αk,Kαk

〉

= λk

〈
αk, αk

〉



It is then possible to compute the map of an observation
on the kst principal component:

βk =
〈
V k, ϕ(X)

〉

=
n∑

i=1

αk
i 〈ϕ(Xi), ϕ(X)〉

=
n∑

i=1

αk
i k(Xi, X).

The map associated toϕ is:

Plϕ(X) =
l∑

i=1

βiV
i. (8)

2.3. Kernel PCA algorithm

Here we present the algorithm proposed by Schölkopf, it
allows instead of computing the covariance matrix of the
data to compute the Kernel matrix. The algorithm can be
presented in three steps :

• 1. Compute the Kernel matrix:Kij = 〈ϕ(Xi), ϕ(Xj)〉 .
• 2. Compute the eigenvectors and eigenvalues ofK.

Normalize them:λk

〈
αk, αk

〉
= 1.

• 3. Compute projections on the principal compo-
nents:βk =

∑n
i=1 αk

i k(Xi, X).

Scḧolkopf algorithm stops here. To solve the input space
mapping problem we need to define a function that we
will minimize relatively to the functionϕ. This function
is:

Plϕ(X) =
l∑

i=1

βiV
i. (9)

2.4. Centering

Previously we made the assumption that the observations
were centered:

n∑

i=1

ϕ(Xi) = 0. (10)

This assumption is important for the computation of the
matrixK. When observations are not centered the relation
(7) is no more satisfied.
Observations centering is easy to achieve in the input space,
but more difficult in the feature spaceF , as we cannot ex-
plicitly compute the mean of the mapped observations in
the space. There is a way to do it, computing Gram matrix

instead of the kernel matrix2. The matrix to diagonalize is
then:

G = K − 1nK −K1n + 1nK1n, (11)

where1nij = 1
n for all {i, j} ∈ {1, · · · , n}2.

3. OBSERVATIONS ESTIMATION IN THE INPUT
SPACE

Applied to the cephalometric problem,X is partially known:
it is composed by the sampled cranial contour which is au-
tomatically extracted and well defined and the unknown
cephalometric points. Then, the problem that we want
to solve in this section is the reconstruction of partially
unknown examples from the KPCA model and from the
known data (sampled cranial contour). LetX be an exam-
ple to reconstruct, with the first coordinates being known.
We can see the statistical model as some variability param-
eters around a mean shape. Finding the unknown part of
X is equivalent to find the shape belonging to the model
(i.e. variability parameters) whose first coordinates are
given by the known part ofX.

Figure 3: Detection of the reference shape in the cephalo-
metric problem : known part of the model

3.1. Explicit mapping function for cephalometry

3.1.1. Mapping Function

The first step consists in the detection of the reference
shape. This shape is then sampled inp equidistant points
Pi, i∈{1,··· ,p}. The non-linear feature space is defined by
ratio of surfaces of triangles obtained from the previous

2If observations are centered in the feature spaceF the kernel matrix
is the Gram matrix.



sampling. The coordinates of an image pointM(x, y) are
defined byβ, γ et δ computed for each possible triangle:

β = PjMPk

PiPjPk
γ = PkMPi

PiPjPk
δ = PiMPj

PiPjPk

wherePiPjPk is the algebraic area of the trianglePiPjPk.
This coordinates satisfy:

β ×−−→MPi + γ ×−−−→MPj + δ ×−−−→MPk =
−→
0

i Pk

M

P

jP

Figure 4: New coordinates of a pointM

Let n be the number of triangles obtained from the set of
pointsPi. New coordinates of a pointM are:

X ′ = [β1 γ1 δ1 . . . βn γn δn]t = A′X,

whereA′ is the matrix used to project the data from the
Cartesian to our new feature space.

3.1.2. Variability and Relationships Modeling.

Learning is done on a basis composed ofN expertised
images. For each image we detect the reference shape, and
we sample it. For each imagei, we have: a set of points
{P i

k}k∈{1,...,p}, a matrixA′i and the set ofq coordinates

of the characteristic points{Xi
j}. We compute the mean

position of each characteristic point. Letϑi be the vector
representing a characteristic point of the imagei in the
new space. The mean position of this point is:

ϑ̂ =
1
N

N∑

i=1

ϑi.

The variancêσ of vectorsϑi is also computed. We deduce
from this the weighting matrixP :

P =




1
σ̂1

· · · 0
...

. ..
...

0 · · · 1
σ̂3n


 .

When the sampling of the reference shape gives an impor-
tant number of points, only some of them are important.
We then propose to apply a PCA on the covariance matrix
of vectorsϑi. Only the most importantd

′
components are

retained. These components are those the eigenvalues of
which are the highest, and they form the matrixΦ.

3.1.3. Points estimation

Let ϑ be the vector representing the characteristic pointX
in the new coordinate space. LandmarkingX on a new
image consists in resolving the system:ϑ̂ = A′X, where
ϑ̂ is the average learned vector,A′ the matrix defined rel-
atively to characteristics of the new image. We solve this
problem using weighted least squares. The estimated po-
sition X̃ of the characteristic pointX on an unknown im-
age is given by the equation:

X̃ = (A′tP tΦΦtPA′)−1A′tP tΦϑ̂.

3.2. Implicit mapping and pseudo-inverse using Ker-
nel Trick

We are interested in solving the problem which goal is the
estimation of an observation in the input space, using a
model learned in the feature spaceF . We suppose a part
of the observation known. To solve this problem we use
spatial relationships existing between the known part of
the observation and the unknown one. Those relationships
are also learned in our model.
There are two possible approaches to solve this problem.
The first one use an explicit mapping functionϕ, the sec-
ond one use Kernel PCA makingϕ implicit. In the first
case estimation consists in computing the inverse ofϕ, in
the second case the problem is much more complicate.
Our model is trained onn observation, each composed of
m characteristics. Our goal is to identifyp characteristics
of an observation, wherep < m

2 .
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Figure 5: Three different observation spaces.

In this part we work in three different spaces (figure 5).
The first one is the input space that ism dimensional
(number of observation characteristics), the second one is
the feature spaceF of dimensionL > m, and finally the
third one is the Kernel PCA space which dimension isn.
This type of scheme was already proposed in literature
by Romdhani and al.[22]. We propose here to add one
supplementary item: mapping from the Kernel PCA space
into the input space (step 5, figure 5).
Let X be an observation in the input space,Xi the ist ob-
servation from the training set. Letϕ be the non linear



mapping function andβ the coordinates of an observation
in the Kernel PCA space. LetZkpca be the pre-image,
that is the reconstructed observationX in the input space
starting from the Kernel PCA space.

3.2.1. Pseudo-inverse usingβ

Using an observationXkpca in the Kernel PCA space we
can compute its imageZkpca by minimizing:

‖Xkpca − β‖2 ,

with β the projections ofXKPCA on the firstl principal
components:β = (β1, · · · , βl), βk =

∑n
i=1 αk

i k(Xi, Xkpca).
By developing this equation we obtain the pseudo-inverse
usingβ:

∥∥∥∥∥
n∑

i=1

αik(Xi, Zkpca)− β

∥∥∥∥∥

2

. (12)

3.2.2. Pseudo-inverse usingZkpca

We can also rewrite the previous formula trying to express
k(Xi, Zkpca) relatively toβ.
We know that:

βk =
n∑

i=1

αk
i k(Xi, Zkpca).

We can rewrite it using matrix formalism:




β1

...
βn


 =




α1
1 · · · α1

n
...

.. .
...

αn
1 · · · αn

n







k(X1, Zkpca)
...

k(Xn, Zkpca)


 .

(13)
Let B be the matrix:

Bij =
〈
αi, αj

〉
.

αi are the pseudo-eigenvectors of the kernel matrix com-
puted relatively to its eigenvectorsV i and eigenvaluesλi:

αi = V i√
λi

,
〈
αi, αj

〉
= 〈V i,V j〉√

λiλj
.

We know thatV i form an orthonormal basis,i.e.
〈
V i, V j

〉
=

0 for i 6= j and
〈
V i, V j

〉
= 1 for i = j. We then obtain:

〈
αi, αi

〉
=

1
λi

.

and :

B =




1
λ1 · · · 0
...

.. .
...

0 · · · 1
λn


 .

We deduceB−1:

B−1 =




λ1 · · · 0
...

. . .
...

0 · · · λn


 .

We can then computeα−1:

α−1α = Id
α−1ααt = αt

α−1B = αt

α−1 = αtB−1.

Equation (13) andα−1 value leads to:




k(X1, Zkpca)
...

k(Xn, Zkpca)


 = (14)




α1
1 · · · αn

1
...

.. .
...

α1
n · · · αn

n







λ1 · · · 0
...

. . .
...

0 · · · λn







β1

...
βn


 .

The pseudo-inverse relative toZkpca can finally be de-
fined:

∥∥∥∥∥k(Xj , Zkpca)−
n∑

i=1

αj
i λ

jβj

∥∥∥∥∥

2

. (15)

4. EXPERIMENTS

To test the feasibility of the algorithm, we have run sev-
eral simulated and real world experiments. We have com-
pared the distance between the computed points and the
real points, using the different methods, with the gaussian
kernel for Kernel PCA based method. The minimization
in this case was done with Powell algorithm [11].
On the cephalometric problem, the cranial contour is ap-
proximated by 6 points, and we have tested the methods
on the reconstruction of 14 cephalometric points. Mod-
els are built with 80 radiographs. We use a leave-one out
approach to test the accuracy of the models.
Table 1 presents the results obtained with the explicit map-
ping function that makes data invariant to affine transfor-
mations, table 2 presents results obtained with the pseudo-
inverse usingβ and the Kernel trick. Obtained results
shows that the first method is better and near the inter-
expert variability that is about 2 millimeters. The second
method using kernels is less accurate, but the model is not
invariant to affine transformations.



pts Ex Ey σx σy

NA 0.6 1.6 0.73 1.83
M 1.1 1.7 0.94 1.84

FM 1.3 1.6 1.00 1.78
SE 2.1 2.3 1.68 1.91

TPS 2.3 2.2 1.87 1.63
CLP 2.5 2.3 1.85 1.70
SSO 2.8 2.5 2.17 1.94
BA 4.1 2.3 3.22 1.82
CT 3.4 2.0 2.67 1.61
OP 4.9 2.2 4.37 1.87
OB 4.6 2.1 4.04 1.73

PTS 2.5 2.2 2.09 1.77
PTI 3.4 2.3 2.83 1.82
BR 4.5 1.2 3.70 0.90

Mean 2.9 2.0 2.93 1.78

Table 1: Mean error and standard deviation (in millime-
ters) associated to the method with an explicit mapping
function.

pts Ex Ey σx σy

NA 3.8 4.2 2.93 3.37
M 3.9 4.2 2.83 3.44

FM 4.1 4.0 3.10 3.36
SE 4.6 3.5 3.37 3.63

TPS 4.8 3.8 3.77 3.54
CLP 4.9 4.3 3.45 3.79
SSO 4.8 3.9 3.70 3.47
BA 5.8 3.8 3.76 3.50
CT 5.4 3.3 3.52 2.90
OP 7.2 4.8 4.78 3.65
OB 6.5 4.5 4.56 3.38

PTS 4.6 3.3 3.23 3.25
PTI 4.5 3.2 3.42 2.51
BR 7.4 5.1 4.87 3.88

Mean 5.2 4.0 3.66 3.41

Table 2: Mean error and standard deviation (in millime-
ters) associated to the pseudo-inverse usingβ. Computa-
tion made with a gaussian kernel withσ = 0.005.

Figure 6: Cephalometric points estimation. In white ex-
pert position, in black our estimation.

5. CONCLUSION

In this paper, we have presented and compared two meth-
ods to reconstruct non visible parts of an object with a sta-
tistical model. The statistical framework offers an elegant
way to solve this problem, using the variability authorized
by the model. It seems that Kernel PCA models are inter-
esting to solve this problem, even if an explicit mapping
in the feature spaceF gives better results, but is very hard
to define.
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