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Introduction

This paper contributes to the expanding literature on dynamic games with asymmetric information, in which information parameters change with time, see e.g. [START_REF] Athey | Collusion with Persistent Cost Shocks[END_REF], [START_REF] Mailath | Who Wants a Good Reputation?[END_REF], [START_REF] Phelan | Public Trust and Government Betrayal[END_REF], [START_REF] Renault | The Value of Markov Chain Games with Lack of Information on One Side[END_REF], [START_REF] Wiseman | Reputation and Impermanent Types[END_REF], [START_REF] Neyman | Existence of Optimal Strategies in Markov Games with Incomplete Information[END_REF] and more recently Escobar and Toikka (2013) and Renault, Solan and Vieille (2012). In these papers, payoff-relevant types are private information, and follow Markov processes.

The mathematical analysis of such games for a fixed discount factor δ remains beyond reach, and all of the above papers (as well as most of the literature on repeated games, see [START_REF] Mailath | Repeated Games and Reputations: Long-Run Relationships[END_REF]) focus on the limiting case where δ → 1, with the interpretation that players are "very patient". Yet, another, equally interesting interpretation which is consistent with δ → 1 is that the players get the opportunity to play very frequently. That the two interpretations may lead to sharpingly contrasted results was first pointed in [START_REF] Abreu | Information and timing in repeated partnerships[END_REF] for repeated games with imperfect monitoring, see also [START_REF] Fudenberg | Continuous time limits of repeated games with imperfect public monitoring[END_REF] for a recent elaboration on this issue. Recently, this point was also convincingly made in [START_REF] Peski | A Folk Theorem for Stochastic Games with Infrequent State Changes[END_REF], which analyzes stochastic games with frequent actions, and which contrasts results with those proven in Hörner, Sugaya, Takahashi and Vieille (2011) for stochastic games with patient players.

We here adhere to this alternative interpretation. Our goal is to clear the mathematical problems in the analysis of the benchmark case of two-player, zero-sum games, and we revisit the model of [START_REF] Renault | The Value of Markov Chain Games with Lack of Information on One Side[END_REF] as follows. The interaction between two players is affected by a payoff-relevant type, which evolves in continuous time according to a Markov process (s t ) t≥0 . The two players choose actions at discrete time instants (called stages). Together with the current type, these actions determine the (unobserved) payoff of player 2 to player 1. The realizations of (s t ) are observed by player 1, but not by player 2, who only observes past action choices of player 1. Players discount future payoffs at a fixed and common discount rate r > 0, and the time span between two consecutive stages is 1 n . We prove the existence and provide a characterization of the limit value, as the time span 1 n goes to zero. While our setup is directly inspired from [START_REF] Renault | The Value of Markov Chain Games with Lack of Information on One Side[END_REF], our analysis is significantly different. In [START_REF] Renault | The Value of Markov Chain Games with Lack of Information on One Side[END_REF], the transition rates between any two consecutive stages remain constant when players get more patient. (At least when the process of types is irreducible,) the initial private information of a player has a finite lifetime, and the limit value does not depend on the initial distribution. Here instead, transitions rates are of the order of 1 n : as players play more often, the probability that the state changes from one stage to the next vanishes. As a result, the limit value does depend on the initial distribution.

We first analyze the case of exogenous transitions (transition rates do not depend on action choices). Adapting techniques from the literature on repeated games with incomplete information, see [START_REF] Aumann | Repeated Games with Incomplete Information[END_REF], we give a semi-explicit formula of the limit value as the value of an auxiliary optimization problem, which we use to get explicit formulas in a number of cases. Using PDE techniques, we provide an alternative characterization of the limit value as the unique solution (in a weak sense) to a non-standard Hamilton-Jacobi (HJ) equation. This equation can be understood as the infinitesimal counterpart of a dynamic programming principle.

We next expand significantly this framework to allow first for endogenous transitions (transition rates do depend on actions) and next, for incomplete information on both sides (each player observes and controls his own Markov chain). In both settings we show that the limit value exists and is characterized as the unique (weak) solution of a HJ equation. Our techniques for this analysis (viscosity solutions of Hamilton-Jacobi equations, passage to the limit in these equations) are reminiscent of the ones developed for differential games, as in [START_REF] Evans | Differential games and representation formulas for solutions of Hamilton-Jacobi Equations[END_REF]. However, because of the information asymmetry, the Hamilton-Jacobi equation satisfied by the limit value takes the form of an obstacle problem, much as in the case of differential games with incomplete information (Cardaliaguet and Rainer (2009a), [START_REF] Cardaliaguet | A double obstacle problem arising in differential game theory[END_REF]), yet with a significant difference. Indeed, information is here disclosed to the informed player(s) through time (and not only at the initial instant); this leads to a new HJ equation and to a slightly different definition of weak solution (cf. the discussion after Definition 1 and at the beginning of the proof of the comparison principle). The passage from discrete games to continuous equations partially relies on methods developed for repeated games in [START_REF] Vieille | Weak approachability[END_REF], [START_REF] Laraki | Repeated games with lack of information on one side: The dual differential approach[END_REF], Cardaliaguet, Laraki and Sorin (2012), and the starting point of our analysis for incomplete information on both sides is inspired by [START_REF] Gensbittel | The value of Markov Chain Games with incomplete information on both sides[END_REF].

The paper is organized as follows. We first present the model and state the main results (Section 2), which we illustrate through several examples in Section 3 and which we prove in Section 4. Games with endogenous transitions are analyzed in Section 5, while Section 6 is devoted to games with incomplete information on both sides. In the appendix we collect the proofs of several technical facts, including a new comparison principle adapted to our framework.

Model and main result 2.1 Model

We start with the simpler version of the model. There is a finite set of states S of cardinal |S|. With each state is associated a zero-sum game with finite action sets A and B and payoff function g(s, •, •), where g : S × A × B → R. Time is continuous, and the state s t at time t ≥ 0 follows a Markov chain with law P, initial distribution p ∈ ∆(S) and generator R = (ρ ss ′ ) s,s ′ ∈S . For s = s ′ , ρ ss ′ is thus the rate of transitions from s to s ′ , while -ρ ss = s ′ =s ρ ss ′ is the rate of transitions out of state s. We denote by P (•) the transition semi-group of (s t ) t≥0 , so that P h (s, s ′ ) = P(s t+h = s ′ | s t = s) for all t, h ≥ 0 and s, s ′ ∈ S.

The map t → P t is a solution to the Kolmogorov equation P ′ t = RP t , and is given by P t = exp(tR).

Given n ∈ N * , we let G n (p) denote the following, two-player game with infinitely many stages. In each stage k ∈ N, players choose actions a k and b k in A and B, and the payoff is given by g(s

(n) k , a k , b k ) where s (n) k := s k/n is the state at time k n .
Along the play, player 1 observes past and current realizations of the states s (n) k and both players observe past actions of player 1, but payoffs are not observed. 1We view G n (p) as the discretized version of a continuous-time game, with stage k of G n (p) taking place at physical time k n . As n increases, the time span between two consecutive stages shrinks and the players get the option to play more and more frequently. In physical time, players discount future payoffs at the fixed, positive rate r > 0. Hence, the weight of stage

k in G n (p) is (k+1)/n k/n re -rt dt = λ n (1 -λ n ) k
, where λ n := 1 -e -r/n . Note that λ n → 0 as n → +∞ (and 1 -λ n may be interpreted as the discount factor between two consecutive stages in G n (p)).

We denote by ṽn (p) the value of the game G n (p). 2 From the perspective of the literature on repeated games, the game G n (p) is thus a discounted game, with discount factor 1 -λ n .

Results

Our main result is the existence of lim n→+∞ ṽn (p), together with different characterizations of the limit. We need a few definitions.

Define S(p) to be the set of adapted, càdlàg processes (p t ) t≥0 , defined on some filtred probability space (Ω, F , P, (F t ) t≥0 ), with values in ∆(S), and such that, for each t, h ≥ 0, one has

E[p t+h | F t ] = T P (h)p t , P -a.s. (1) 
Given p ∈ ∆(S), we denote by u(p) the value of the one-shot, zero-sum game Γ(p) with action sets A and B and payoff function

g(p, a, b) := s∈S p(s)g(s, a, b). That is, u(p) = max x∈∆(A) min y∈∆(B) g(p, x, y) = min y∈∆(B) max x∈∆(A) g(p, x, y).
Theorem 1. The sequence (ṽ n (•)) n∈N converges uniformly, and P1 and P2 hold, with v(p) = lim n→∞ ṽn (p).

P1 v(p) = max (pt)∈S(p) E +∞ 0 re -rt u(p t )dt .

P2 v(•) is the unique viscosity solution of the equation

min rv(p) + H(p, Dv(p)) ; -λ max (p, D 2 v(p)) = 0 in ∆(S), (2) 
where H(p, ξ) = -T Rp, ξ -ru(p).

Few comments are in order. We first comment on P2, and on the intuitive content of equation [START_REF] Athey | Collusion with Persistent Cost Shocks[END_REF]. Assuming v(•) (extended to a neighborhood of ∆(S)) is a smooth function, Dv(p) and D 2 v(p) stand respectively for the gradient and Hessian matrix of v(•) at p, while, loosely speaking, λ max (p, D 2 v(p)) is the maximal eigenvalue of the restriction of D 2 v(p) to the tangent space of ∆(S) (all formal definitions will be provided later). According to (2), (i) -λ max (p, D 2 v(p)) ≥ 0, so that the limit value v is concave. This concavity propertywhich actually holds for each ṽn (thanks to the so-called splitting results, such as Propositions 2.2 and 2.3 in Sorin ( 2002))-can also be established using P1.

(ii) the inequality rv(p) + H(p, Dv(p)) ≥ 0 always holds on ∆(S), with equality at any point p where v is strictly concave (or, more precisely, at which -λ max (p, D 2 v(p)) > 0).

It turns out that the Hamilton-Jacobi equation

rw(p) + H(p, Dw(p)) = 0, p ∈ ∆(S)
characterizes the limit value of the auxiliary game in which no player observes (s t ) -the PDE actually being the infinitesimal version of the dynamic programming equation.

In our game, the equality rv(p) + H(p, Dv(p)) = 0 must intuitively therefore hold wherever it is optimal for player 1 not to disclose information. For this reason, the set

H := {p ∈ ∆(S) | rv(p) + H(p, Dv(p)) = 0} (3) 
is called the non-revealing set.

In general however, one cannot hope the limit value v(•) to be smooth. For this reason, the interpretation of the equation ( 2) is in the viscosity sense, see Definition 1 in Section 5.

To illustrate P1, let us specialize Theorem 1 to the case where R is identically 0. In such a case, the state s 0 is drawn at time 0 and remains fixed throughout time. The game G n (p) thus reduces to a truly repeated game with incomplete information à la [START_REF] Aumann | Repeated Games with Incomplete Information[END_REF]. Note that S(p) is then equal to the set of càdlàg martingales with values in ∆(S) and initial value p.

Consider two ∆(S)-valued processes (p t ) t≥0 and (p τ ) τ ∈[0,1] , such that pτ = p -ln(1-τ ) r or equivalently p t = p1-e -rt a.s., for each t ≥ 0 and τ ∈ [0, 1]. Observe that (p t ) is a martingale iff (p τ ) τ ∈[0,1] is a martingale, and

E ∞ 0 re -rt u(p t )dt = E 1 0 u(p τ )dτ .
Therefore, denoting by M [0,1] (p) the set of càdlàg martingales defined over [0, 1], with values in ∆(S) and starting from p, one has

v(p) = max (pτ )∈M [0,1] (p) E 1 0 u(p τ )dτ , (4) 
a well-known formula for repeated games (see Section 3.7.2 in [START_REF] Sorin | A first course on zero-sum repeated games[END_REF]). In a sense, the assertion P1 thus provides the appropriate generalization of (4) to the case of an arbitrary transition rate matrix R.

P1 and P2 provide two alternative (and independent) characterizations of the limit value, as the value of an auxiliary optimization problem, and as a solution to a Hamilton-Jacobi PDE. We next state a verification theorem, which relies on P2 to give a sufficient condition under which a process in S(p) is optimal in P1.

Theorem 2. Assume that v is of class C 2 in a neighborhood of ∆(S). Let p ∈ ∆(S) and (p t ) ∈ S(p) be given, and assume that (i) and (ii) below hold.

(i) P-a.s., one has p s ∈ H and v(p s ) -v(p s-) = Dv(p s-), p s -p s-for all s ≥ 0, (ii) (p t ) has no continuous martingale part.

Then (p t ) achieves the maximum in P1. Remark 3. As R is the generator of the transition semi-group P , (1) implies that each process (p t ) ∈ S(p) can be decomposed, P-a.s. for all t ≥ 0, as

p t = p + t 0 T Rp s ds + m t , (5) 
where (m t ) is a martingale in the filtration generated by (p t ). This martingale itself can be decomposed into a continuous and a purely discontinuous part (see [START_REF] Protter | Stochastic Integration and Differential Equations[END_REF]).

The most important condition in Theorem 2 is (i), which states that the "information process" (p t ) must live in the non-revealing set H and can jump only on the flat parts of the graph of the limit value v(•); this condition is known to be sufficient in a class of simpler games, such as in Cardaliaguet and Rainer (2009b). Condition (ii) is often satisfied in practice, as the examples in the next section show.

Proof. We write the Itô formula for e -rt v(p t ), using the decomposition ( 5):

e -rt v(p t ) = v(p) - t 0 re -rs v(p s )ds + t 0 e -rs Dv(p s-)dp s + 1 2 t 0 e -rs D 2 v(p s )d m c s + 0<s≤t e -rs (v(p s ) -v(p s-) -Dv(p s-), p s -p s-) ,
where (m c t ) is the continuous part of the martingale (m t ) and m c its quadratic variation. Under the assumptions (i) and (ii), the two last terms in this equation vanish. Then, replacing (p t ) by its martingale decomposition and taking expectations on both sides, we get

e -rt E[v(p t )] = v(p) -E t 0 e -rt rv(p s ) -T Rp s , Dv(p s ) ds .
It is time now to apply the assumption p s ∈ H , which leads to

e -rt E[v(p t )] = v(p) -E t 0 re -rt u(p s )ds .
The result follows when letting t → +∞.

Examples and Applications

We here illustrate how P1 can be used to provide explicit formulas for v(p) in various cases. This section is organized as follows. We first provide in Lemmas 1 and 2 respectively upper and lower bounds on v(•) which always hold. We next identify several cases where these bounds coincide, thereby pinning down v(•). We finally discuss two examples in more detail.

Upper and lower bounds for the limit value

Let (p * t ) be defined by p * t = T P t p. The process (p * t ) is the unique deterministic process in S(p). It is the process of beliefs held by player 2 when player 1 plays in a non-revealing manner (that is, ignores his own private information) or equivalently, the beliefs of an outside observer who would not observe the informed player's actions. Observe that E[p t ] = p * t for every t ≥ 0 and (p t ) ∈ S(p).

We denote by cav u := ∆(S) → R the concavification of u(•).

Lemma 1. One has v(p) ≤ ∞ 0 re -rt cav u(p * t )dt.
Proof. For any (p t ) ∈ S(p), one has

E ∞ 0 re -rt u(p t )dt = ∞ 0 re -rt E[u(p t )]dt ≤ ∞ 0 re -rt cav u(E[p t ])dt = ∞ 0 re -rt cav u(p * t )dt,
where the first equality follows from Fubini Theorem, and the first inequality follows from the inequality u ≤ cav u and from Jensen inequality.

For s ∈ S, we denote by δ s ∈ ∆(S) the probability measure which assigns probability one to s.

Lemma 2. One has v(p) ≥ ∞ 0 re -rt u(p * t )dt, and v(p) ≥ s∈S u(δ s ) ∞ 0 re -rt p * t (s)dt.
Proof. These lower bounds for v(p) are obtained when computing

E ∞ 0 re -rt u(p t )dt for specific processes (p t ) ∈ S(p).
The first lower bound is obtained when setting p t := p * t . Intuitively, the right-hand side is then the amount which is secured by the strategy which plays at each t an optimal (non-revealing) strategy in the average game associated with the current belief of player 2.

The second lower bound obtains when setting p t := δ st . Indeed, one then has

E ∞ 0 re -rt u(p t )dt = ∞ 0 re -rt E[u(δ st )]dt = s∈S u(δ s ) ∞ 0 re -rt P(s t = s)dt = s∈S u(δ s ) ∞ 0 re -rt p * t (s)dt.
Intuitively, the right-hand side is then the amount which is secured by a strategy which would announce at each t the current state, and then play optimally in the corresponding game.

Corollary 4. If u is concave, then v(p) = ∞ 0 re -rt u(p * t )dt. If u is convex, then v(p) = s∈S u(δ s ) ∞ 0 re -rt p * t (s)dt.
Proof. If u is concave, then u = cav u, and the result follows from Lemmas 1 and 2 (first lower bound). If u is convex, then cav u(p) = s∈S p(s)u(δ s ) for each p ∈ ∆(S), and the result again follows from Lemmas 1 and 2 (second lower bound).

We now illustrate in these two simple cases the alternative characterization P2 in Theorem 1. If u is smooth and concave, then the map

w(p) := ∞ 0 re -rt u(p * t )dt = ∞ 0 re -rt u( T P t p)dt
is concave and satisfies

rw(p) + H(p, Dw(p)) = rw(p) -T Rp, Dw(p) -ru(p) = 0.
Therefore w is a solution to the Hamilton-Jacobi equation

min rv(p) + H(p, Dv(p)) ; -λ max (p, D 2 v(p)) = 0 in ∆(S). (6) 
By P2, this shows (again) that v = w. Recalling the definition of the non-revealing set H in (3), we here have H = ∆(S). As the deterministic process (p * t ) satisfies conditions (i) and (ii) of Theorem 2, it is optimal in P1: in other words, player 1 does not reveal anything.

Assume instead that u is smooth and convex. Then the map

w(p) := s∈S u(δ s ) ∞ 0 re -rt p * t (s)dt satisfies rw(p) + H(p, Dw(p)) = r s p s u(δ s ) -ru(p) ≥ 0,
because u is convex. As D 2 w(p) = 0, w solves (6) (actually one has to be more cautious here and to use the notion of viscosity solution of Definition 1). From this and P2, it follows that v = w. Moreover, the non-revealing set is given by H = {p : u(p) = cav(u)(p)} and thus contains S. Then the process (p t := δ st ) satisfies conditions (i) and (ii) of Theorem 2, so that it is optimal in P1: player 1 reveals all his information.

In both the concave and the convex cases, v(p) is given by ∞ 0 re -rt cav u(p * t )dt. We show that this latter formula is valid in many cases beyond the concave and convex case, but not always.

Two-state games

In the following, we focus on the case where S := {s 1 , s 2 } contains only two states, and we identify a probability measure over S with the probability assigned to state s 1 . In particular, u will be viewed as a function defined over [0, 1]. We denote by p * ∞ := lim t→∞ p * t ∈ [0, 1] the unique invariant measure of (s t ), and let p, p ∈ [0, 1] be such that p ≤ p * ∞ ≤ p, and

(p * ∞ , cav u(p * ∞ )) = α(p, u(p)) + (1 -α)(p, u(p))
, for some α ∈ [0, 1]. Such distributions p and p always exist, but need not to be uniquely defined.

Lemma 3. Assume p < p * ∞ < p. One has v(p) = ∞ 0 re -rt cav u(p * t )dt for each p ∈ [p, p]. ( 7 
)
If moreover the equality u = cav u holds on [0, p] (respectively on [p, 1]), then [START_REF] Cardaliaguet | On a continuous time game with incomplete information[END_REF] holds on the interval [0, p] (respectively on [p, 1]).

If we further assume that cav u is of class C 1 with cav u(p) > u(p) in (p, p), then one can easily check that the non-revealing set defined in (3) satisfies {p, p} ⊂ H ⊂ [0, p] ∪ [p, 1]. In particular, [START_REF] Cardaliaguet | On a continuous time game with incomplete information[END_REF] follows from the construction-in the proof below-of a process (p t ) ∈ S(p) such that p t ∈ {p, p} a.s.: this process satisfies (i) and (ii) of Theorem 2 (because v is affine on [p, p]) and therefore is optimal in P1. If, moreover, the equality u = cav u holds in [0, p], then one has [0, p] ∪ {p} ⊂ H. We show in the proof below that there is a process (p t ) ∈ S(p) with p t ∈ [0, p] ∪ {p} a.s.: the same arguments as above show that this process is optimal.

Proof. Define θ := inf{t : p * t ∈ [p, p]}, the first time at which the "average" belief enters the interval [p, p]. Note that θ < +∞ and that p * t ∈ [p, p] for every t ≥ θ. The result follows from the fact, proven below, that there is a process (p t ) ∈ S(p) such that p t = p * t for t ≤ θ, and p t ∈ {p, p} for t ≥ θ, P-a.s. Indeed, for any such process, one has

E ∞ 0 re -rt u(p t )dt = θ 0 re -rt u(p * t )dt + ∞ θ re -rt E[u(p t )]dt = θ 0 re -rt cav u(p * t )dt + ∞ θ re -rt cav u(p * t )dt,
which will conclude the proof of the lemma.

We now construct the process (p t ). For t ≥ θ, define

Q t := q 11 (t) 1 -q 11 (t) 1 -q 22 (t)
q 22 (t) by

q 11 (t) = 1 p -p p -p × p 11 (t) + (1 -p)p 21 (t)
and

q 22 (t) = 1 p -p (1 -p -((1 -p)p 22 (t) + p × p 12 (t))) .
Intuitively, Q t is the transition matrix between the two "states" p and p induced by P t . To see why, observe that, when starting from p, the probability of being in state s Both ρ 12 and ρ 21 are positive. Therefore, there is a Markov process (q t ) t≥θ with values in ∆({p, p}), with rate matrix R and initial distribution q θ defined by p * θ = q θ (p)p + q θ (p)p. By construction, the process (p t ) t≥θ defined by p t := q t (p)p + q t (p)p is a Markov process and E[p t+h | F p t ] = T P h p t for all t ≥ θ, h ≥ 0. Set now p t = p * t for t < θ. Then the process (p t ) t≥0 satisfies the desired properties.

In all previous cases, the equality v(p) = ∞ 0 re -rt cav u(p * t )dt holds. This is however not always the case, as we now show.

Example: Let a game A, B and g :

{s 1 , s 2 } × A × B be such that (i) u(0) = u(1) = 0, (ii) u(p) = 1 for p ∈ [ 1 3 , 2 3 ]
, and (iii) u is strictly convex on each of the intervals [0, 1 3 ] and [ For t < θ, the equality E[u(p t )] = cav u(p * t ) implies that the law of p t is concentrated on {0, 1 3 }, with P(p t = 1 3 ) = 3p * t . As t → θ -we get P(p θ -= 1 3 ) = 1, so that p θ-= p * θ a.s.. Then [START_REF] Abreu | Information and timing in repeated partnerships[END_REF] implies that p t = (e -T R(θ-t) )p * θ = p * t a.s. for t ∈ [0, θ], which is impossible since p t ∈ {0, 1 3 } a.s..

Intuitively, maximizing E[u(p t )] leads player 1 to disclose information at time t which he later wishes he hadn't disclosed.

An explicit example

We conclude this section by providing an explicit formula for the limit value in an example due to [START_REF] Renault | The Value of Markov Chain Games with Lack of Information on One Side[END_REF] (see also Hörner, Rosenberg, Solan and Vieille (2010)). In that example, both players have two actions, and the payoffs in the two states are given by 1 0 0 0 and 0 0 0 1

Transitions occur at the rate π > 0, so that

R = -π π π -π . Observe that R = M -2π 0 0 0 M -1 , where M = 1 1 -1 1
, so that

P t = e tR = M e -2πt 0 0 1 M -1 = 1 2 1 1 1 1 + e -2tπ 2 
1 -1 -1 1 . Note that u(p) = p(1 -p) is concave, hence v(p) = ∞ 0 re -rt u(p * t )dt = ∞ 0 re -rt p * t (1 -p * t )dt. (8) 
On the other hand, p * t is given by

1 -p * t p * t = P (t) 1 -p p . Integration in (8) leads to v(p) = 1 4 - (2p -1) 2 4 × r r + 4π
.

Proof of Theorem 1

In this section, we prove P1. Statement P2 is a particular case of Theorem 7 below, and we postpone the proof to section 5. The proof of P1 is divided in three parts. We first prove that lim inf

n ṽn (p) ≥ sup S(p) E ∞ 0 re -rt u(p t )dt ,
and next that lim sup

n ṽn (p) ≤ sup S(p) E ∞ 0 re -rt u(p t )dt .
We finally show that the supremum is reached.

Step 1

Let (p t ) ∈ S(p) be arbitrary. We will prove that lim inf

n ṽn (p) ≥ E ∞ 0 re -rt u(p t )dt .
The proof will make use of Lemma 5 below. This lemma is conceptually similar to (but technically more involved than) the elementary, so-called splitting lemma (Aumann and Maschler (1995)) which we quote here.

Lemma 4. Let a finite set L, and a probability p ∈ ∆(S) be given, such that p = l∈L α l p l , for some α ∈ ∆(L) and p l ∈ ∆(S) (l ∈ L). Then there is a probability distribution P over L × S with marginals given by α and p, and such that the conditional law of s given l is p l .

The usual interpretation of Lemma 4 is as follows. Assume some player, informed of the realization of s, draws l according to P(l | s) and announces l. Then, the posterior belief of an uninformed player with prior belief p is equal to p l . Lemma 4 formalizes the extent to which an informed player can "manipulate" the belief of an uninformed player by means of a public announcement.

Lemma 5 below is the appropriate generalization of Lemma 4 to a dynamic world with changing states. Some notation is required. We fix a Markov chain (ω m ) m∈N over S, with initial law p ∈ ∆(S), transition matrix Π = (π(s ′ | s)) s,s ′ ∈S , and law P. Given a sequence µ = (µ m ) m∈N , where µ m is a transition function from (∆(S)) m × S to ∆(S), 4 we denote by µ • P the probability measure over (∆(S) × S) N which is obtained as follows. Together with Π, µ m induces a transition function ν m from ∆(S) m × S to ∆(S) × S defined by

ν m (q m , ω m ; q m+1 , ω m+1 ) = π(ω m+1 | ω m )µ m (q m , ω m+1 ; q m+1 ). ( 9 
)
The distribution µ • P is the probability measure over (∆(S) × S) N induced by the sequence (ν m ) m∈N (by means of the Ionescu-Tulcea Theorem) and the initial distribution of (q 0 , ω 0 ) which assigns probability p(ω 0 ) to ({p}, ω 0 ) ∈ ∆(S) × S.

To follow-up on the above interpretation, we think of an uninformed player with belief p over ω 0 , and of an informed player who observes the successive realizations of (ω m ), and picks a new belief q m+1 ∈ ∆(S) for the uninformed player, as a (random) function µ m of the earlier beliefs q m = (q 0 , . . . , q m ) and of the realized state ω m+1 in stage m + 1. The distribution µ • P is the induced distribution over sequences of beliefs and states.

Lemma 5. Let Q be a probability distribution over ∆(S) N such that Q-a.s., q 0 = q and that E[q m+1 | q m ] = T Πq m for each m.

Then there exists a sequence µ = (µ m ) such that the probability measure µ • P satisfies C1 and C2 below.

C1 The marginal of µ • P over ∆(S) N is Q. C2 For each m ≥ 0, q m is (a version of ) the conditional law of ω m given q m .
The proof of Lemma 5 is in the Appendix. We now construct a behavior strategy σ 1 of player 1 in G n (p). We let α : ∆(S) → ∆(A) be a (measurable) function such that α(p) is an optimal strategy of player 1 in the one-shot, average game Γ(p), for each p ∈ ∆(S).

For k ≥ 0, we set s 

E[g(s (n) k , a k , b k )] = E E g(s (n) k , a k , b k ) | p (n) 0 , . . . , p (n) k = E E g(s (n) k , α(p (n) k ), b k ) | p (n) 0 , . . . , p (n) k = E E g(p (n) k , α(p (n) k ), b k ) | p (n) 0 , . . . , p (n) k ≥ E E u(p (n) k ) | p (n) 0 , . . . , p (n) k = E[u(p (n) k )].
Summing over k, and denoting by t → p

(n) t the step process equal to p k n over the interval [ k n , k+1 n ), one has therefore ṽn (p) ≥ E ∞ 0 re -rt u(p (n) t )dt . (10) 
Since (p t ) is càdlàg, the map t → p t has P-a.s. at most countably many discontinuity points. Note also that lim n p (n) t = p t at every continuity point. Thus, one has lim n p (n) t = p t P ⊗ Leb-a.s. . By dominated convergence, this implies

lim n→+∞ E ∞ 0 re -rt u(p (n) t )dt = E ∞ 0 re -rt u(p t )dt.
By [START_REF] Fudenberg | Continuous time limits of repeated games with imperfect public monitoring[END_REF], one thus has

lim inf n→+∞ ṽn (p) ≥ E ∞ 0 e -rt u(p t )dt.

Step 2

Let n ∈ N * , and σ 1 be an arbitrary strategy of player 1. We adapt Aumann and Maschler (1995), and construct a reply σ 2 of player 2 recursively. Together with σ 1 , the strategy σ 2 induces a probability distribution over plays of the game, denoted P σ . Given a stage k, we denote by p k := P σ (s k/n = • | H II k ) the belief of player 2 at the beginning of stage k, where H II k is the information available to player 2, that is, the σ-algebra generated by (a i , b i ) i=1,...,k-1 . 5 We let σ 2 play in stage k a best reply in the average, one-shot game Γ(p k ) to the conditional distribution of a k given H II k . We introduce the belief pk := P(s k/n = • | H II k+1 ) held by player 2 at the end of stage k (that is, after observing a k ), so that p k+1 = T P 1/n pk . By Lemmas 2.5 and 2.6 in Mertens, Sorin and Zamir (1994), one has6 

E[g(s k/n , a k , b k ) | H II k ] ≤ u(p k ) + E |p k -pk | 1 | H II k .
Taking expectations and summing over stages, one obtains

E λ n ∞ k=0 (1 -λ n ) k g k ≤ E λ n ∞ k=0 (1 -λ n ) k u(p k ) + E λ n ∞ k=0 (1 -λ n ) k |p k -pk | 1 (11)
We now introduce a process (p t ) in S(p) defined by pk/n = p k and pt = T P t-k n pk/n for each k

and t ∈ [ k n , k+1 n ). Choose a constant c > 0 such that |p t -pk/n | 1 ≤ c n for each k, n ∈ N * and t ∈ [ k n , k+1 n ).
We first bound the first term on the right-hand side of ( 11):

E λ n ∞ k=0 (1 -λ n ) k-1 u(p k ) ≤ E ∞ 0 re -rt u(p t )dt + sup t≥0 |u(p t ) -u(p 1 n ⌊nt⌋ )|.
Since u is Lipschitz for the L 1 -norm, one has, for some C,

E λ n ∞ k=0 (1 -λ n ) k u(p k ) ≤ sup (pt)∈S(p) E ∞ 0 re -rt u(p t )dt + C n .
Next, adapting Mertens Sorin and Zamir (1994), one has

E λ n ∞ k=0 (1 -λ n ) k |p k -pk | 1 = s∈S λ n ∞ k=0 (1 -λ n ) k E [|p k (s) -pk (s)|] ≤ s∈S λ n ∞ k=0 (1 -λ n ) k E |p k (s) -pk (s)| 2 1 2 = s∈S λ n ∞ k=0 (1 -λ n ) k E(p 2 k (s)) -E(p 2 k (s)) 1 2 
, which is also equal to

s∈S λ n ∞ k=0 (1 -λ n ) k E(p 2 k (s)) -E(p 2 k+1 (s)) + E(p 2 k+1 (s)) -E(p 2 k (s)) 1 2 
.

Therefore E λ n ∞ k=0 (1 -λ n ) k |p k -pk | 1 ≤ s∈S λ n + λ n ∞ k=0 (1 -λ n ) k E p 2 k+1 (s) -p2 k (s) 1 2 ≤ |S| λ n + 2c n 1 2
.

Plugging into [START_REF] Gensbittel | The value of Markov Chain Games with incomplete information on both sides[END_REF], and since σ 1 is arbitrary, this yields ṽn (p) ≤ sup

(pt)∈S(p) E ∞ 0 re -rt u(p t )dt + C n + |S| λ n + 2c n 1 2
, and the inequality lim sup 

Step 3

We conclude by proving that the supremum in P1 is reached. First we remark that the claim P1 can alternatively be written as 

v(p) = max

Games with endogenous transitions

In this section we extend Theorem 1 to games with endogenous transitions. We show that the limit value exists and is characterized as the unique viscosity solution of a Hamilton-Jacobi equation.

Model

We now introduce a more general model in which players control transitions. As before, S is a finite set of states, A and B are finite action sets and g : For n ∈ N * , G n (p) now denotes the two-player game with infinitely many stages, where, at each stage k ∈ N, players first choose actions a k ∈ A and b k ∈ B, the payoff is g(s

S × A × B → R
(n) k , a k , b k ), and next s (n) k+1 is drawn using P 1/n (s (n) k , •; a k , b k ).
7 One may e.g. consider the laws P T n of the coordinate process stopped at T and then use a diagonal argument. Alternatively, we may apply Theorem 4 directly to the "damped" process q t := e -at p t where a ∈ (0, r), with values in the cone spanned by ∆(S).

The information structure of the game is as before: player 1 observes past and current realizations of the states s (n) k and both players observe past actions of their opponent, while payoffs are not observed. As before, the weight of stage

k in G n (p) is λ n (1 -λ n ) k , with λ n := 1 -e -r/n .
The value of the game G n (p) is still denoted ṽn (p).

Viscosity Solutions

In this section, we introduce the Hamilton-Jacobi equation which characterizes the limit value and we define the notion of weak solution (in the viscosity sense) used in Theorem 1.

We first need to fix some notations. As the partial differential equations encountered below take place in the simplex ∆(S), we have to define a tangent vector space T ∆(S) (p) to the set ∆(S) at each point p:

T ∆(S) (p) := z = (z s ) s∈S ∈ R |S| , ∃ε > 0, p + εz ∈ ∆(S), p -εz ∈ ∆(S) .
For instance, if p belongs to the relative interior of ∆(S), one has T ∆(S) (p) = {z ∈ R |S| , s∈S z s = 0}, while T ∆(S) (p) = {0} if p is an extreme point of ∆(S). We also define, for any symmetric matrix Finally, w : ∆(S) → R is a viscosity solution of (13) if it is a subsolution and a supersolution of (13).

X ∈ R |S|×|S| , λ max (p, X) := sup Xz, z |z| 2 , z ∈ T ∆(S) (p)\{0} . (12) 
Remark 5. 1) This definition does not exactly match the standard notion of viscosity solution given, e.g., in Crandall, Ishii and Lions (1992): the reason is that we work with functions defined on the simplex ∆(S), instead of the entire space. It is not even quite the same as in recent papers dealing with differential games with incomplete information, see e.g. Cardaliaguet and Rainer (2009a). In these papers, no private information is ever disclosed after the initial time and the "dynamics" on the parameter p is simply the evolution of the belief of the non-informed player. As a consequence, a key property of these games is that the faces of the simplex are invariant under this dynamics: in terms of PDE, this is expressed by the fact that the conditions for supersolution only need to be tested in the relative interior of ∆(S). In the present framework, the variable p has a dynamics (the controlled Markov chain), which leaves the entire set ∆(S) invariant, but not the faces. As a consequence, the equations have to hold up to the boundary, as in the so-called state-constraint problems.

2) In the above definitions, one can always replace the assumption that w -φ has a local maximum or minimum by the condition w -φ has a strict local maximum or minimum (see, e.g., [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]).

Uniqueness for the solution of ( 25) holds thanks to the following comparison principle, proved in the appendix. We assume that the Hamiltonian H : ∆(S) × R |S| → R satisfies the condition:

|H(p, q) -H(p, q ′ )| ≤ C|q -q ′ | ∀p ∈ ∆(S), q, q ′ ∈ R |S| (14) 
as well as

|H(p, q) -H(p ′ , q)| ≤ C|p -p ′ |(|q| + 1) ∀p, p ′ ∈ ∆(S), q ∈ R |S| (15) 
Theorem 6. Under assumptions [START_REF] Hörner | On a Markov Game with One-Sided Incomplete Information[END_REF] and [START_REF] Hörner | Recursive Methods in Discounted Stochastic Games: An Algorithm for δ → 1 and a Folk Theorem[END_REF], if w 1 is a continuous viscosity subsolution of (13) while w 2 is a continuous viscosity supersolution of (13), then w 1 ≤ w 2 in ∆(S).

In particular, equation ( 13) has at most one continuous viscosity solution.

Examples: We have already encountered several examples of subsolution and supersolution for the Hamilton-Jacobi equation ( 2): for instance, it can be checked that the maps ). This provides an alternative proof of Lemmas 1 and 2.

w(p) := ∞ 0 re -rt cav u(p * t )dt in

The convergence result

In the endogenous case, it seems difficult to provide a characterization of lim ṽn of the type of P1 in Theorem 1. However, characterization P2 still holds: Theorem 7. The uniform limit lim n→+∞ ṽn (p) exists and is the unique viscosity solution of the Hamilton-Jacobi equation [START_REF] Jacod | Limit theorems for stochastic processes[END_REF], where H is now given by

H(p, ξ) = min x∈∆(A) max y∈∆(B) -T R(x, y)p, ξ -rg(p, x, y) . ( 16 
)
Note that, when the transition are independent of actions, one recovers statement P2 of Theorem 1 as a particular case. As the map H defined by ( 16) satisfies conditions ( 14) and ( 15) above, Theorem 6 applies, and equation ( 13) has at most a unique viscosity solution.

Proof of Theorem 7 5.4.1 Step 1: dynamic programming principle and regularity

As is well-known, the maps ṽn are (uniformly) Lipschitz on ∆(S), concave and bounded, and satisfy the following dynamic programming principle: is the conditional law of the state given a:

ṽn (p) = max x∈(∆(A)) S min y∈∆(B) λ n g(p, x, y) + (1 -λ n ) a∈A, b∈B x(p)(a)y(b)ṽ n ( T P 1 n (a, b)p(x, a)) = min y∈∆(B) max x∈(∆(A)) S λ n g(p, x, y) + (1 -λ n ) a∈A, b∈B
We will prove that any accumulation point of (ṽ n ) for the uniform convergence is a viscosity solution of [START_REF] Jacod | Limit theorems for stochastic processes[END_REF]. Since (13) has a unique viscosity solution, this will imply the uniform convergence of the sequence (ṽ n ).

We thus consider a uniformly convergent subsequence of (ṽ n ). We denote by w the continuous limit, and relabel the subsequence as (ṽ n ).

Step 2: w is a viscosity supersolution

Let φ be a smooth test function such that w -φ has a strict local minimum on ∆(S) at some point p ∈ ∆(S). This implies the existence of a sequence (p n ) which converges to p and such that ṽn -φ has a local minimum at p n for any n: namely,

ṽn (p) ≥ φ(p) -φ(p n ) + ṽn (p n ) for any p ∈ ∆(S). ( 18 
)
As ṽn is concave, the inequality λ max (p n , D 2 φ(p n )) ≤ 0 holds by definition of T ∆(S) (p). Since T ∆(S) (p n ) ⊃ T ∆(S) (p) for n large enough, letting n → +∞ yields -λ max (p, D 2 φ(p)) ≥ 0. Let y n ∈ ∆(B) achieve the minimum in [START_REF] Lehrer | Information and its value in zero-sum repeated games[END_REF] for ṽn (p n ), so that

ṽn (p n ) = max x∈(∆(A)) S λ n g(p n , x, y n ) + (1 -λ n ) a∈A, b∈B x(p n )(a)y n (b)ṽ n ( T P 1 n (a, b)p n (x, a))
Up to a subsequence, still denoted (y n ), we may assume that (y n ) converges to some y ∈ ∆(B).

Let now x ∈ ∆(S) be arbitrary. Applying the latter equation with the non-revealing strategy (x, . . . , x) ∈ ∆(A) S , one has (with some abuse of notation) x(p n ) = x and pn (x, a) = p n , hence

ṽn (p n ) ≥ λ n g(p n , x, y n ) + (1 -λ n ) a∈A, b∈B x(a)y n (b)ṽ n ( T P 1 n (a, b)p n ) .
Using [START_REF] Lehrer | A note on the evaluation of information in zero-sum repeated games[END_REF], this yields

ṽn (p n ) ≥ (1 -λ n ) (-φ(p n ) + ṽn (p n )) +λ n g(p n , x, y n ) + (1 -λ n ) a∈A, b∈B x(a)y n (b)φ( T P 1 n (a, b)p n ) (19) 
Since

P 1 n (a, b) = I + 1 n T R(a, b) + o( 1 n ), φ( T P 1 n (a, b)p n ) = φ(p n ) + 1 n T R(a, b)p n , Dφ(p n ) + o( 1 n ) . Since λ n = 1 -e -r n = r n + o( 1 n 
), the inequality [START_REF] Mailath | Who Wants a Good Reputation?[END_REF] can then be rewritten

0 ≥ -rṽ n (p n ) + rg(p n , x, y n ) + a∈A, b∈B x(a)y n (b) T R(a, b)p n , Dφ(p n ) + o(1) .
Letting n → +∞ then yields 0 ≥ -rw(p) + rg(p, x, y) + T R(x, y)p, Dφ(p) . Taking the infimum over x ∈ ∆(A) gives:

rw(p) + max y∈∆(B) min x∈∆(A) -rg(p, x, y) -T R(x, y)p, Dφ(p) ≥ 0 .
In conclusion we have proved that min rw(p) + H(p, Dφ(p)) ; -λ max (p, D 2 φ(p)) ≥ 0 , as desired.

Step 3: w is a viscosity subsolution

We will use the following technical remark, which follows from Cardaliaguet and Rainer (2009a) or from Step 1 in the proof of Proposition 4.4 in Grün (2012): Lemma 6. Let w : ∆(S) → R be a concave function and φ be a smooth test function such that w -φ has a local maximum on ∆(S) at a point p ∈ ∆(S). If λ max (p, D 2 φ(p)) < 0, then there is δ > 0 such that, for any p ∈ ∆(S) such that p -p ∈ T ∆(S) (p),

w(p) ≤ w(p) + Dφ(p), p -p -δ|p -p| 2 . ( 20 
)
Let φ be a smooth test function such that w -φ has a strict local maximum on ∆(S) at some point p ∈ ∆(S). If λ max (p, D 2 φ(p)) ≥ 0, then the desired inequality holds. So we may assume that λ max (p, D 2 φ(p)) < 0 and it remains to check that, in this case, rw(p) + H(p, Dφ(p)) ≤ 0 .

As before there are p n ∈ ∆(S) which converge to p and at which ṽn -φ has a local maximum. Let now x n = (x n,s ) achieve the maximum in [START_REF] Lehrer | Information and its value in zero-sum repeated games[END_REF] for ṽn (p n ). Given an arbitrary y ∈ ∆(B), one thus has

ṽn (p n ) ≤ λ n g(p n , x n , y) + (1 -λ n ) a∈A, b∈B x n (p n )(a)y(b)ṽ n ( T P 1 n (a, b)p n (x n , a)). (21) 
Since

λ n = o(1), since T P 1 n (a, b)p n (x n , a) = pn (x n , a) + o(1)
, and using the uniform continuity of ṽn , this implies

o(1) ≤ a∈A, b∈B x n (p n )(a)y(b) (ṽ n (p n (x n , a)) -ṽn (p n ))
Let x = (x s ) s∈S be the limit of (a subsequence of) (x n ) n . Letting n → +∞ in the above inequality we get 0 ≤ a∈A, b∈B for any s = s ′ such that ps > 0 and ps ′ > 0 (which means that x is non revealing). We denote by x ∈ ∆(A) this common value and note that p(x, a) = p whenever x(a) > 0.

x(p)(a)y(b) (w(p(x, a)) -w(p)) = a∈A x(p)(a) (w(p(x, a)) -w(p)) (22) 
We now come back to [START_REF] Neyman | Existence of Optimal Strategies in Markov Games with Incomplete Information[END_REF] and use the concavity of ṽn to deduce that

ṽn (p n ) ≤ λ n g(p n , x n , y) + (1 -λ n )ṽ n a∈A, b∈B x n (p n )(a)y(b) T P 1 n (a, b)p n (x n , a)
Since ṽn -φ has a strict local maximum at p n ∈ ∆(S), we get

0 ≤ λ n (g(p n , x n , y) -ṽn (p n )) + (1 -λ n ) φ a∈A, b∈B x n (p n )(a)y(b) T P 1 n (a, b)p n (x n , a) -φ(p n ) (24) 
Observe next that Therefore w is a subsolution.

6 Incomplete information on both sides

Model

The approach developed in the previous section can also be adapted to games with lack of information on both sides, in which each player observes and controls a Markov chain. The framework is close to the one of [START_REF] Gensbittel | The value of Markov Chain Games with incomplete information on both sides[END_REF]. In particular, we also assume that each player observes only one Markov chain. However, the fact that players play more and more often completely changes the nature of the results. We assume that there are two controlled Markov chains (s 1 t ) and (s 2 t ) with values in the finite sets S 1 and S 2 respectively. The process (s i t ) is observed and controlled by Player i = 1, 2. That is, the generator of (s 1 t ) t≥0 is of the form (R 1 (s, s ′ ; a), s, s ′ ∈ S 1 , a ∈ A), and that of (

s 2 t ) is (R 2 (s, s ′ ; b), s, s ′ ∈ S 1 , b ∈ B).
The assumptions on R 1 and R 2 are the same as in the previous section.

Much as before, for given a, we denote by P 1 t (a) the transition function of a Markov chain with transition rates R 1 (•; a), and set P 1 t (x) := a∈A x(a)P 1 t (a) whenever x ∈ ∆(A). The transition function P 2 t (y) is defined similarly for y ∈ ∆(B). In this new game, the payoff function depends on both states and actions: g : S 1 × S 2 × A × B → R. The initial positions s 1 0 and s 2 0 of the chains are chosen independently with laws p 1 ∈ ∆(S) and p 2 ∈ ∆(S 2 ). As before, the weight of stage k in G n (p) is λ n (1 -λ n ) k , with λ n := 1 -e -r/n . The value of the game with initial distribution (p 1 , p 2 ) is denoted by ṽn (p 1 , p 2 ). 

The Hamilton-Jacobi equation

In the above expressions, r > 0 is the discount rate, w : ∆(S 1 ) × ∆(S 2 ) → R is the unknown (formally extended to a neighborhood of ∆(S 1 ) × ∆(S 2 )), Dw = (D 1 w, D 2 w) is the full gradient of w with respect to (p 1 , p 2 ), D 1 w (resp. D 2 w) being the derivative with respect to p 1 (resp. p 2 ), D 2 11 w (resp. D 2 22 w) is the second order derivative of w with respect to p 1 (resp.

p 2 ), λ max (p 1 , X) is defined by [START_REF] Grün | A probabilistic numerical scheme for stochastic differential games with incomplete information[END_REF] while

λ min (p 2 , X) = inf Xz, z |z| 2 , z ∈ T ∆(S 2 ) (p 2 )\{0} (26) 
where T ∆(S 2 ) (p 2 ) is the tangent space of ∆(S 2 ) at p 2 . By convention we set λ min (p 2 , X)

= +∞ if T ∆(S 2 ) (p 2 ) = {0}.
As before, one cannot expect equation [START_REF] Renault | The Value of Markov Chain Games with Lack of Information on One Side[END_REF] to have a smooth solution in general, and we use instead the following notion of viscosity solution: 

Definition 2. A map w : ∆(S 1 ) × ∆(S 2 ) → R
: R |S 1 |+|S 2 | → R such that w -φ has a local minimum on ∆(S 1 ) × ∆(S 2 ) at (p 1 , p 2 ) ∈ ∆(S 1 ) × ∆(S 2 ), one has min max rw(p 1 , p 2 ) + H(p 1 , p 2 , Dφ(p 1 , p 2 )) ; -λ min (p 2 , D 2 22 φ(p 1 , p 2 )) ; -λ max (p 1 , D 2 11 φ(p 1 , p 2 )) ≥ 0 .
Finally, w : ∆(S 1 ) × ∆(S 2 ) → R is a viscosity solution of (25) if it is a sub-and a supersolution of [START_REF] Renault | The Value of Markov Chain Games with Lack of Information on One Side[END_REF].

Uniqueness of a viscosity solution for (25) holds thanks to a comparison principle, which generalizes Theorem 6. We will assume that H

: ∆(S 1 ) × ∆(S 2 ) × R |S 1 |+|S 2 | → R satisfies the condition: |H(p, q) -H(p, q ′ )| ≤ C|q -q ′ | ∀p ∈ ∆(S 1 ) × ∆(S 2 ), q, q ′ ∈ R |S 1 |+|S 2 | (27) 
as well as

|H(p, q) -H(p ′ , q)| ≤ C|p -p ′ |(|q| + 1) ∀p, p ′ ∈ ∆(S 1 ) × ∆(S 2 ), q ∈ R |S 1 |+|S 2 | (28)
Theorem 8. Assume that ( 27) and (28) hold. Let w 1 be a continuous viscosity subsolution of (25) and w 2 be a continuous viscosity supersolution of [START_REF] Renault | The Value of Markov Chain Games with Lack of Information on One Side[END_REF]. Then w 1 ≤ w 2 in ∆(S 1 )×∆(S 2 ).

The limit theorem

Here is our main result in the framework of lack of information on both sides. Theorem 9. The uniform limit v = lim n→+∞ ṽn exists and is the unique viscosity solution of Hamilton-Jacobi equation [START_REF] Renault | The Value of Markov Chain Games with Lack of Information on One Side[END_REF] where H is given by

H(p 1 , p 2 , ξ 1 , ξ 2 ) = min x∈∆(A) max y∈∆(B) -T R 1 (x)p 1 , ξ 1 -T R 2 (y)p 2 , ξ 2 -rg(p 1 , p 2 , x, y) = max y∈∆(B) min x∈∆(A) -T R 1 (x)p 1 , ξ 1 -T R 2 (y)p 2 , ξ 2 -rg(p 1 , p 2 , x, y) (29) for any (p 1 , p 2 , ξ 1 , ξ 2 ) ∈ ∆(S 1 ) × ∆(S 2 ) × R |S 1 | × R |S 2 | .
Note that the Hamiltonian defined in (29) satisfies conditions ( 27) and [START_REF] Vieille | Weak approachability[END_REF]. So equation ( 25) has at most one viscosity solution.

Proof of Theorem 9

The proof is close to the one for Theorem 7. The main difference is that we have to deal with the fact that both players now have private information, which complicates the proof of the viscosity solution property. On the other hand, the problem is now symmetrical, so that it is enough to show the supersolution property, the argument for the subsolution being identical. λ n g(p 1 , p 2 , x, y)

+(1 -λ n ) a∈A, b∈B x(p 1 )(a)y(p 2 )(b)ṽ n ( T P 1 1 n (a)p 1 (x, a), T P 2 1 n (b)p 2 (y, b)) = min y∈(∆(B)) |S 2 | max x∈(∆(A)) |S 1 | λ n g(p 1 , p 2 , x, y) +(1 -λ n ) a∈A, b∈B x(p 1 )(a)y(p 2 )(b)ṽ n ( T P 1 1 n (a)p 1 (x, a), T P 2 1 n (b)p 2 (y, b)) (30) 
As before, the maps ṽn are uniformly Lipschitz and bounded, and we will prove that any (uniform) accumulation point of the sequence (ṽ n ) is a viscosity solution of [START_REF] Renault | The Value of Markov Chain Games with Lack of Information on One Side[END_REF]. Again up to a subsequence, we may assume that (ṽ n ) converges to some continuous map w.

Step 2: w is a viscosity supersolution

Let φ be a smooth test function such that w -φ has a strict local minimum on ∆(S 1 )×∆(S 2 ) at some point (p 1 , p2 ) ∈ ∆(S 1 )×∆(S 2 ). From standard arguments, this implies the existence of a sequence (p 

n ) = max x∈(∆(A)) |S 1 | λ n g(p 1 n , p 2 n , x, y n ) +(1 -λ n ) a∈A, b∈B 2 
x(p 1 n )(a)y n (p 2 n )(b)ṽ n ( T P 1 -g(p 1 , p2 , x, y) -Dφ(p), ( T R 1 (x)p 1 , T R 2 (y)p 2 ) ≥ 0 .

Therefore w is a supersolution.

A Technical results

A.1 Proof of Lemma 5

Let a probability measure Q over ∆(S) d N be as stated. Generic elements of (∆(S) × S) N are denoted (q m , s m ) m∈N . To avoid multiplying notations, and at the cost of a notational abuse, we will write Q(q m ; q m+1 ) for the conditional law of q m+1 given q m . Given a probability measure P over (∆(S) × S) N , we similarly write P(q m , s m ; q m+1 , s m+1 ) for the law of (q m+1 , s m+1 ) given (q m , s m ), P(q m , s m , s m+1 ; q m+1 ) for the law of q m+1 given (q m , s m , s m+1 ), etc., with semi-colons separating conditioning variables from the others. For m ≥ 1, denote by θ m the transition function from ∆(S) m × S to ∆(S) × S defined by

A.2 Proof of the comparison principle

In this section we prove Theorem 8 (which implies Theorem 6). We follow here the proof of Crandall, Ishii and Lions (1992) for second order Hamilton-Jacobi equations. However their results do not apply directly, because the terms λ min and λ max introduce a strong degeneracy in the equation. This issue is also present in Cardaliaguet and Rainer (2009a), where it is dealt with by an induction argument over the dimension of the faces of the simplices, which relies on the fact that the restriction of solutions to faces are still solutions. This is no longer the case here. This forces us to revisit the proof, and to come back to the basic technique consisting in regularizing the solutions by inf-or sup convolution, and then in using Jensen Lemma.

Let w 1 be a subsolution and w 2 be a supersolution of [START_REF] Renault | The Value of Markov Chain Games with Lack of Information on One Side[END_REF]. Our aim is to show that w 1 ≤ w 2 . We argue by contradiction, and assume that M := sup p∈∆(S 1 )×∆(S 2 ) {w 1 (p) -w 2 (p)} > 0 .

In order to use the special structure of the problem, we have to regularize the maps w 1 and w 2 by sup and inf-convolution respectively. This technique is standard and we refer to Crandall, Ishii and Lions (1992) for details. For δ > 0 and p ∈ R We note for later use that w δ 1 and w 2,δ are now defined over the entire space R |S Proof. We do the proof for w δ 1 , the argument for w 2,δ being symmetrical. Assume that w δ We also denote by p′ a point in ∆(S 1 ) × ∆(S 2 ) such that

w δ 1 (p) = w 1 (p ′ ) - 1 2δ |p -p′ | 2 . ( 44 
)
Then w δ 1 -φ γ has a maximum at p, which implies, by definition of w δ 1 , that

w 1 (p ′ ) - 1 2δ |p ′ -p| 2 ≤ φ γ (p) -φ γ (p) + w δ 1 (p) ∀p ∈ R |S 1 |×|S 2 | , p ′ ∈ ∆(S 1 ) × ∆(S 2 ),
with an equality for (p, p ′ ) = (p, p′ ). If we choose p = p ′ -p′ + p in the above formula, we get:

w 1 (p ′ ) ≤ φ γ (p ′ -p′ + p) + 1 2δ |p ′ -p| 2 -φ γ (p) + w δ 1 (p) ∀p ′ ∈ ∆(S 1 ) × ∆(S 2 ),

  s k/n and p (n) k := p k/n . The sequence (s (n) k ) k∈N is a Markov chain with transition function P 1/n and initial distribution p. We let (µ k ) k∈N be the transition functions obtained by applying Lemma 5 with ω k := s (n) k and q k := p (n) k . According to σ 1 , player 1 picks p (n) k+1 ∈ ∆(S) according to µ k (p k+1 ; •) then plays the mixed action α(p (n) k+1 ) ∈ ∆(A). Let σ 2 be an arbitrary strategy of player 2 in G n (p). For any given stage k, one has

  u(p t )dt follows.

  denotes the payoff function. In contrast with the previous sections, we here assume that the generator depends on actions : R := (R(s, s ′ ; a, b), s, s ′ ∈ S, a ∈ A, b ∈ B), where for all (s, a, b) ∈ S × A × B, • for all s ′ = s, R(s, s ′ ; a, b) ≥ 0, • s ′ ∈S R(s, s ′ ; a, b) = 0. For fixed (a, b) ∈ A × B, we denote by t → P t (a, b) the transition semi-group of the Markov chain with transition rates R(•; a, b). Given t ≥ 0, and x ∈ ∆(A), y ∈ ∆(B), we set P t (x, y) := a∈A,b∈B x(a)y(b)P t (a, b).

13 )

 13 By convention λ max (p, X) = -∞ if T ∆(S) (p) = {0}. Note that λ max (p, X) is a kind of maximal eigenvalue of X on the tangent space T ∆(S) (p). Given a continuous map H : ∆(S)×R |S| → R, we consider the Hamilton-Jacobi equation min rw(p) + H(p, Dw(p)) ; -λ max (p, D 2 w(p)) = 0 in ∆(S). (Definition 1. A map w : ∆(S) → R is a viscosity subsolution of (13) if it is upper semicontinuous and if, for any smooth test function φ : R |S| → R such that w -φ has a local maximum on ∆(S) at a point p ∈ ∆(S), one has min rw(p) + H(p, Dφ(p)) ; -λ max (p, D 2 φ(p)) ≤ 0 . A map w : ∆(S) → R is a viscosity supersolution of (13) if it is lower semicontinuous and if, for any smooth test function φ : R |S| → R such that w -φ has a local minimum on ∆(S) at a point p ∈ ∆(S), one has min rw(p) + H(p, Dφ(p)) ; -λ max (p, D 2 φ(p)) ≥ 0 .

  Lemma 1 is a supersolution to (2), while the maps w 1 (p) := ∞ 0 re -rt u(p * t )dt and w 2 (p) := s∈S u(δ s ) ∞ 0 re -rt p * t (s)dt in Lemma 2 are subsolutions of (2). Hence, by P2 and Theorem 6, one has v ≤ w and v ≥ max(w 1 , w 2

  x(p)(a)y(b)ṽ n ( T P 1 n (a, b)p(x, a)) (17) where x(p)(a) = s∈S p s x s (a) and, for a ∈ A, p(x, a) := psxs(a) x(p)(a) s∈S

  As a∈A x(p)(a)p(x, a) = p, all the points 8 p(x, a) belong to the same face of ∆(S) as p. Hence p(x, a) -p ∈ T ∆(S) (p) for any a ∈ A. Since w -φ has a local maximum on ∆(S) at p ∈ ∆(S) with λ max (p, D 2 φ(p)) < 0, Lemma 6 states that there is δ > 0 such that, for all p ∈ ∆(S) with p -p ∈ T ∆(S) (p), w(p) ≤ w(p) + Dφ(p), p -p -δ|p -p| 2 . )(a) Dφ(p), pn (x n , a) -p -δ|p n (x n , a) -p| 2 = -δ a∈A x(p)(a)|p n (x n , a) -p| 2 , because a∈A x(p)(a)p n (x n , a) = p. In particular, p(x, a) = p if x(p)(a) > 0. By definition of x(p)(a), we have therefore x s = x s ′

  a∈A, b∈Bx n (p n )(a)y(b) T P 1 n (a, b)p n (x n , a) = p n + 1 n a∈A, b∈B x n (p n )(a)y(b) T R(a, b)p n (x n , a) + o( 1 n ) = p n + 1 n a∈A, b∈B x n (p n )(a)y(b) T R(a, b)p + o(1 n )where the second equality holds because pn (x n , a) → p. Plugging into in[START_REF] Protter | Stochastic Integration and Differential Equations[END_REF] we obtain0 ≤ λ n (g(p n , x n , y) -ṽn (p n )) + (1 -λ n ) n Dφ(p n ), a∈A, b∈B x n (p n )(a)y(b) T R(a, b)p + o( 1 n ) Since x n (p n )(a) → x(a), multiplying by n and letting n → +∞ yields 0 ≤ r (g(p, x, y) -w(p)) + Dφ(p), a∈A, b∈B x(a)y(b) T R(a, b)p When rearranging, we find that rw(p) + min x∈∆(A) max y∈∆(B) -rg(p, x, y) -Dφ(p), T R(x, y)p ≤ 0 .

  In this setting, we have to introduce a slightly new type of Hamilton-Jacobi equation. The Hamiltonian is now a mapH : ∆(S 1 ) × ∆(S 2 ) × R |S 1 |+|S 2 | → Rand the Hamilton-Jacobi equation is given by the pair of inequalities max min rw + H(p 1 , p 2 , Dw); -λ max (p 1 , D 2 11 w) ; -λ min (p 2 , D 2 22 w) ≤ 0 in ∆(S 1 ) × ∆(S 2 ) , min max rw + H(p 1 , p 2 , Dw); -λ min (p 2 , D 2 22 w) ; -λ max (p 1 , D 2 11 w) ≥ 0 in ∆(S 1 ) × ∆(S 2 ) .

6. 4 . 1

 41 Step 1: Dynamic programming principle and regularityFor (p 1 , p 2 ) ∈ ∆(S 1 ) × ∆(S 2 ), (x, y) ∈ (∆(A)) |S 1 | × (∆(B)) |S 2 | and (a, b) ∈ A × B, we set x(p 1 )(a) =s∈S 1 p 1 s x s (a) and y(p 2 )(b) = s∈S 2 p 2 s y s (b) and p1 (x, a) := p 1 s x s (a) x(p 1 )(a) s∈S 1 and p2 (y, b) := p 2 s y s (b) x(p 2 )(b) s∈S 2 denote the conditional distributions of the states given a and b respectively. The dynamic programming principle for ṽn reads ṽn (p 1 , p 2 ) = max x∈(∆(A)) |S 1 | min y∈(∆(B)) |S 2 |

  |S 1 |+|S 2 | we set w δ 1 (p) = max p ′ ∈∆(S 1 )×∆(S 2 ) w 1 (p ′ ) -1 2δ |p -p ′ | 2and w 2,δ (p) = min p ′ ∈∆(S 1 )×∆(S 2 ) w 2 (p ′ ) + 1 2δ |p -p ′ | 2

1 2 D 2 w δ 1

 21 has a second order Taylor expansion at a point p and set, for γ > 0 small,φ γ (p) = Dw δ 1 (p), p -p + 1 (p)(p -p), p -p + γ 2 |p -p| 2 .

  1 at time t is pp 11 (t) + (1 -p)p 21 (t), which is equal to q 11 (t)p + (1 -q 11 (t))p. Similarly, when starting from p, the probability of being in s 1 at time t is pp 11 (t)+(1-p)p 21 (t) = (1-q 22 (t))p+q 22 (t)p. An elementary computation using the Kolmogorov equation P ′ t = RP t yields Q ′

						t = RQ t , where
	the rate matrix R =	-ρ 12 ρ12 ρ21 -ρ 21	is given by
	ρ12 =	(1 -p)ρ 21 -pρ 12 p -p	and ρ21 =	pρ 12 -(1 -p)ρ 21 p -p	.

  where, if Ω denotes the set of càdlàg functions from R + to ∆(S) and (p t ) the canonical process on Ω, Σ(p) is the set of probability measures P on Ω under which (p t ) belongs to S(p). This reformulation permits us to use classical arguments: We apply the tightness criterion of Meyer and Zheng(1984). Let (P n ) n be a maximizing sequence for P1. Although strictly speaking the coordinate process (p t ) need not be a quasimartingale, Theorem 4 in Meyer and Zheng (1984) still applies.7 Denote by P the weak limit of some subsequence of (P n ) n . It is routine to show that P ∈ S(p). Finally, since the functional E

			∞	e -rt u(p t )dt is weak continuous, P is a
	maximizer in P1.		0	
			+∞	
	P∈Σ(p)	E P	0	re -rt u(p t )dt ,

  is a viscosity subsolution of[START_REF] Renault | The Value of Markov Chain Games with Lack of Information on One Side[END_REF] if it is upper semicontinuous and if, for any smooth test function φ :R |S 1 |+|S 2 | → R such that w -φ has a local maximum on ∆(S 1 ) × ∆(S 2 ) at (p 1 , p 2 ) ∈ ∆(S 1 ) × ∆(S 2 ), one has max min rw(p 1 , p 2 ) + H(p 1 , p 2 , Dφ(p 1 , p 2 )) ; -λ max (p 1 , D2 11 φ(p 1 , p 2 )) ; -λ min (p 2 , D 2 22 φ(p 1 , p )) ≤ 0 .

A map w : ∆(S 1 ) × ∆(S 2 ) → R is a viscosity supersolution of (25) if it is lower semicontinuous and if, for any smooth test function φ

  For this we assume that λ min (p 2 , D2 22 φ(p 1 , p2 )) > 0 and we are left to prove thatrw(p 1 , p2 ) + H(p 1 , p2 , Dφ(p 1 , p2 )) ≥ 0 .

	Let y n ∈ (∆(B)) |S 2 | be optimal in the dynamic programming equation (30) for ṽn (p n ):
	ṽn (p 1 n , p

1 n , p 2 n ) which converges to (p 1 , p2 ) and such that ṽn -φ has a local minimum at (p 1 n , p 2 n ) for any n: namely, ṽn (p 1 , p 2 ) ≥ φ(p 1 , p 2 ) -φ(p 1 n , p 2 n ) + ṽn (p 1 n , p 2 n ) for any (p 1 , p 2 ) ∈ ∆(S 1 ) × ∆(S 2 ). (31) As ṽn is concave in p 1 , we must have λ max (p 1 n , D 2 11 φ(p 1 n , p 2 n )) ≤ 0 by definition of T ∆(S 1 ) (p 1 n ). Since T ∆(S 1 ) (p 1 n ) ⊃ T ∆(S 1 ) (p 1 ) for n large enough, we get, as n → +∞: -λ max (p 1 , D 2 11 φ(p 1 , p2 )) ≥ 0. It remains to check that max rw(p 1 , p2 ) + H(p 1 , p2 , Dφ(p 1 , p2 )) ; -λ min (p 2 , D 2 22 φ(p 1 , p2 )) ≥ 0 .

  1 |+|S 2 | , that w δ 1 is semiconvex while w 2,δ is semiconcave (see Crandall et al (1992)). Moreover, lim Lemma 7. For any δ > 0, the problem (40) has at least one maximum point. If p δ is such a maximum point and if p′ δ ∈ ∆(S 1 ) × ∆(S 2 ) and p ′′ δ ∈ ∆(S 1 ) × ∆(S 2 ) are such thatProof. The existence of a maximum point is a straightforward consequence of (39). The rest of the statement is classical.Next we note that w δ 1 and w 2,δ are still respectively a subsolution and a supersolution of slightly modified equations:Lemma 8. Assume that v δ1 has a second order Taylor expansion at a point p. Thenmin rw δ 1 (p) + H(p ′ , Dw δ 1 (p)) ; -λ max ((p ′ ) 1 , D 2 11 w δ 1 (p)) ≤ 0, (42)where p ′ = ((p ′ ) 1 , (p ′ ) 2 ) ∈ ∆(S 1 ) × ∆(S 2 ) is such thatw δ 1 (p) = w 1 (p ′ ) -

	then, as δ → 0, M δ → M while				
			|p δ -p ′ δ | 2 2δ	+	|p δ -p ′′ δ | 2 2δ	→ 0.
							1 2δ	|p -p
								(39)
	Setting						
			M δ =	sup p∈R |S 1 |+|S 2 |	w δ 1 (p) -w 2,δ (p)	(40)
	we have:						
	(i) w δ 1 (p δ ) = w 1 (p ′ δ ) -	1 2δ	|p δ -p ′ δ | 2	and	(ii) w 2,δ (p δ ) = w 2 (p ′′ δ ) +	1 2δ	|p δ -p ′′ δ | 2 (41)

|p|→+∞ |p| -1 w δ 1 (p) = -∞, lim |p|→+∞ |p| -1 w 2,δ (p) = +∞ . ′ | 2 .

Similarly, if w 2,δ has a second order Taylor expansion at a point p, then

max rw 2,δ (p) + H(p ′′ , Dw 2,δ (p)) ; -λ min ((p ′′ ) 2 , D 2 22 w 2,δ (p) ≥ 0, (

43

)

where

p ′′ = ((p ′′ ) 1 , (p ′′ ) 2 ) ∈ ∆(S 1 ) × ∆(S 2 ) is such that w 2,δ (p) = w 2 (p ′′ ) + 1 2δ |p -p ′′ | 2 .

Whether or not actions of player

are observed is irrelevant.[START_REF] Athey | Collusion with Persistent Cost Shocks[END_REF] We abstain from using the notation v n (p), which is associated with games with n stages.

The existence of such a game follows from Proposition 6 in Lehrer and Rosenberg (2003), which does not appear in the published version of the paper, Lehrer and Rosenberg (2010).

We write µ m (q m , s; •). Thus, µ m (q m , s; •) is a probability distribution over ∆(S) for each given q m = (q 0 , . . . , q m ) ∈ ∆(S) m , and s ∈ S, and the probability µ m (q m , s; A) assigned to a fixed (measurable) set A ⊂ ∆(S) is measurable in (q m , s).

The belief p k is used to define σ 2 in stage k, and the computation of p k uses the definition of σ 2 in the first k -1 stages only. Hence, there is no circularity.

denoting by | • | 1 the L 1 -norm on ∆(S).

such that x(p)(a) > 0
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Let y = (y s ) s∈S 2 be the limit of (a subsequence of) (y n ). Fix x ∈ ∆(A). (With a slight abuse of notation), if Player 1 plays the non-revealing strategy (x, . . . , x) ∈ (∆(A)) |S 1 | , we get x(p 1 n ) = x and p1 n (x, a) = p 1 n and therefore ṽn (p

x(a)y n (p 2 n )(b)ṽ n ( T P 1 

Recalling that λ n = o(1), that T P 1 

From (33) we conclude as in the proof of Theorem 7 that p2 (y, b)

Coming back to the definition of y(p 2 )(b) > 0, we have therefore that y s = y s ′ for any s = s ′ such that p2 s > 0 and p2 s ′ > 0: this means that y is non revealing. We denote by y ∈ ∆(B) this common value and note that p2 (y, b) = p whenever y(b) > 0.

With this in mind, we come back to (32), which becomes, since ṽn is convex in p 2 , and since the dynamics of (s

We next use the fact that ṽn -φ has a local minimum at (p

(34) where

Multiplying (34) by n and letting n → +∞ gives therefore

with an equality at p ′ = p′ . As w 1 is a subsolution, we obtain therefore, using the right-hand side of the above inequality as a test function, 44)). So letting γ → 0 we obtain the desired result.

In order to exploit inequalities (42) and (43), we have to produce points at which w δ 1 is strictly concave with respect to the first variable while w δ 2 is strictly convex with respect to the second one. For this reason, we introduce a new penalization. For σ > 0 and

Using (39), one easily checks that there exists a maximizer (p 1 , p2 ) to the above problem.

In order to use Jensen's Lemma (Lemma A.3. in Crandall, Ishii and Lions [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]), we need this maximum to be strict. For this we modify slightly ξ1 and ξ2 : we set, for i = 1, 2,

. We will choose σ > 0 so small that ξ 1 and ξ 2 still have a positive second order derivative. By definition,

and the above problem has a strict maximum at (p 1 , p2 ). As the map p → w δ 1 (p) -w 2,δ (p) + σξ 1 (p 1 ) + σξ 2 (p 2 ) is semiconcave, Jensen's Lemma states that, for any ε > 0, there is vector

at which the maps w δ 1 and w 2,δ have a second order Taylor expansion. From Lemma 8, we have

and

where p ′ δ,σ,ε and p ′′ δ,σ,ε are points in ∆(S 1 ) × ∆(S 2 ) at which one has

Note for later use that

By definition of M δ,σ,ε we have

with an equality at p δ,σ,ε . Hence

while

We now check that λ max ((p ′ δ,σ,ε ) 1 , D 2 11 w δ 1 (p δ,σ,ε )) < 0. For this, we come back to the definition of w 2,δ and note that, for any

with an equality at (p 1 , (p

with equality for z = 0. As w 2 is concave with respect to the first variable, the above inequality implies that λ max ((p ′ δ,σ,ε ) 1 , D 2 11 w 2,δ (p δ,σ,ε )) ≤ 0. In view of (49) we get therefore We compute the difference of the two inequalities:

where, in view of assumption ( 28) and (47),

.

We now use assumption ( 27) on H combined with (48) to deduce:

since Dξ 1 and Dξ 2 are bounded. As σ and ε tend to 0, the p δ,σ,ε , p ′ δ,σ,ε and p ′′ δ,σ,ε converges (up to a subsequence) to p δ , p ′ δ and p ′′ δ , where p δ is a maximum in (40) and where p ′ δ and p ′′ δ satisfy (41). Moreover (52) implies that

We finally let δ → 0: in view of Lemma 7 the above inequality yields to M = lim δ→0 M δ ≤ 0, which contradicts our initial assumption. Therefore w 1 ≤ w 2 and the proof is complete.