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Abstract

Purpose: Wireless capsule endoscopy (WCE) is commonly used for noninvasive gas-

trointestinal tract evaluation, including the detection of mucosal polyps. A new embed-

dable method for polyp detection in wireless capsule endoscopic images was developed

and tested.

Methods: First, possible polyps within the image were extracted using geometric shape

features. Next, the candidate regions of interest were evaluated with a boosting-based

method using textural features. Each step was carefully chosen to accommodate hard-

ware implementation constraints. The method’s performance was evaluated on WCE

datasets including 300 images with polyps and 1200 images without polyps. Hardware

implementation of the proposed approach was evaluated to quantitatively demonstrate

the feasibility of such integration into the WCE itself.

Results: The boosting-based polyp classification demonstrated a sensitivity of 91.0%,

a specificity of 95.2% and a false detection rate of 4.8%. This performance is close to

that reported recently in systems developed for an on-line analysis of video colonoscopy

images.

Conclusion: A new method for polyp detection in videoendoscopic WCE examinations

was developed using boosting-based approach. This method achieved good classifica-

tion performance and can be implemented in situ with embedded hardware.
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Introduction

Colorectal Cancer

Colorectal cancer (CRC) is the first cause of death by cancer in developed countries,

with an estimated incidence of 728.550 cases worldwide in 2008, with fatal outcome

in 43% of cases. Overall, CRC is the third more frequent cancer after lung cancer

and breast cancer [1]. Prevention of CRC by detection and removal of preneoplastic

lesions (colorectal adenomas) is therefore of paramount importance and has become

a worldwide public health priority. Currently, colonoscopy is the the “gold standard”

technique for diagnosis of colorectal adenoma and cancer. Using a videoendoscope, gas-

troenterologists can perform and record a complete examination of the colon in order

to detect and to remove suspicious tissular structures like adenomas which degeneres-

cence could lead to cancer. Because colonoscopy is performed under general anesthesia,

mini-invasive techniques such as computed-tomography-based colonography and wire-

less capsule endoscopy (WCE) have been developed. Both techniques are currently con-

sidered valid alternative options to videocolonoscopy in patients with contra-indication

or low compliance to general anesthesia. WCE takes form of a pill equipped with a

CCD or CMOS sensor, two batteries, and a RF (radiofrequency) transmitter, that en-

ables the wireless identification of gastrointestinal abnormalities such as ulcers, blood

and polyps [2] with no need for hospitalization or sedation. In the last decade, WCE

has become a breakthrough technology for diagnosis of small bowel pathologies [3].

Many fabricants such as Given Imaging, IntroMedic, and Olympus [4] have developed

a variety of capsules for the complete examination of the gastrointestinal tract.

Practically speaking, after ingestion of the capsule, about 50,000 images are cap-

tured along the digestive tract and each of them are wirelessly transmitted to a wearable

receiver and saved for a postponed physician’s reading. Off-line image processing en-

ables the identification of gastrointestinal abnormalities (like the aforementioned polyps

and adenoma) by the gastroenterologist.

Current main issues of WCE are:

– The complete analysis of the 50,000+ images is time-consuming for physicians, and

even for experienced ones, WCE diagnoses are sometimes challenging.

– The transmission of the 50,000+ images, that represents 80% of the overall energy

consumption of the embedded batteries, limits to 8 hours the autonomy of the

classic WCE, whereas 12 hours are necessary to scan the complete intestinal tract.

– A recent study comparing diagnostic capabilities of videoendoscopy and of WCE

shows that the average detection rate is around 80% polyps per patient [3,5]. Thus,

the improvement of polyp detection and classification capabilities of WCE is ex-

pected from gastroenterologists.

– Processing capabilities of WCE are limited to transmit raw images. No “intelli-

gence” is currently embedded into the imaging device itself.

In the context of early diagnosis of colorectal adenoma and cancer, the “Cyclope”

project proposes a new generation of WCE [6] (see figure 3 for illustration) that will
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permit an in situ detection of the polyps and, consequently, to only emit the images

which are important for the final diagnosis. The expected benefits are twofold:

1. An increase of the battery lifetime up to 12 hours considering the fact that, except

for particular pathologies, only a small percentage of the 50,000 images would con-

tain polyps and will be consequently transmitted (see figure 1).

Fig. 1 Comparison between continuous transmission (left) and intelligent one (right).

2. A facilitated off-line final diagnosis for the clinician considering the law amount of

transmitted data after in situ hardware processing and the possibility to highlight

particular regions of interest within the images that possibly contain a polyp.

In figure 2, a comparison between the usual clinical workflow and the expected one

with Cyclope WCE is proposed.

In [6] and [7], a first prototype demonstrator equipped with an active stereo vision

sensor was proposed to detect protuberating polyps within the colon. The proposed

embedded detection algorithm used a SVM classifier trained on robust 3D feature

descriptors. The overall detection performance was very promising with a global classi-

fication rate of 97% on an in vitro dataset consisting of 111 polyps (40 adenomas and 81

hyperplasias) made in silicon. Nevertheless, it appears that for real case examinations,

3D features are not sufficient to detect the large variety of polyp shapes that can be

very flat at an early evolution stage.

In this article, we focus on the 2D analysis of the videoendoscopy images in order

to investigate other possibilities than 3D shape characterization of polyps to improve

capabilities of WCE. As in [7], a particular attention is given to propose a global detec-

tion/classification scheme that can be integrated into the “Cyclope”-WCE architecture

shown in figure 3 and more precisely, by taking benefits of the FPGA block.

The remainder of this article is organized as follows: a state-of-the-art on detection

of polyps in videocolonoscopy using 2D features is proposed in Section 2. In Section

3, the proposed approach is detailed. Experimental results are given in Section 4.

Discussion, with a particular focus on hardware implementation, and conclusion are

given in the last two sections.



4

Fig. 2 Comparison of the classic clinical workflow (left) and the expected one using Cyclope
WCE (right), with corresponding improvement in green.

Fig. 3 Block Diagram of the “Cyclope WCE”

Related Works

Several previous references have considered the detection of intestinal polyps in video-

colonoscopy images in the last few years ([8–12] among recent ones). They are mainly

divided into two categories: those based on geometric features of the polyps (size and

shape) and those based on textural features.

In the framework of “Cyclope project”, we focused our attention on four particular

recent contributions.
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In [9], Bernal et al. authors propose a study made on videoendoscopy images. They

developed a region descriptor based on the depth of valleys (SA-DOVA). Resulting

algorithm, divided into several steps, including region segmentation, region description

and region classification, is characterized by promising detection performance (see Tab.

1).

In [10], Figueiredo et al. assume that polyps show up as protrusions that can be

detected using the local curvature of the image. Consequently, a method based on the

mean and geometric curvature of the WCE image is proposed. The main drawback of

the proposed approach is the strong dependance on the protrusion measure of the polyp

to identify potential candidates. The consequence is that if a polyp is not protruding

enough from the surrounding mucosal folds, it may be missed.

In [11], Karargyris and Bourbakis propose an algorithm for WCE images mainly

based on Log Gabor filters and Susan edge detector. Based on the geometric informa-

tion of the resulting detected ROI, a level-set segmentation is then initialized for an

accurate delineation of the polyps. On the considered WCE image database (10 polyps

and 40 non-polyps), the method gives satisfying results but authors highlight that the

taking into account of texture or color-based features within the detection/classification

scheme would significantly increase related performance.

Finally, Kodogioannis and Boulougoura [12] propose a texture-based approach. Au-

thors introduce new texture-based features computed from the chromatic and achro-

matic spectra of the Region of Interest (ROI) that may contain a polyp. For classifi-

cation, a neurofuzzy scheme is proposed. Main result is that the textural information

is of first importance for the discrimination between polyps and non-polyps.

Table 1 summarizes the main principle and the obtained performance of these four

main contributions.

Authors
Main princi-
ple

Classification per-
formance

Database

Bernal [9] Geometry
Sensitivity 89% Speci-
ficity 98%

300 videocolonoscopy im-
ages containing a polyp
(freely available)

Figueiredo [10] Geometry
No indicated perfor-
mance

17 WCE videos of 100 im-
ages each, containing ex-
ample of polyps (10), flat
lesions, diverticula, bub-
bles, and trash liquids

Karkargyris [11] Geometry
Sensitivity 100% Speci-
ficity 67.5%

50 WCE images (10 polyps
and 40 non-polyps)

Kodogiannis [12] Texture
Sensitivity 97% Speci-
ficity 94%

140 WCE images (70
polyps and 70 non-polyps)

Table 1 Main characteristics of 4 of the most recent references of the literature.

All four presented approaches for polyp detection and classification are definitely

of primary interest but may not fully compel to the hardware constraints of Cyclope

architecture (the detection algorithm is to be embedded in the FPGA block of lim-

ited resources) since all developed methods were designed mainly for an off-line use

by the clinician and can fully benefit from the high computing capabilities of the last-

generation processors: As a consequence, the related processing schemes include pos-

sible demanding algorithms like active contour segmentation [11], blob detector [9] or
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local curvature estimation [10], that have not been proved yet to be easily embedded on

a “low” resource hardware like FPGA. Moreover, it also appears that image databases

used for performance estimation are size-limited and/or not freely available for possible

comparison, except in the case of [9], more particularly when considering WCE images.

Taking benefits of the aforementioned reference, and taking into account the heavy

hardware constraints of “Cyclope” WCE, we propose in this article a learning-based

polyp detection approach using texture-based descriptors. In order to compare related

performance to the most recent literature, we will use for illustration the database

freely provided by [9].

Methods

The proposed method is inspired from the psychovisual methodology used by the physi-

cian when doing an endoscopic examination: First, a detection of the Regions of In-

terests (ROI) that may contain a polyp is performed using shape and size features

extracted from the image. This first pre-selection allows a first fast scanning of the

image. Once the ROI are detected, a second analysis, based on texture (homogeneity,

granularity, coarseness...) is achieved. Practically speaking, we propose a global scheme

for the detection/classification of possible polyps divided into two steps:

1. Considering the geometric step of the proposed approach, simple image processing

tools make possible the detection of circular/elliptical shape like the Hough trans-

form for instance.

2. The texture-based classification is the main keypoint of the global scheme since

the rejection of most of the false positive preselected ROI have to be performed at

this stage. To achieve this, we propose to design an ad hoc classifier based on a

boosting-based learning process using textural features.

The global scheme of this approach is summarized in figure 4. Each step is detailed

in the following sections.

Fig. 4 Proposed diagram for the detection of polyps within videoendoscopy images.
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Geometric and Texture-based features

As mentioned before, the first useful characteristics for detection are size and shape

of candidate structures. More precisely, a detection algorithm based on the circular

form of the polyps is considered. Instead of considering a local curvature estimation

or the Log-Gabor filtering, as suggested in [11], the circular Hough transform is used

for three reasons; firstly, processing remains simple and efficient; secondly, all polyps

must be detected even if numerous false positive ROI are also considered; thirdly, the

Hough transform can be FPGA embedded like shown in [13] for an in situ and real-

time detection. A discussion on that particular point is provided in the related section.

In order to handle with different polyp sizes, we consider a research interval for the

radii of the extracted circle.

For the texture-based analysis of pre-detected ROI, the co-occurrence matrix [14]

is used to discriminate textural patterns of polyps and non-polyps. Main advantage

of co-occurrence matrix is in their fixed dimensions only depending on the grey-scale

resolution of images: as a consequence whatever is the dimensions of the candidate

ROI, the size of the matrix remains the same, which is of first interest when consider-

ing the hardware implementation constraints (mainly memory) we have to deal with.

Moreover, the textural discrimination capabilities of co-occurrence matrices remain of

high efficiency even on grey-scale images [15] and could be implemented on FPGA [16]

with possible limited memory resource, the 3 color channels being not necessary.

Basically, the cooccurence matrix MC∆x,∆y(i, j) shows how often a pixel of grey-

level value i occurs either horizontally, vertically, or diagonally to adjacent pixels of

value j :

MC∆x,∆y(i, j) =

n
∑

p=1

m
∑

q=1

{

1, if I(p, q) = i and I(p+∆x, q +∆y) = j

0, otherwise
(1)

Twenty-six features (known as the Haralick’s features [15]) are then extracted from

each of the computed matrices. Are included : Contrast, Correlation, Entropy, Cluster

Prominence, Cluster Shade, Dissimilarity, Homogeneity, Autocorrelation, Maximum

probability, among other parameters (see Eqs. (2), (3), (4) for illustration of the first

three parameters).

Contrast =
1

K

N−1
∑

k=0

k
2

∑

|i−j|=k

MC(i, j) , (2)

Correlation =
1

Kσxσy

∑

i,j

ijMC(i, j)− µxµy , (3)

Entropy = −
1

K

∑

i,j

MC(i, j) log

(

MC(i, j)

K

)

, (4)

with K the number of elements of MC(i, j) and
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µx =
1

K

∑

i,j

i ∗MC(i, j) ,

µy =
1

K

∑

i,j

j ∗MC(i, j) ,

σ
2
x =

1

K

∑

i,j

(i− µx)
2
MC(i, j) ,

σ
2
y =

1

K

∑

i,j

(j − µy)
2
MC(i, j) .

Since the texture-based classification is performed using a boosting-based algo-

rithm, no limitations about the number of parameters is considered, main idea being

to let the learning process converge to the best classification solution without any prior

information.

Classification

“Boosting” is a machine learning algorithm for supervised learning (see [17] among

other publications of the same authors). It consists of the accumulation and constant

learning of weak classifiers (a weak classifier is considered slightly correlated (a little

better than chance) with the true classification), that once combined together generate

a strong classifier, well-correlated with the ground truth provided by the expert. In the

framework of our proposed approach, we use the boosting-based method of [18] set-

up in attentional cascade (Cascade Adaboost). This configuration allows us to create

a strong classifier which performance can be priorly set-up in order to optimize the

sensibility of the classification along with the specificity. For illustration of the overall

learning algorithm, see figure 8 in which Fi and Di stand for the maximum authorized

False Positive Rate and the minimum acceptable detection rate, respectively, computed

for each iteration of the process using the given f and d performance ratio, and Ftarget

the global false positive rate.

If the learning process related to boosting-based algorithms is time consuming, it is

important to note that, once the optimal classifier is computed off-line, the classification

step is very fast and fully compatible with a hardware implementation as shown by

application to real-time face detection [18] embedded in cameras.

In our particular case, the considered weak classifiers are based on a set of truncated

binary decision trees (bootstrapping) built from the 24 textural parameters on the

dedicated learning database.

Data

Tests were performed on the database proposed by J. Bernal from the Universitat

Autonoma de Barcelona [9], which consists of 300 videoendoscopy images presenting

with one single polyp each, identified and segmented by a specialist. The data are

courtesy made available by authors. To our knowledge, in the particular framework of
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Fig. 5 Flow diagram that shows how the Cascade Adaboost is performed

colorectal polyp detections, this is currently the only existing on-line database with

a sufficient amount of examples to be statistically meaningful. Figure 6 shows some

example of polyps extracted from the database.

To build the learning database each image of the main dataset was sub-divided into

five thumbnails by the gastroenterologist, as shown in figure 7. A first ROI corresponds

to the polyp (a), and the other four to non-polyps (b-e). The resulting learning/testing

database is then composed of a total of 1500 images, with 300 images of polyps and

1200 images of non-polyps, the labeling being performed,once again, by a specialist.

Performance evaluation

To proceed to performance evaluation of the proposed boosting-based method, three

measures are usually considered meaningful and complementary: the sensitivity, the

specificity and the false positive rate (FPR) respectively defined by:

Sensitivity =
TP

TP + FN
, (5)

Specificity =
TN

TN + FP
, (6)

FPR =
FP

FP + TN
, (7)

with TP, FN, TN, FP standing for true positive, false negative, true negative and false

positive.
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Fig. 6 Example of polyps extracted from the database of [9].

Fig. 7 Example on how the learning/testing database is generated from the original data of
[9].

Experiments

Hough transform-based step

In table 2 the detection performance of the Hough transform on the aforementioned

original database of [9] are shown and compared to the Log Gabor filtering proposed

by [11].



11

Sensitivity Specificity
Hough transform 94% 15%
Log-Gabor 42% 89%

Table 2 Comparison of the detection sensitivity and specificity of the Hough transform and
the Log Gabor filtering approach of [11] on the original database of Bernal et al.

We provide here the best obtained results considering the sensibility rate for an ad

hoc set-up of the Hough transform circle detection threshold and for a research interval

of the radii between 40 and 80 pixels.

We do not provide here usual Receiving Operating Curve (ROC) since we do not

control the number of detected FP for a given threshold: Depending on the quality of

the original image, number of FP can be very important (see figure 9.(c) for illustra-

tion).

At this stage, it can be noticed that the simple Hough transform allows a good

detection of ROI containing a polyp even if the assumption made on the shape could

be consider as restrictive since polyps are more elliptical than circular most of the

times.

Moreover, if the value of specificity is low, the next classifying step will allow to

improve the overall method performance.

Learning-based classification performance using texture-based features.

For these experiments, the ad hoc generated polyp/non-polyp database was divided

into two subgroups: A first one composed of 1000 images (200 images of polyps and

800 of non-polyps) for the learning process and a second group for testing composed

of the remaining 500 images. In order to obtain classification performance statistically

meaningful, the drawing of the elements of both learning and testing databases were

randomly made, and presented quantitative results correspond to the average value

obtained on 100 different configurations.

In a first experiment, different kinds of methods for classification were compared:

Learning Vector Quantization technic (LVQ) [19], classic Adaboost and finally Atten-

tional Boosting (cascade adaboost). In terms of performance, as long as, contrary to

cascade adaboost, it is not possible to set the obtained performance for LVQ or clas-

sic Adaboost, we privileged the balance between “Sensibility” and “Specificity”. The

results of this experimentation are shown in figure 8.

As it can be noticed, among the different classification technics used, Cascade

Adaboost provides the best compromise between “Sensibility” and “Specificity”. If

LVQ leads to a good classification of True Positive examples, the total amount of FPR

remains too important considering the fact that 10% of the polyps are misclassified.

In a second experiment, only Cascade Adaboost is considered with a setting of the

performance parameters (Fi and Di of figure 8) chosen in order to have a “Sensibility”

the closer to 100%, whatever “Specificity” will be. This scenario fits better the expec-

tations of radiologists who do not wish to miss possible polyps. Performance are shown

in Table 3.

Tab. 3 shows that a high“Sensibility” is an objective that can be reached with a

cascade adaboost setting of the learning process. Of course the “FPR” rate increases,
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Fig. 8 Performance comparisons among different types of classification approaches, including
adaboost and Cascade Adaboost. From left to right : Sensitivity, Specificity, False Positive
Rate.

Cascade Adaboost Sensibility Specificity FPR

Mean 99,5% 86.1% 13.9%
Standard deviation 0.00 0.07 0.07

Table 3 Average performance of the Cascade Adaboost learning process with a “Sensibility”
set to a minimum of 99%.

but finally not that much considering the fact that for 100 polyps detected, only 14

more will be showed as possible candidates to the radiologist.

Examples of detection and classification results

In figure 9 some examples of detection/classification are shown. ROI that are skirted by

a non-bolded plain rectangle are the ROI candidate issued from the Hough transform

step of the proposed approach. ROI skirted by a bold plain rectangle are those which

are effectively identified as a polyp after the texture-based classification.

In two first cases (a) and (b) of figure 9, the single polyp is detected and well

classified. In the third image, where the polyp is even visually not that easy to detect

due to the surroundings “noise”, from nine ROI detected using the circular Hough

transform, three are finally identified as polyp after the classification step, including

the one containing the real polyp, generating two false positives.

Simulation and time processing

Up to now, all the developments have been performed under Matlab environment in

order firstly to establish the feasibility of this new approach and to reduce the time

development hardware. No optimization of the code has been realized. Currently, the
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time processing per image is about 2.05 seconds on a iCore7 at 2.8GHz. A multithread-

ing version is under development both to accelerate by a factor 50 the time processing

and to test first this approach in real time with the video output of a colonoscope

before considering dedicated hardware implementation for WCE.

Discussion

Classification and Detection performance

A boosting based approach for polyp detection in videoendoscopy images has been

proposed. Obtained results show interesting performance of the classification step in

terms of selectivity and specificity, the most efficient learning method being the Cascade

Adaboost one as shown in figure 8: As it can be noticed in figure 10, the boosting-

based approach performed a classification which performance are close to Bernal et

al’s method. However, this latter comparison must be considered with cares since their

proposed method and our are not exactly based on the same fundamental idea.

Moreover, detection results could be improved since currently the global detection

rate of the overall processing scheme is only of 68% of the polyps: In figure 9.(c), it

appears that when original image is corrupted by a strong acquisition noise, misclassi-

fications can occur even if many FP ROI are discarded after the textural classification

step. The remaining detected false polyps are errors probably made by the insufficient

number of examples inside the database used for the learning step of the boosting

method. Two main improvement will be considered in a close future: A first one consists

in using a less sensitive detector than the circular Hough transform: the LoG (Lapla-

cian of Gaussian) detector could be an alternative for instance even if the hardware

implementation will need particular attention. A second point consists in improving

the classification performance by integrating other features of interest (color, shape...),

but also more training examples in the dataset to ensure a better representativity of the

examples. This latter point could be achieved by proposing an off-line interactive pro-

cess to the clinician that can add possible misclassified polyps to the learning database

once the classification has been performed. Although such an approach could be time-

consuming because of the iteration of the learning process (boosting) each time a new

example is added, such an effort should lead to an active extending of the available

training database as well as an increase of the performance in terms of FPR [20].

Moreover, if presented results focus on classic videocolonoscopy, it appears nec-

essary to build a training database dedicated to WCE images which characteristics

(resolution, quality, etc.) can be quite different from the data used in this study. Never-

theless, we showed here that the learning-based approach can adapt to the particularity

of used data by designing a proper learning database.

Towards an integrated hardware implementation

Currently, the Cyclope project only implements in hardware the SVM-based classi-

fication of 3D object with an FPGA Virtex II-pro [6]. Nevertheless, the algorithms

proposed here can be also implemented on this platform considering the recent litera-

ture. Elhossini [21] proposed a memory efficient architecture for implementing Hough
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Transform on FPGAs. The proposed architecture enables storing the Hough Trans-

form space on the FPGA’s memory blocks with no need for accessing external memory

while processing large size images in real-time with a 30 frame per second rate. Others

hardware implementation allow to optimize the computation of angle by using Cordic

algorithms, the time processing, the type (circle and/or line), etc. The main issue, is

to develop a Hough Transform architecture that minimize the memory space with a

great precision and a high parallelism. Table 4 summarizes the technical aspects of the

five main contributions in the field.

Authors Year Frame Size Memory Rate (FPS) FPGA
Jau Ruen [22] 2006 256x256 Ext. 1.6Mb 0.2 Altera Stratix 1
Souki [23] 2008 320x240 Ext. 4Mb 0.3 Altera Cyclone 2

Geninatti [24] 2009 44x46 Ext. 8Mb 30 Xilinx Spartan 3
Hardzeyeu [25] 2008 500x400 Ext. 800 Xilinx Virtex 2
Elhossini [25] 2012 800x600 Int. 250kb 30 Xilinx Virtex 2

Table 4 Main characteristics of 5 of the most recent references of the literature.

Optimized embedded architecture based FPGA for an efficient and fast computa-

tion of grey level co-occurrence matrices (GLCM) and Haralick textures features for

use in high throughput image analysis applications where time performance is critical

have been already studied. The three main contributions [26] [16] [27] focus on the

design of hardware processor that make possible to compute four distances (1, 2, 3 and

4 pixels) and four angles (0◦, 45◦, 90◦ and 135◦) in parallel. The main difference among

these approaches lies in the strategy to address the neighboring pixel. Table 5 summa-

rizes the performance of the three main recent contributions obtained on Virtex-II and

Virtex-5 FPGA.

Feature Sieler [26] Iakovidis [16] Tahir [27]
Year 2010 2007 2004
FPGA Virtex-5 Virtex II Virtex II
ref XC5VLX50T XCV2000E XCV2000E

Frequency 56.3MHz 38.2MHz 50MHz
Area (FPGA used) 21.9% 45% 59%

Time processing (128x128) 2.4ms x 1.756ms
Ext. Mem x 800kb 327kb
Int. Mem 327kb 83.2kb 81.9kb

Table 5 Main characteristics of related work.

Boosting classification has been also implemented in hardware on FPGA [28]. Ac-

cording to the related work on the hardware implementation of Hough Transform,

co-occurence matrices computation and boosting classification, it is feasible to embed

our approach on FPGA circuit.

This first step is a pre-required one towards an ASIC design embedded in the

WCE, but also to be able to precisely estimate the energy consumption related to

the hardware implemented detection/classification algorithms. In a previous work, we

demonstrated that 75% of the power consumption of a smart RF sensor are due to
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the RF power budget [29]. Moreover, [30] showed the transmitter power consumption

is a non linear function of the data rate and concluded that to increase the battery

life of a smart sensor, the amount of data should be reduced. The overall gain of an

intelligent transmission versus a continuous transmission in a standard WCE (see figure

1) depends on the one hand on the estimation of the number of images (polyps and false

positives) that will be transmitted and on the other hand, on the power consumption

due to their processing.

Currently, we can make only an estimation of this overall gain based on hypothesis,

because of the integrated circuit has not been yet designed and the in vivo experiments

not achieved. We are working on the hardware implementation of the 2D classification

on a FPGA-based platform. By considering the above state of the art, the fact that

an FPGA also consumes 12 times more dynamic power than an equivalent ASIC on

average [31] and the power consumption of Virtex 5, we can estimate that the power

consumption due to the processing will be approximatively under the hundred of µW .

This feature is less than the power consumption of the usual eight white LED used for

illumination and the RF transceiver.

Moreover, during a standard examination, around 50 000 images are sent to the

data logger with a frame rate of 4 fps up to 35 fps. By considering the same examination

with the possible presence of ten polyps and a FPR of 13.9%, only 6960 images will be

sent and a 7 factor can been won on the overall power consumption of the transmission

RF.

Conclusion

In this paper, we introduced a new embeddable method for polyp detection in videoen-

doscopic examinations. The entire detection chain combines geometric and textural

features for polyp characterization: if the first geometric step remains simple with the

use of the Hough transform, the textural features computed from co-occurrence matri-

ces are integrated within a boosting-based approach making possible to achieve good

classification performance similar to those of the most recent state-of-the-art article.

At last, the complete developed detection/classification scheme is in accordance with

a hardware implementation which is of primary importance for possible in situ appli-

cation using WCE.
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(a)

(b)

(c)

Fig. 9 Three examples of detection/classification of polyps in three different images extracted
from the original database of [9]. For all images: A, Original image ; B: Boundary detection
using a Canny-Deriche filter ; C, ROI obtained using the circular Hough transform detector ;
D, ROI classified as a polyp using the learning based proposed approach.
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Fig. 10 Comparison between the method exposed by Bernal [9] and the attentional boosting
based classification method proposed: from left to right: Sensitivity, Specificity and FPR


