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Abstract

In this paper, we deal with the problem of partially observed objects. These objects are defined
by sets of points and their shape variations are represented by a statistical model. We present two
models in the paper: a linear model based on PCA and a non-linear model based on KPCA. The
present work attempts to localize non visible parts of an object, from visible parts and from model,
explicitly using the variability represented by the model. Both are applied to the cephalometric
problem with good results.

1 Introduction

During the past decade, there has been a lot of work in shape based approaches, for segmentation,
registration or identification tasks. In fact, any application where the geometric comparison of objects
is required needs a shape analysis. The pioneers of shape analysis are Kendall [1] and Bookstein [2].
In these works, shape is defined as the remaining information after alignment (rotation, translation,
scaling) between two objects. In image analysis, Pentland [3] has defined modal analysis and a similar
idea has been used by Cootes [4] in the Active Shape Model (ASM) and Active Appearance Model
(AAM). They both involve a Principal Component Analysis (PCA) to build a statistical shape model.
In this model, the mean object and the variation around this mean position are both represented. AAM
was tested by Hutton [6] for the cephalometric problem without sufficient accuracy.

Some works on Kernel PCA [5] are very close to our method. Briefly, Kernel PCA maps non-linearly
the input data in a Feature Space (F-Space). PCA is then performed in the F-Space. The non linear
principal components are given by the eigenvectors corresponding to the largest eigenvalues. In a
localization problem, mean shape in the F-space must be back-projected in the input space. The choice
of the mapping and the back projection are difficult problems and are still open issues.

In this paper, we address the problem of retrieving the position of non visible parts of a partially
visible object. The key idea is to use the authorized variation around the mean shape of the model to
localize these parts. We present a comparison of one linear method based on PCA representation to
another based on KPCA representation. Both are applied to the cephalometric problem.

2 Methods

In the cephalometric problem, orthodontists have annotated cephalograms with landmarks (cephalo-
metric points) on a training set of radiographs. We also use an a-priori knowledge, which is an unknown
spatial relation between the cranial contour and the cephalometric points. The main problem in the
cephalometric analysis is to discover this relation. Fortunately, the cranial contour can be automati-
cally detected and extracted from the image, and then sampled (6 points). Our training set of points
is composed of the cephalometric points and the sampled version of the cranial contour. From this
dataset, a mean shape model is computed. To retrieve landmarks on a new image, the cranial contour
is detected and sampled, cephalograms are registered and the mean shape model is used to estimate
the position.



2.1 Linear PCA model
The linear PCA method defined here is an elegant way to take into account spatial relations between
landmarks and between landmarks and contour, and can also estimate the unknown part (cephalometric

points) of the partially visible or occulted model (cranial contour).

Let X; = (21, Y15, " Tni, Yni) € R?™ be the locations of the n cephalometric points on the ;th

th cephalogram,

cephalogram, C; be the locations of the m points of the sampled cranial contour on the ¢
and T; = (X;, C;) the concatenation of X; and C;.

Using PCA, we can write: Tj ~ T + ®b, where T = % ? | T; is the mean shape of the pattern,
O = (¢1]---|¢r) is a (n + m) X t matrix composed with the eigenvectors of the (n + m) x (n + m)
covariance matrix S of the centered data S = p%l S (T, —T)(T; — T)" and b is a vector of dimension
t: b=®YT; - T).

The dimension ¢ of the vector b is the number of eigenvectors with the largest eigenvalues. In classical
use of PCA, t is chosen by Zle A > 0.95 Z?jlm i, i.e. only eigenvectors that sufficiently explain the
standard deviation are kept. The vector b of dimension ¢ is a good approximation for the original
dataset and any set of n+m points can be represented or retrieved with the ¢;,,, values of the vector
b. PCA can then be seen as a denoising method.

The original idea of the paper is the following one: if some information is present, if some points
(saying t = n points) are known, the remaining unknown m points can be determined using PCA, under
the hypothesis that the first n eigenvalues of the covariance matrix explain the training dataset.

Let C' = (z,y) be the known and visible points (cranial contour in cephalometry) and X be the
unknown and obscured points (cephalometric points). Without any approximations, we can write:
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This is a linear system with n 4+ m equations and n 4+ 2m unknown (X, -+, X;, b1, -+, bpipn) that
cannot be resolved. Since PCA represents the dataset with less values, we can write, using t = n, the
unknown vector (by, -+, by, Xy,--+, Xp,) in the following system. Notice that if we choose ¢ < n, the

system becomes overdetermined (¢ < n), and a least square method can be used to resolve the system:
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In this framework, a linear approximation of spatial relations between known and unknown points
are explicitly determined from the eigenvectors of the covariance matrix. These spatial relations are
used to localize the non visible parts of an object.

2.2 KPCA Non Linear model

In this model, the initial data are projected in a new space, with a non-linear mapping . PCA is then
computed in this feature space F', as done with linear model. KPCA has a formulation which uses only
dot product and saves computer time. KPCA employs Mercer Kernels, such as gaussian or polynomial
kernels, instead of carrying out the mapping explicitly. Thus, when we have n samples X;, the principal
components ; in the KPCA space of an initial vector X, are given by: f; = Y i o K(X;, X), where

a” are the eigenvectors of the kernel matrix K (X;, X;) = o(X;).0(X;).



The reconstruction of the initial value X from the principal components f; is a difficult pro]olem. If
the mapping is known, the p-image P,(X) of X in the feature space is defined by: P,(X) = >"" 5. V*,
where V =3""  a;p(X;).

To reconstruct in the initial space, we can use several methods: firstly, we can compute the mapping
@ explicitly if it is known, compute the PCA, and use the linear method;

secondly, we can use the pre-image P,(X) and find the vector Z in the initial space that minimizes
mi (Z) )

my(Z) = ||e(Z) — z;il BiViH , where n' is the number of conserved nodes;

thirdly, we can find Z such that the principal components of Z are very closed to ; and minimize
meo(Z): )

mo(Z) = (Z:il oK (X;, 7)) — 5) H , where 3 is a vector of 3, and «; a vector of aF;

fourthly, we can rewrite this last function and minimize a function ms(Z2):

, 2

m3(Z) = (K(Xj, Z) =" ([N 5)) ‘ ‘ , where [)] is a diagonal matrix containing the eigenvalues
of the kernel matrix.

For pattern recognition, some parts of the object are unknown. In our framework, the first coordinates
of the vector Z are known and are the visible parts of the object. The last coordinates of the vector

Z are the non visible parts and are the unknown points. In the expressions to minimize, 3; are also
unknown. The problem is now to determine the values ; and the unknown part of Z.

3 Experiments

To test the feasibility of the algorithm, we have run several toys and real world experiments. We have
compared the distance between the calculated points and the real points, using the 5 different methods,
with a polynomial kernel for KPCA.

We have simulated an object defined by 9 points. Thereafter, 2 points were suppressed on an image,
and we have built these points with the proposed methods by minimization of mi. Linear are less
accurate than non-linear methods, but minimization sometimes falls in local minima. However, as the
simulated data are really nice, errors are less than 1% with non-linear methods.

On the cephalometric problem, the cranial contour is approximated by 6 points, and we have tested
the methods on the reconstruction of 3 cephalometric points. The models are built with 80 radiographs.
We use a leave-one out approach to test the accuracy of the models. The linear model is less accurate
than non-linear models with an average error less than 2%.

4 Conclusion

In this paper, we have presented and compared several methods to reconstruct non visible parts of an
object with a statistical model. The statistical framework offers an elegant way to solve this problem,
using the authorized variability by the model. The classical linear model is less accurate than KPCA
models, even if some difficulties remain from a numerical point of view.
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