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Abstract

We address the problem of locating some anatomical
bone structures on lateral cranial X-Ray Images. These
structures are landmarks used in orthodontic therapy.
The main problem in this pattern recognition application
is that the landmarks are difficult to distinguish on
images even for the human expert, because of lateral
projection of the X-Ray process. We propose a 3 steps
approach: the first step provides a statistical estimation
of the landmarks, using an adaptative coordinates space.
The second step computes a region of interest around the
estimated landmark. In the third step, each landmark is
precisely located using its anatomical definition. This
paper describes the two first generic steps, and gives
examples of the last step for two anatomical points.

1. Introduction

The goal of orthodontic and orthognatic therapy is to
improve the interrelationships among craniofacial tissues.
A cephalometric radiograph (figure 1) is a two-
dimensional X-Ray image of the sagital skull projection
[17[2]. Tt is used to evaluate these relationships.
Cephalometric image landmarks are bony landmarks and
are first located on the radiograph. Distances and angles
among these landmarks are compared with normative
values to diagnose a patient’s deviation from ideal form
and to evaluate craniofacial growth characteristics, skeletal
and dental disharmonies. It is also used to evaluate results
and stability of various treatment approaches. This task is
challenging and has been the subject of previous research
[3][4]. Our goal is the realization of a computer vision
system to obtain an objective and reproducible
cephalometric analysis. Indeed, large inter-expert and
intra-expert variability has been noticed [2]. The main
source of errors is the precise identification of landmarks.
The two main causes are the subjectivity in the
interpretation of the landmark definitions and the
positional repeatability of human experts. Landmarks are
difficult to distinguish on images and interpretation needs
a long training time. In a computerized method, the
formal descriptions of landmarks used by clinicians are
not directly transposable: we then use a three step
approach: the first step provides an initial estimation of
the landmark positions, using statistical models and

training sets. In a second step, a Region Of Interest (ROI)
is computed using training sets and initial estimations.
The third step fits specific models to the given
cephalogram in the previous ROI.

Because of large variability of the shape and the
morphology of human head, large variation of spatial
coordinates of landmarks are observed and must be
reduced. The main feature of this work is the registration
of these coordinates in an adaptative way, i.e. in a
coordinates space which takes into account the
morphology of each individual. In this space, variability
of these landmarks is greatly reduced and a small area for
each landmark can be automatically defined on each
cephalogram. In this ROI, the probability to find the
associated landmark is 99.5%.

The anatomical definition of landmarks is often the
intersection of two bones or sutures. Bones and sutures
are thin dark or white lines on the image. For each ROI, a

specific process is defined to detect each bones using
» w»
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Figure 1 : A cephalogram and some
landmarks. In green, Nasal region zoomed
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contours tracking or line matching.

2. Method



To compare spatial coordinates of a deformable model,
model and image must be registered in a common
coordinates space. This coordinates space must be
computed for each new cephalogram. Several other works
use registration (rigid, affine or elastic) to superimpose or
to deform one image on another one [7], one image on an
atlas [6] or a set of landmarks on another one [5]. Because
of the large variability of the head, rigid and even affine
registration methods have a poor accuracy [7]. Elastic
registration methods are CPU time consuming and are
based upon fluid or solid deformation theory [8]. In our
case, the head is composed of several solid parts (bone)
which are fitted into together. Then, fluid or solid
deformation theory is not adequate. We use a feature
which summarizes global and affine registration and local
elastic deformation of each individual: the sampled
endocranial contour. In a first part, we describe the
coordinate space in which all further process will take
place. In a second part, our model is described. The key
feature of the model is to store the variability of the
features derived from the sampled endocranial contour in
the previous coordinate space. The third part explains how
the model is used to compute the desired landmarks on a
new radiography: the mathematical formulation shows
that a simple least square inversion is needed to compute
the position of the landmarks. The fourth part explains
how the ROI are automatically defined from the analysis
of the error between the estimated and the real locations.
The fifth part describes two examples of the identification
process in each ROI.

2.1. Adaptative and individual coordinate space

To reduce the variability of the location, an adaptative
coordinates space is automatically computed for each
cephalogram, in order to reduce the influence of the shape
and morphology of the patients. This is obtained by
using the internal surface of the skull (endocranial
contour) which is easily detected on lateral projection
using edges detectors [9] and active contours [10]. This
curve is sampled (n points P; on the curve). The origin of
the sampling is given by the point P, with the higher
curvature, i.e. a point near the intersection of the curve
and of the nasal bone.

Let the set of vectors R be defined by each pair of
points P; and P; of the sample endocranial contour.

R= {(oi,a,. #‘v’(j,k)e fi.n}j<k3 i/0, =P andy, :P}k}

Let M (M., M,, 1) be a point. The coordinates o, of M in R
are defined by the scalar product (or projection) of M and

%
each vectors of R i.e. o; = OM|V.
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Then, we can write under the matricial form :

M M
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The coordinates o are the projection of the point M on
each vector built using the endocranial contour. As this
contour evolves with the shape of the head of the patient,
the coordinates of the point M in this space evolve with
the morphology of the patient: this is our adaptative
coordinates space.

2.2. Model

Our model represents the position and the variability
of these positions by observing the location of the
landmarks drawn by an expert on a training set of 28
cephalograms. The mean E(o) and the standard deviation
o(a) of the location of each landmark are computed and
stored in this coordinates space. As the number of
coefficients o is n(n+1)/2, and because all the coefficients
are not relevant for each point X in the image, we have
estimated the number of coefficients which are really
useful. This number has been estimated by calculating the
evolution of the mean error on the training set versus the
number of coefficients. We have observed a minimum
value of the error between 18 and 22 coefficients and we
have kept 20 coefficients. In this model, spatial
relationships between landmarks are not explicitly
computed. In fact, the quantitative evaluation of these
relations is the goal of the cephalometry, to determine the
abnormality of some dental position. We notice that
using the endocranial contour, spatial relationships are
indirectly represented in the model and used in the
statistical landmarking of new cephalograms.

2.3. Statistical estimation of landmarks

To determine the unknown position of the landmark X
in a new cephalogram, we can write:

Ela] =4.X

where A is computed by detecting the endocranial
contour and the vector o on the new cephalogram.

X can be computed with a least square inversion
matrix, using the constraint X.=1. We have used a
weighting matrix: the importance of each coefficient o is
proportional to its confidence, i.e. inversely proportional
to the standard deviation (P matrix).
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The cost function in the least square inversion
becomes:

J= ‘PE[O(]— APX

The estimated initial position of the unknown
landmark X is then given by the equation

Xye=(4"P Pa) 4 P Ela]
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Thus, on a new cephalogram, we can compute the set
R of vectors Vi and the matrix 4 and solve the last
equation, which gives the desired estimation.

2.4. Regions of interest

The variability of the location on this new
cephalogram is given by computing the standard
deviation between the predicted landmarks and the real
landmarks on the training set by :

AX = X -x|
landmarks
We assume that the distribution of this error is a gaussian
distribution. For each landmark, the ROI is defined by a
window whose center is the estimated location of the
landmark. The width and the height of the windows are
equal to 3 times the standard deviation of the error AX
along the X-axis and Y-axis (figure 2). This window
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Figure 2 : Mean and 3*Stan.Dev. of 3

represents the variability of the location. The desired
landmark is expected to be found in this area with a
probability of 99.5%.

2.5. Structural identification of landmarks

The last step is the precise location of landmarks. The
automatic process tries to be a close reproduction of the
anatomical definition of landmarks. All the landmarks
used can be defined by an intersection of two or more
structures (bone or suture). These structures are thin dark

lines (suture), edges of white regions (bones) or thin
white lines (thin bones) on X-Ray images. The general
scheme of the precise identification process is to detect
each structure involved in the definition. The intersection
of these structures is then detected. As there is a lot of
algorithms to detect curvilinear structures on images, the
structures for each landmark are detected with specific
processes using a-priori knowledge to optimize the
accuracy of the detection. Two examples are described to
illustrate the method.

2.5.1. Na Point. The Na point is defined by the
intersection of the nasal bone and of the frontal bone.
These two structures are easily detected on X-Ray images
using a gradient operator and by tracking the maximum
value of the gradient norm. The frontal bone is an edge
with a high gradient value. It has an intersection with the
superior horizontal limit of its Region Of Interest. The
point with the highest gradient value on the top of the
ROI is the origin point of the nasal bone. This first
structure is found from this origin point by tracking the
maximum gradient value. The nasal bone is detected
using the same process, except that the origin point is
located on the bottom part of the ROI. The intersection of
the two bones is the Na point (blue point on figure 2).
2.5.2. Br Point. The Br point is defined (figure 3) by the
intersection of the coronal suture and of the external limit
of the skull (exocranial contour). The skull is easily
detected on X-Ray images using a gradient operator. The
coronal suture is a little dark line in a white bone (skull),
with a 2mm width (1 to 3 pixels) and Smm length. As
the external limit of the skull can be easily detected, an
intensity model (figure 4) is matched along the exocranial
contour. The implementation is an iterative process. All
the matched location of the intensity model along the

©Cranexplo

k. "'Ll\.

Figure 3: Br point. In green, coronal

exocranial contour are recorded. Then, the contour is
displaced from one pixel toward the center of the skull
using active balloons and the intensity model is matched
along the new position of the contour. The matching
locations are recorded if they are connected to the
previously detected locations. This iterative process is
stopped when the endocranial contour is reached. If
several sutures are detected, orientation and length of the
real suture are used to select the best candidate.



Intensity  1-3 pixels
= i
Curvilinear
Figure 4 : Intensity model
3. Results

The initial statistical estimation of the location of the
landmarks and the ROI have been tested on 58
cephalograms. The landmarks are located in the
automatically computed ROI in 57 cephalograms. The
cephalogram with one error presents an abnormal cranial
form, which is not the purpose of cephalometry.

The error between the real position and the estimated
position of landmarks has been computed on the training
set (28 cephalograms). For the landmarks near the Nasal
region (figure 2), the maximum error is about 12,5 mm,
and the mean error is about 4.5 mm. For landmarks in the
middle of the skull, the maximum error is about 6 mm
and the mean error is about 3 mm. The influence of the
shape is then better corrected near the middle of the skull.
Most of the points to detect are located in this region. A
second comparison can be done between our error and the
variability between experts, which is greater than our
error.

The evaluation of the precise location have been done
by a binary test on 58 cephalograms: detected or not, i.e
the anatomical definition has been respected or not. Using
this criteria, the success rate is 75% for the Na point and
90% for the Br point. The Br point is not always present
because this suture disappears among old children. These
cases have been excluded.

4. Conclusion

We have presented a three step methodology to
automatically label landmarks on an image.

The first and the second step automatically focuses the
attention of an expert (human or computer software) on a
small area where the desired landmark is expected. We
have used a statistical approach, building an implicit
gaussian model with a training set of labelled images.
The model is simply projected onto the new image, by a
generalized least square inversion to determine the
position of the landmarks. The main feature of this work
is that unlike traditional affine registration and mean
model, we use a non linear registration before building a
model, which is reduced to the mean value and standard
deviation of the coordinates of the landmarks. Although
the spatial relationships are not explicitly exploited in
this model, the statistical locations of the landmarks are
linked together by the internal surface of the skull. The
third step is the precise location of each landmark, using
the anatomical definition. The general scheme of the

process is to find the intersection between two structures.
Each landmark will use specific process to detect these
structures. Two landmarks have been studied and the
obtained results are quite satisfying.

Future works deal with a large database of
cephalograms to optimize the statistical process. Other
landmarks will be studied for precise location. As the
success rate must be increased, we will define several
identification processes for one landmark, which will be
combined using cooperative or competition criteria.
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