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Abstract. Mechanical product engineering is a research and industrial
activity which studies the design of complex mechanical systems. The
process, which involves the collaboration of various experts using domain-
specific software, raises syntactic and semantic interoperability issues
which are not addressed by existing software solutions or their underly-
ing concepts. This article proposes a flexible model-based software archi-
tecture that allows for a federation of experts to define and collaborate
in innovative design processes. The presented generic approach is backed
and validated by its implementation on an academic usecase.

1 Introduction

(Mechanical) product engineering is a domain which studies the entire lifecycle
of a complex mechanical system from the customer requirements analysis to its
end of life. It involves several phases: design, industrialisation, production, ex-
ploitation, dismantling, recycling.
The design phase is the activity that aims at creating a complete digital mock-up
including all information on the product coming from multiple points of view:
functions, components, form features, materials, multi-physical behaviours, etc.
[29, 27, 37]. This strongly knowledge-based and collaborative activity involves
many partners with different expertises, each of them using very specialized
computer tools, in their turn based on different knowledge representations and
operational procedures.
Such a complex computer-assisted activity has to be supported by a flexible
and efficient software architecture based on rigourous knowledge formalizations.
Although it has been the subject of many research over the past 20 years, the
current state-of-the-art suffers from many limitations such as lack of interoper-
ability, lack of flexibility, lack of control over the manipulated knowledge, etc.
This article first details these limitations as well as their associated challenges
and requirements. We then propose a software architecture based-on model-
driven engineering that aims at overcoming the current scientific and operational
issues. The approach, called Model-driven product design, is backed by preceed-
ing motivations studies [25, 1], operational, and validated through its application
to an industrial product.
This paper is organized as follows. In section 2, we briefly introduce the context



of product design, model-driven engineering main principles, as well as motiva-
tions to this work through a study of current issues and challenges. Section 3
describes the approach and proposes a generic model-driven software architec-
ture. In Section 4, we show its application to a product design scenario. Finally,
Section 5, discusses related work and proposes directions for future research.

2 Context

2.1 Introduction to (mechanical) product design

Mechanical product design is part of mechanical product engineering that aims
at studying a product from its beginning of life (marketing, value analysis...) to
its end of life (dismantling, recycling...). This approach strongly supports the
design rational information that assists industry both in innovative or routine
product design. Product design has to tackle the path from functions (what
the product is designed for) and solutions (what are the technologies to achieve
functions). The design process is commonly composed of several phases [15]:
requirements specification, conceptual design, embodiment design and detailed
design that progressively breakdown the product in multiple bill of material
(BOM): as-defined (F-BOM), as-designed (Product-BOM, CAD-BOM...), as-
manufactured (CAM-BOM...). In the current industrial context of the extended
enterprise, the design activity is composed of collaborative and remote tasks that
need to link all the knowledge coming from different experts that define their
own BOM (functional analysis, components and material selection, structure
analysis, manufacturing process selection...). Nowadays most of those BOM are
computer-supported, three main categories can be listed:

– The PLM (Product LifeCycle Management) system which acts as the infor-
mation backbone and that should link every BOM [3]. However, these tools
operate at a low-granularity level. Indeed, they mainly consist in a database
of files produced by different expert tools (CAD or CAx), with some ad-
ditional workflow management (files repositories with dependencies, access
restrictions and versioning). As such, they do not provide detailed knowl-
edge management and rely on existing file exchange standards to achieve
interoperability.

– The CAx (Computer Aided X) tools that support product’s X assessments
during the design process (X is then related to functional analysis, manufac-
turability analysis, recycling analysis...).

– The CAD (Computer Aided Design) software that manages form features
and acts as one of the collaborative space for designers since the design pro-
cess is still CAD-centric. Some of CAD tools have been extended over the
years to embrace the increasing collaborative aspect of engineering. A per-
fect example of this approach is the leading CAO tool CATIA [34]. Based on
engineering good practices, they have developed additional modules which
plug different expertises to the geometrical representation of the product.
For instance, a facility allows to run simple simulations directly. Lately, they
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have also included workflow capabilities (such as files shared repository and
access restrictions). Limits of such an approach are well known by software
developers: lack of modularity (ad hoc integration), lack of functionalities
(modules are less powerful than specialized tools), lack of efficiency (engi-
neers have to adapt their practices to the tool, when it should be the software
that adapts to the user).

2.2 Introduction to MDE and model transformation

Model Driven Engineering considers models, through multiple abstract repre-
sentation levels, as a unifying software concept. The central notions that have
been introduced are terminal model, metamodel, and metametamodel. A ter-
minal model is a representation of a system. It captures some characteristics of
the system and provides knowledge about it. MDE tools act on terminal models
expressed in precise modeling languages. The abstract syntax of a modeling lan-
guage, when expressed as a model, is called a metamodel. The relation between a
model and the metamodel of its language is called conformsTo. Metamodels are
in turn expressed in a modeling language for which conceptual foundations are
captured in an auto-descriptive model called metametamodel. This metameta-
model language, derived from set-theory and object-languages, usually consists
of entities, attributes and relations.

While this originates from an industrial need to have a homogeneous orga-
nization where different facets of a software system may be easily separated or
combined, the proposed architecture goes beyond software or platform models
and reveals itself suited for many other areas where knowledge representation,
exchange and reasoning is a central preoccupation, including ontologies [31].

The main way to automate MDE is by executing operations on models. For
instance, the production of a model Mb from a model Ma by a transformation
Mt is called a model transformation. The OMG’s Query View Transform (QVT)
specification[26] defines a set of useful model operations, an appropriate descrip-
tive language, and proposes clues on how it should be implemented.
Finally, interoperability with non-MDE enabled technologies (here called tech-
nical spaces) is achieved by special projections here called injection (obtaining
a model from structured data) and extraction (the opposite operation).
These main MDE principles and technologies are summarized in Figure 1.

2.3 Current issues and challenges in product design software

In order to support the product design activity, the information system is now
recognized as a critical component of collaborative engineering practices [6]. Sub-
section 2.1 has presented the main categories of current computer tools currently
used in industry to support mechanical product modelling. Although those tools
have reached a high level of functionalities several issues remais to fully tackle
the real complexity of design process. For 15 years the paradigm of design activ-
ity has changed from a sequential process to a concurrent process [30]. Since the
design solution is not selected by a unique person any more, this new paradigm
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Fig. 1. Model-driven engineering main principles

increased the involvement of several experts in the solution selection. The design
process has then to be centred on experts knowledge. New issues are then related
to the complexity of managing that knowledge via computer-supported tools:

Knowledge synthesis versus form feature modelling For almost 30 years CAD
systems have been developed and improved to currently reach very powerful
features to support product’s shape modelling. They are actually presented and
used as one of the central systems that make the design process a geometric cen-
tric approach. This approach has shown its great interest in industry to tackle
the problem of digitizing hand-done drawing, to improve the CAD-CAM links.
Nowadays, the CAD model also finds an interest to improve the digital mock-
up used during a decision making process. However current CAD systems are
not able to manage all the knowledge related to the product definition. This
information as mentioned in [9] has to be related to the whole lifecycle (from re-
quirement specifications to dismantling information). The product, and its CAD
model, is then defined, as far as possible, taken into account “X” constraints as
assumed in a DFX (Design For X) approach. CAD model (i.e. form feature) has
then to be generated from knowledge synthesis approach [24] seen as knowledge
transformation in the proposed MDE environment.

Interoperability face to heterogeneity of knowledge modelling Since the number
of experts and product assessments are increasing, information (i.e. knowledge)
is becoming more and more heterogeneous but have to be linked in order to
manage the impact of one on each other. Each knowledge model is indeed created
and can evolve independently of each other. [17] proposes three approaches to
afford the interoperability (i.e. link) of that heterogeneous knowledge. Due to
the limitation of each approach the proposed MDE architecture is based on a
federation solution using transformation concept in order to link each BOM as
proposed in [13]:



– Integration that aims at proposing a unique global fused model that integrate
every knowledge concepts. A consensus has to be found among every concept,
and should be changed if a new concept is added.

– Unification that aims at proposing a meta-model used to map each knowl-
edge concept via semantic association. The meta-model has to evolve or a
new one has to be created if a new concept is added.

– Federation that aims at creating mappings between each knowledge concepts
dynamically. This approach seems to be the more flexible one since only
local changes have to be treated when adding new knowledge concepts. The
dynamic creation remains nevertheless a great difficulty and will not be fully
treated in this paper.

3 A Model-based software architecture for product
design

As seen previously, we believe MDE is fitted to support a product design soft-
ware architecture. In order to map MDE concepts and operations to product
engineering, we have compiled design scenarios from academic litterature and
industrial usescases. As a result, we identified a set of different concepts, limita-
tions and requirements. We first give an overview of the proposed architecture,
then discuss its different parts and alternatives in details.

3.1 Architecture overview

Figure 2 presents an overview of the proposed software architecture, illustrated
through a fictive scenario involving various components. As outlined by the
squares on the side, the symbols may be read equally at two levels with dif-
ferent semantics, corresponding to the M1 and M2 levels of MDE:

– Yellow ellipses represent expert tools data. At level M2, their data structure
or grammar. At level M1, the actual file produced (i.e. exported) or used
(i.e. imported) by a specialized tool.

– At both levels, the dotted circle represents the frontier between tools techni-
cal spaces and MDE. The dotted arrows represent the injections/extractions
required to obtain corresponding knowledge models.

– At a level M2 lecture, blue-filled circles represent the domain-specific meta-
models, whereas at level M1 they are the actual models manipulated during
the scenario.

– Green solid arrows represent (inter-)model operations. At level M2, it is their
definition (hopefully a declarative description). At level M1, their execution
on the models during the scenario. The different types of operations needed
(marked by numbers on the figure) are detailed in a following subsection.

– The whole process is defined and driven by design process knowledge, ex-
pressed as a model of some workflow language (red square).
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Fig. 2. Architecture overview

3.2 Technical spaces and connectors

Expert tools use various formats to store and manipulate data. Most, if not all,
provide import/export facilities from/to either proprietary formats, or, for inter-
operability requirements, from/to industry standards (in our industrial context,
STEP [32] is largely used). In order to manipulate product data in the MDE
environment, we need to obtain corresponding knowledge models.
This operation, here called injection/extraction, has a well-known process in the
MDE community: 1) obtain, or define, the data structure of the technical space;
2) define the corresponding metamodel; 3) map both of them using a MDE lan-
guage/tool that automates the operation.
In practice, we usually fall into two main possibilities:

– An XML format is provided: the process is then eased by existing work on
briding XML schemas to metamodels.

– A textual file is provided: a grammar of the textual syntax has to be defined
(usually in EBNF style), and its concepts mapped to the metamodel.

The obtained metamodel is often syntactically close to the original data struc-
ture. However, it is possible to complete the connector with an additional trans-
formation, defining (or reusing) a target metamodel that has a more appropriate
structure.



Finally, it is important to note that not all the data manipulated by the expert
tool may be of relevance for collaborating with other experts. In that sense, the
model-based architecture offers a very flexible approach: the knowledge model
can very well be a (reformulated) subset of the original expert data.
In the implementation and usecase sections, we will show the application of these
alternatives on a concrete scenario and discuss potential fallbacks.

3.3 Knowledge (meta)models

Knowledge metamodels capture a subset of expert data that is relevant for other
experts in the design scenario. The architecture does not place any constraint
on which metamodels should be used, hence remaining flexible. However, our
experience shows that we are mainly dealing with three types of knowledge
models:

– Tool models. These counterparts of expert tools data structure, as seen in the
previous subsection, may be used as entry-point models to obtain specialized
(tool-independant) models, or simply linked to another tool model in order
to achieve interoperability.

– Specialized models. Design scenarios litterature describe custom knowledge
models which aim at defining, checking or enforcing specific properties of the
product (such as its energetic integrity).

– Intermediate models. Complex transformations may require intermediate
models for technical (simplicity) or conceptual reasons (semantic decom-
position).

The flexibility of the approach allows for an easier development of new design
scenarios: knowledge models may be reused, extended or created from scratch
depending on the scientific analysis rather than tools existing support. Possibil-
ities are however limited by the expressiveness of the metametamodel language.

3.4 Model operations

From the studied scenarios, we outline a (non-exhaustive) list of different experts
collaboration patterns, translate them to knowledge manipulation requirements,
and map these to existing MDE concepts and technologies:

– The output of an expert is used, later in the design process, by another
expert. This is a typical interoperability problem. To obtain the downstream
knowledge model, existing rule-based model transformation technics [18, 7]
can be used (mark 1 on Fig 2).

– The output of several expert analysis have to be combined. A classical exam-
ple is the geometrical mockup of the designed product, which is constrained
by several expert analysis (energy flows, materials, technologies, etc.). In
order to merge (and/or divide) knowledge, modern MDE tools offer the pos-
sibility to specify multi-source (and/or multi-target) transformations (mark
2 on Fig 2).



– Two (or more) experts share some knowledge and have to maintain their
data consistent. Typically, different analysis will share product parameters.
When activities are held in a back and forth stream, bijective transforma-
tions may be used. Since these transformations are not yet mature [33], MDE
applications usually simulate this behaviour with two injective transforma-
tions. When activities are held concurrently, more advanced mechanisms,
such as constraint-based propagation of modifications [4], are to be investi-
gated (mark 3 on Fig 2).

– An expert is faced with two or more inconsistent data constraints. It is
thus required to calculate the impact of modifications and notify upstream
experts. Although a rough impact can be calculated from the activities work-
flow, the MDE approach may offer more fine-grained possibilities through
traceability mechanisms [16]. As the production of knowledge may be achieved
through an external tool operation, traceability must also be kept between
the models which are not directly transformed (mark 4 on Fig 2).

3.5 Process (meta)model

A design scenario is supported by a process which describes the different experts,
activities and tools involved, as well as temporal and collaboration constraints.
This description may be captured using existing generic workflow languages or
product engineering specialized languages [14].
The MDE process, which describes the models and model operations involved,
can be automatically derived from the expert activities workflow.
These are however out of scope of this paper which does not preclude or impose
the use of a particular process language.

4 Usecase

In order to further validate the presented architecture, we illustrate its use on
an innovative design scenario which is not currently well supported by existing
software solutions. The usecase, adapted from [19], deals with the design of a
mechanical coupling system between a plane propeller and a diesel engine. The
design process aims at obtaining a description of a product assembly from its
functional and energetic analysis.
Figure 3 outlines the tools, data files and knowledge models used in the scenario.
The following subsections detail each operation.

4.1 Architecture implementation

We have chosen the Eclipse EMF platform [8] as the implementation framework,
mainly for its maturity and tools support. ECORE is used as the metametamodel
language. The usecase files, models and transformations are open source and can
be freely downloaded from a single package [5]. In the following, metamodels will
be represented using ECORE diagrams.
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Fig. 3. Usecase scenario

4.2 Knowledge models

Our scenario uses three specialized models which are briefly introduced below.

FPPT FPPT stands for Function, Physical Principle, Technology. Informally
described in [21], we created a metamodel which covers most of its concepts. An
excerpt is shown in Figure 4. Functions refer to abstract product functionalities,
which may be divided into subfunctions. Terminal functions are realized, through
a physical principle, by a specific (known) technology.

Fig. 4. An excerpt of the FPPT metamodel



SK2 SK2 stands for Skins, Skeletons, informally described in [23]. Figure 5 is
an excerpt of the corresponding metamodel. Briefly, product parts have external
skins which can be linked to other skins. The product skeleton, which represents
the energy flows, is made of external functions between those skins, and internal
functions inside the parts. Each function has energetic properties.

Fig. 5. An excerpt of the SK2 metamodel

ASB ASB stands for product ASemBly. This very simple metamodel, in which
the system is simply viewed as a set of interconnected parts, has been created
specifically for this scenario, as an intermediate knowledge model between SK2
and the CAD tool CATIA.

4.3 TDC - FPPT connector

The functional analysis tool selected for the usecase is TDC [35]. The tool pro-
vides an export of its data as an XML file. We used EMF native facilities to ob-
tain the ECORE metamodel from the provided XML schema and the associated
injection/extraction operation. However, due to XML arborescent restrictions,
the associative references of the schema are simulated through the equivalence of
textual properties (IDs). We thus created an additional model transformation,
using ATL, to a target metamodel where associative references are restored.
The final step to the connector is an ATL transformation which targets the
FPPT metamodel. The transformation involves a loss of knowledge which is not
relevant for other experts in the context of our collaborative scenario.
Figure 6 summarizes this chain of transformations.

4.4 FPPT to SK2 transformation

This ATL transformation mainly consists of two parts:
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Fig. 6. TDC - FPPT : chain of transformations

– a mapping from FPPT’s functions and technologies to SK2’s external func-
tions and parts.

– a characterization of the skeleton energetic properties obtained from FPPT’s
physical principles.

4.5 SK2 to ASB transformation

This very simple ATL transformation uses SK2’s knowledge to create an assem-
bly where different product parts are linked according to the skeleton.

4.6 ASB to CATIA connector

The selected geometrical modelling tool is CATIA [34]. Among the possible for-
mats for importing data, CATIA proposes the use of STEP AP-203 [11], an
industry standard for exchanging geometrical information about a mechanical
product.
The STEP standard [32] defines textual files which conform to a STEP schema
(Application Protocol here AP-203), which in turn is defined using a relational
language called EXPRESS [10]. The OMG had already considered the interop-
erability between STEP files and MOF models in the original XMI proposal.
Two alternatives were envisionned:

– a metametamodel mapping between EXPRESS and MOF, if any is possible
due to the semantic gap.

– a metamodel mapping between a specific STEP schema and its counterpart
metamodel.

To the best of our knowledge, the first option has been worked on by various
projects but is not yet mature nor known feasible in the general case. We thus
choosed the second option.



Technically, we used XTEXT/XPAND [38] to define the STEP grammar and
generated the corresponding metamodel. This state-of-the-art technology allows
us to inject and extract STEP files to/from STEP models.
For the sake of clarity, we separated the STEP general metamodel from the AP-
203 schema metamodel (which contains most fo the product information). An
excerpt of the latter is shown in Figure 7.
A first ATL transformation generates an AP-203 model from our assembly

Fig. 7. excerpt of the STEP AP-203 metamodel

knowledge model (ASB). In order to obtain the general STEP model, a second
ATL transformation takes two models as source: the AP-203 model and a custom
model which only contains necessary header information for the STEP file (such
as document creator, date, etc.). Figure 8 shows the whole connector chain of
transformations.

5 Related and future work

From the product engineering perspective, most of the related work has been car-
ried out using integrated product model approaches [27], often supported by on-
tology management technologies [20], as opposed to the model-based federation
proposed in this article. Recent work have explored the use of meta-modelling
[36], but are restricted to specific operations such as tool interoperability [22], de-
sign coherency [28], or focus small parts of the design process such as functional
requirements [20]. [12, 25] share our requirements for weavings and transforma-
tions between federated product models but stay at a conceptual level. Our
work generalizes these principles in an flexible federation approach grounded in
model-based techniques.
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From the model-driven engineering perspective, product design requires complex
metamodels and transformation processes. Therefore, while our work makes use
of several existing model-based techniques, it also raises new challenges regarding
traceability, consistency, bidirectional transformations and metamodels expres-
siveness. A large share of the work on megamodels, for instance [2], may also be
adapted to ease the definition and evolution of the design process.
Future work includes experimentations on various industrial usecases, in order
to confirm the viability of the MDE architecture and propose generic methods
for the different collaboration patterns. One of the critical issues is incremental
change management and its propagation to upstream and downstream models.
Finally, investigations are currently carried out to tackle the dynamic aspects
presented in Subsection 2.3. The expected output is a design process model
which will be used to generate and automate the software process.

6 Conclusion

We described in this article a model-based federation approach for the design of
mechanical products. The proposed architecture adapts model techniques such
as metamodelling, transformations and projections to the context of collabora-
tive product design software. Based on previous experiences and studied design
scenarios, generic and flexible model-based solutions are proposed to handle the
digital chain of product knowledge. The implementation on an academic usecase
shows the viability of the approach. Considering the high complexity and hetero-
genity of product design scenarios, a number of original issues and challenges are
raised, which lays the path for future investigations on both product engineering
and model-based software techniques.
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D. Varró, and S. Varró-Gyapay. Model transformation by graph transformation:
A comparative study. In MTiP 2005, International Workshop on Model Transfor-
mations in Practice (Satellite Event of MoDELS 2005), 2005.

8. EMF : http://www.eclipse.org/modeling/emf/, 2009.

9. F.-L. Krause et al. Product modelling. CIRP Annals - Manufacturing Technology,
42(2):695 – 706, 1993.

10. ISO 10303-11, Industrial automation systems and integration – Product data rep-
resentation and exchange - Part 11: The EXPRESS language reference, 1994.

11. ISO 10303-203, Industrial automation systems and integration – Product data rep-
resentation and exchange - Part 203: Configuration controlled 3D designs of me-
chanical parts and assemblies, 1994.

12. Maier F., Mayer W., Stumptner M., and Muehlenfeld A. Ontology-based process
modelling for design optimisation support. In Design Computing and Cognition
’08, pages 513–532. Springer Netherlands, 2008.

13. E. Frey, E. Ostrosi, L. Roucoules, and S. Gomes. Multi-domain product modelling:
from requirements to cad and simulation tools. In International conference on
engineering design, 2009.

14. Booch G., Rumbaugh J., and Jacobson I. Unified Modeling Language User Guide.
Addison-Wesley Professional, 2005.

15. Pahl G., Beitz W., Feldhusen J., and Grote K.H. Engineering design : a systematic
approach. Springer-Verlag, 6th edition, 1996.
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