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FLUCTUATIONS ANALYSIS OF FINITE DISCRETE BIRTH

AND DEATH CHAINS WITH EMPHASIS ON MORAN MODELS

WITH MUTATIONS

THIERRY E. HUILLET

Abstract. The Moran model is a discrete-time birth and death Markov chain
describing the evolution of the number of type 1 alleles in an haploid population
with two alleles whose total size N is preserved during the course of evolution.
Bias mechanisms such as mutations or selection can affect its neutral dynam-
ics. For the ergodic Moran model with mutations, we get interested into the
fixation probabilities of a mutant, the growth rate of fluctuations, the first hit-
ting time of the equilibrium state starting from state {0}, the first return time
to the equilibrium state, the first hitting time of {N} starting from {0}, to-
gether with the time needed for the walker to reach its invariant measure, again
starting from {0}. For the last point, an appeal to the notion of Siegmund
duality is necessary and a cutoff phenomenon will be made explicit. We are
interested into these problems in the large population size limit N → ∞. The
Moran model with mutations includes the heat exchange models of Ehrenfest
and Bernoulli-Laplace as particular cases; these were studied from the point
of view of the controversy concerning irreversibility (H−theorem) and the re-
currence of states.

Running title: Moran Models with Mutations.

Keywords: Moran Models; Mutational and evolutionary processes; Popu-
lation dynamics; Fixation probabilities; Siegmund dual; hitting and first return
times; time to stationarity.

1. Introduction

In Section 2, we start with generalities on discrete-time birth and death Markov
chains with finite state-space, whose transition matrix is of Jacobi type: spectral
representation, reversibility versus H−theorem, large deviations of the empirical
average, invariant measure, conditions of transience/recurrence, spectral positivity
and stochastic monotonicity, distribution of hitting and first return times, Green
function. The scale or harmonic function is shown to be of interest to determine the
excursions heights would the chain be ergodic. After having fixed the background,
we then proceed with the study of specific Moran chains presenting various bias
mechanisms.

The Moran chain model is a particular instance of a discrete-time birth and death
Markov chain, describing the evolution of the number of type 1 alleles in an haploid
population with two alleles whose total size N is preserved during the course of
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evolution. Bias mechanisms such as mutations or selection can affect its neutral
dynamics(1).

For the ergodic Moran model with mutations [29], we get interested (in Sections 3
and 5) into the fixation probabilities of a mutant, the growth of fluctuations, the
first hitting time of the equilibrium state starting from {0}, the first return time
to the equilibrium state, the first hitting time of {N} starting from {0}, together
with the time needed for the Moran walker to reach its invariant measure, again
starting from {0}. The detailed growth rates of these quantities are shown to be
exactly determined in terms of the mutation probabilities.

- For the first fixation probability point, a sharp threshold phenomenon is exhibited
in the following sense: would the mutation probability favoring allele 1 exceed the
one favoring allele 2, the fixation probability of a type 1 mutant tends to 1 as N
grows large with a O (1/N) correction. On the contrary, this fixation probability
tends to 0 geometrically fast as N grows large. In the critical case when the two
mutation probabilities are egal, this fixation probability goes to 1/2 from below.

Under the additional the presence of selection, the fixation condition can be achieved
with probability 1 even if the mutation probability favoring allele 2 exceeds the one
favoring allele 1. The condition is that the relative fitness of allele 1 should be large
enough with bound given in terms of a ratio of mutation probabilities, translating
a mutation-selection balance.

- For the last time to stationarity point, an appeal to the notion of Siegmund duality
(requiring stochastic monotonicity) is necessary and a cutoff phenomenon will be
made explicit in Section 4, following the general stream of ideas developed in [1],
[4], [10] and [11]. The analysis is made simple because the spectral representation
of the mutation Moran model is exactly known.

We are interested into these problems in the large population size limit N → ∞
(i.e. in the thermodynamic limit). From our analysis, it follows that the mutation
Moran walker started at {0} reaches stationarity in about O (N logN) time, far
below the time needed to first return to the origin (or excursion’s length) which
is geometrically large with N . This is because the mutational drift pushes the
walker inside the bulk of the state-space, making the reverse move to any of the
two boundaries extremely costly.

2. Discrete-time Birth and Death Processes

We start with generalities on discrete birth and death (BD) processes with finite
state-space, before particularizing the study to the Moran model under concern
which is in this class.

1There are alternative domains of Science where this model makes sense, namely Economy
and Behavioral Sciences. Here, the Markov state Xn takes on the interpretation of the number of
agents that belong to the first strategy 1 (say right or left-wing voters) at time n. See [12], [14]
and References therein for a recent study with this physical image in mind.



MORAN MODELS WITH MUTATIONS 3

2.1. Generalities on BD processes with finite state-space. Let P be a (N + 1)
2

tridiagonal (Jacobi) irreducible stochastic matrix

P =




r0 p0
q1 r1 p1

. . .
. . .

. . .

qN−1 rN−1 pN−1

qN rN



,

with p0 > 0, qx, px > 0, x = 1, .., N−1 and qN > 0, corresponding to the transition
probability matrix of some ergodic discrete-time Markov chain Xn on the state-
space {0, ..., N} . With 1 a column vector of 1s, P is stochastic if P1 = 1.

The left (row-) eigenvector π
′ := (π0, π1, .., πN ) associated to the eigenvalue 1

satisfies: π
′ = π

′P , where ′ denotes transposition. Its components are given by:

π0 and πy = π0

∏y−1
z=0

pz
qz+1

> 0, y = 1, .., N , with π0 chosen so as:
∑N
y=0 πy = 1. It

corresponds to the invariant probability measure of the chain.

The matrix P is diagonally equivalent to the symmetric matrix

PS =




r0
√
p0q1√

p0q1 r1
√
p1q2

. . .
. . .

. . .√
pN−2qN−1 rN−1

√
pN−1qN√

pN−1qN rN



,

so with real eigenvalues. Indeed, with Dπ := diag(π0, .., πN ), we have: P =

D
−1/2
π PSD

1/2
π . As a symmetric matrix, PS is diagonalizable by an orthogonal trans-

formation and so P is diagonalizable.

Such nearest-neighbors random walks models are well known to be reversible (de-

tailed balance holds). Indeed, P =
←−
P where

←−
P is the transition matrix of the

time-reversed process, given by
←−
P ′ = DπPD

−1
π

(with P ′ denoting the transpose of
P ). The transition matrix of reversible Markov chains has real eigenvalues.

Under our assumptions, irreducible chains governed by P are positive recurrent,
meaning that every state recurs with probability 1, the mean time between recur-
rence to state x being finite and equal to 1/πx.

2.2. The Karlin-McGregor (KMG) spectral theory. Consider the polynomi-
als (qy (t) ; y = 0, .., N) in the variable t ∈ [−1, 1], determined by q0 (t) = 1 and the
3-term recurrences:

tq0 (t) = p0q1 (t) + r0q0 (t) ,

tqy (t) = pyqy+1 (t) + ryqy (t) + qyqy−1 (t) , y ∈ {1, N − 1} ,
therefore with q0 (t) = 1, q1 (t) = (t− r0) /p0, q2 (t) = [(t− r1) q1 (t)− q1] /p1,....
The polynomials qy (t) satisfy qy (1) = 1, y ≥ 0 and are of degree y in t. They
are often called the random walk polynomials. Let tk, k = 0, .., N be the zeroes of
the polynomial of degree N + 1 : t→ PN+1 (t) = tqN (t)− rNqN (t)− qNqN−1 (t),
namely:

S := {tk : PN+1 (tk) = 0} ,
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with 1 = t0 > t1 > .. > tN ≥ −1. The set S constitutes the spectrum of P (see
[22], page 78). The quantity 1− t1 is the spectral gap.

Let µ (dt) :=
∑N
k=0 µkδtk be the spectral probability measure on [−1, 1] with respect

to which (qy (t) , y ≥ 1) are orthogonal, namely:

(1) γy

∫ 1

−1

qx (t) qy (t)µ (dt) = γy

N∑

k=0

µkqx (tk) qy (tk) = δx,y,

where γy :=
πy

π0
= 1/

∫ 1

−1
qy (t)

2
µ (dt) =

∏y−1
z=0

pz
qz+1

, y ≥ 0 are the potential coeffi-

cients.

These polynomials are important in view of the KMG spectral representation the-
orem [22]. Indeed, with q (t) = (q0 (t) , q1 (t) , ..., qN (t))

′
, we have:

(2) tq (t) = Pq (t)

and therefore: tnq (t) = Pnq (t). Selecting the row x, multiplying by qy (t), inte-
grating with respect to µ and applying the orthogonality relations (1), we get
(3)

Pn (x, y) := Px (Xn = y) = γy

∫ 1

−1

tnqx (t) qy (t)µ (dt) = γy

N∑

k=0

µkt
n
kqx (tk) qy (tk) .

Necessarily, µ0 = π0 because by the ergodic theorem, ∀x, Pn (x, y) → µ0γy =
µ0

π0
πy = πy as n ↑ ∞. From (3), because q0 (t) = 1, we have P0 (Xn = 0) =

∑N
k=0 µkt

n
k and so the generating function of P0 (Xn = 0) is

u0 (z) :=
∑

n≥1

znP0 (Xn = 0) =

N∑

k=0

µk (1− ztk)−1
=

∫ 1

−1

µ (dt)

1− zt ,

the Stieltjes transform of the spectral measure, satisfying u0 (1) = ∞ as a result
of t0 = 1. On the other side, let φ0 (z) =

∑
k≥1 z

kP
(
τ∗0,0 = k

)
be the probability

generating function (pgf) of the first return time to zero τ∗0,0 probability. As it can
easily be checked by renewal arguments (see [9], page 330), u0 (z) = 1+u0 (z)φ0 (z),
showing that

u0 (z) =
1

1− φ0 (z)
and φ0 (z) = 1− 1

u0 (z)
= 1− 1

∑N
k=0 µk (1− ztk)

−1
.

We have P
(
τ∗0,0 <∞

)
= φ0 (1) = 1 and φ

′

0 (1) = E
(
τ∗0,0

)
= µ−1

0 = π−1
0 .

More generally, with |z| ≤ 1, let

gz (x, y) =
∑

n≥0

znPn (x, y) = (I − zP )−1
(x, y)

be the Green potential function of the chain. We let g (x, y) := g1 (x, y), the
expected sojourn time at y, starting from x. Note gz (0, 0) = u0 (z) and g0 (x, y) =
1.

- With τx,y = inf (n ≥ 0 : Xn = y | X0 = x) the first hitting time of y starting
from x, by renewal arguments, the pgf of τx,y reads

E (zτx,y ) =
gz (x, y)

gz (x, x)
,
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with τx,x = 0. We have

E (zτy,x) =
gz (y, x)

gz (y, y)
=
γxgz (x, x)

γygz (y, y)

gz (x, y)

gz (x, x)
=
γxgz (x, x)

γygz (y, y)
E (zτx,y ) .

With x < y, we have:

P (τx,y > n) = P (Xn < y | X0 = x) =
∑

0≤y′<y

P (Xn = y′ | X0 = x) =
∑

0≤y′<y

Pn (x, y′)

P (τy,x > n) = P (Xn > x | X0 = y) =
∑

N≥y′>x

P (Xn = y′ | X0 = y) =
∑

N≥y′>x

Pn (y, y′)

and

E (τx,y) =
∑

n≥0

P (τx,y > n) =
∑

0≤y′<y

g (x, y′)

E (τy,x) =
∑

n≥0

P (τy,x > n) =
∑

N≥y′>x

g (y, y′) .

- With τ∗x,x = inf (n ≥ 1 : Xn = x | X0 = x) the first return time to x, we have

φx (z) := E
(
zτ

∗

x,x

)
=

gz (x, x)− 1

gz (x, x)
= 1− 1

gz (x, x)
=: 1− 1

ux (z)

with

P
(
τ∗x,x <∞

)
= φx (1) =

g (x, x) − 1

g (x, x)
.

The probability that the first return time to x is finite is 1 iff g (x, x) = ∞ (a
recurrence condition) and this happens iff P (stochastic) is irreducible in which
case all states are in the same recurrence class. Else if for some x, g (x, x) < ∞
(a transience condition for x), this probability is smaller than 1 and one possible
reason is that absorption occurs in at least one state 6= x; all states then but the
absorbing ones (typically here, either {0} or {N}, or both endpoints) are in the
same transience class and P

(
τ∗x,x <∞

)
∈ (0, 1) because the walker may or not

return to x before hitting one of the absorbing states. So P here is no longer
irreducible and this is a particular reducibility case where transience pops in. In
the latter transient case however, by removing the rows and columns associated to
the absorbing states, we are left with an irreducible substochastic transition matrix
of smaller dimension to which the Karlin-McGregor spectral representation applies
as well (see [22]). The dominant eigenvalue of the restricted matrix is now strictly
smaller than 1.

In view of γx := πx

π0
= 1/

∫ 1

−1 qx (t)
2
µ (dt) and in case of recurrence

(4) E
(
τ∗x,x

)
=

1

πx
.

Equations (2, 3) suggest that, with:

(5) rk (x) =
µk
µ0

qx (tk) and lk (y) = πyqy (tk) ,
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the vectors rk = (rk (0) , .., rk (x) , .., rk (N))
′
and l′k = (lk (0) , .., lk (y) , .., lk (N))

can be chosen to be the right (column) and left (row) eigenvectors of P associated
to the eigenvalue tk for which:

(6) Prk = tkrk and l′kP = tkl
′
k.

In particular, l0 (y) = πyqy (1) = πy and r0 (x) = 1, as required. We have

(7) l′jrk = δj,k

because l′jPrk = tkl
′
jrk = tjl

′
jrk, with the right normalization. Equation (7) yields

another orthogonality relation which is dual to the one in (1), namely:

(8)
µk
µ0

N∑

x=0

πxqx (tj) qx (tk) = δj,k.

With Pk := rkl
′
k, we now get the decomposition of P into orthogonal projectors

which is (3):

P =

N∑

k=0

tkPk and Pn =

N∑

k=0

tnkPk.

Note the biorthogonality relations:

(9) l′jPrk = tkδj,k,

from which it follows that:

N∑

x,y=0

lj (x)P
n (x, y) rk (y) =

N∑

x,y=0

πxqx (tj)P
n (x, y)

µk
µ0

qy (tk) = tnkδj,k.

There is a matrix version of all this: Calling R (respectively L) the matrix whose
kth column (row) is rk (respectively l′k), (6) reads PR = RDt and LP = DtL
where Dt :=diag(t), t =(tk, k = 0, .., N). Since by (7): LR = I :=diag(1) , we
have LPR = DtLR = Dt which is (9). Since RL = I, (LPR)n = Dn

t
= LPnR. If

we let Q be the matrix whose entry (x, k) is Q (x, k) = qx (tk), then R = 1
µ0

QDµ

and L = Q′Dπ is the matrix formulation of (5). Let us finally check that L and
R (that is (5)) are indeed admissible left and right eigenmatrices: The relation
PR = RDt is also PQDµ = QDµDt = QDtDµ which is PQ = QDt which holds

from (2). The relation LP = DtL is also Q′DπP = DtQ
′Dπ or Q′←−P ′ = DtQ

′

which is
←−
P Q = QDt or again PQ = QDt because by the reversibility property:←−

P = P. If µ0R
2 = I (R is involutive), then µ0R = L which means Q′ = QDµD

−1
π

.
If in addition µ = π, then Q′ = Q: the duality relations (1) and (8) coincide and
this is an exceptional case of self-duality.

The KMG spectral theory therefore gives a representation of the right and left
eigenvectors of P associated to its spectrum t, in terms of the orthogonal polyno-
mials q (t) evaluated at t (the Q−matrix).

The interpretation of the right eigenvectors of P is as follows: We have Pnrk = tnkrk.
Fixing the row x, the left-hand-side of the last equality is Ex [rk (Xn)] . Therefore:

Ex [rk (Xn)] = tnkrk (x) .
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Suppose we want to compute Ex [φ (Xn)] for some test function φ. Let then, φ (y) =∑N
k=0 ck (φ) rk (y) be the decomposition of φ in the basis {rk} .We have 〈rj , rk〉π :=∑N
y=0 πyrj (y) rk (y) =

µj

µ0

l′jrk =
µj

µ0

δj,k.

Thus 〈rj , φ〉π =
∑N

k=0 ck (φ) 〈rj , rk〉π =
µj

µ0

cj (φ) and

(10) Ex [φ (Xn)] =

N∑

k=0

tnk ·
µ0

µk
〈rk, φ〉π · rk (x) =

1

πx

N∑

k=0

tnk · 〈rk, φ〉π · lk (x) .

Whenever the spectral structure of the chain is known, the solution Ex [φ (Xn)]
to the backward Kolmogoroff equations are thus computable exactly. Let us now
investigate some special classes of random walks (RWs).

2.3. Symmetric RW. Suppose that N is even with N = 2N0. Assume that a
random walk Xn on {0, .., 2N0} is given so that

P =




0 1
q1 0 p1

. . .
. . .

. . .

q2N0−1 0 p2N0−1

1 0



,

is the transition matrix of some symmetric random walk reflected at the boundaries
{0, 2N0}. The KMG theory is also relevant for such transition matrices Pn. Let tk,
k = 0, .., 2N0 be the zeroes of the polynomial of degree 2N0 + 1 : t→ P2N0+1 (t) =
tq2N0

(t)− q2N0
q2N0−1 (t), namely:

S = {tk : P2N0+1 (tk) = 0} ,
with 1 = t0 > t1 ≥ .. ≥ t2N0

= −1. Then µ (dt) := ∑2N0

k=0 µkδtk is the probability
measure on [−1, 1] with respect to which the polynomial (qy (t) , y ≥ 1) associated
to P are orthogonal. This measure is symmetric on [−1, 1] . In particular, tN0

= 0
and t2N0

= −1, t0 = 1 are eigenvalues of such P s. When N is odd, say with

N = 2N0+1, the spectral measure µ (dt) :=
∑2N0+1
k=0 µkδtk is again symmetric, but

{0} no longer is an eigenvalue and tN0
> 0.

Example: The simplest such example is the simple gambler random walk Xn for
which px = p, qx = q, x = 1, .., N − 1 (p + q = 1) with a pure reflection at
the endpoints (p0 = qN = 1). The invariant measure π is a truncated geometric
distribution. It follows from [9], page 438 that tk = 2

√
pq cos

(
kπ
N

)
, k = 1, ., N − 1,

t0 = 1, tN = −1. The spectral gap tends to 1 − 2
√
pq 6= 0 as N ↑ ∞ if p 6= 1/2.

The mass of the spectral measure can be seen to be equal to: µN = µ0 = π0 =

(1− (p/q)) /
[
2
(
1− (p/q)

N
)]

, µk = (1− 2µ0) / (N − 1), k = 1, .., N − 1 (with

µ0 = 1/ (2N) when p = 1/2). It exhibits boundary effects causing deviation from
the uniform measure on {0, ..N}. The orthogonal polynomials involve two sine
functions. A closed form expression of the generating functions of P0 (Xn = 0) and
P
(
τ∗0,0 = k

)
follows.

Additional comment: Let P be the tridiagonal transition matrix associated to this
RW Xn. Let P be the transition matrix associated to Xn := N − Xn. Then
P (x, y) = P (N − x,N − y) has the same structure as P except that p and q
are interchanged (a drift reversal property). P is obtained from P by applying a
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permutation reversing the order of the rows and then of the columns. So P and
P share the same spectrum and this is why tk is a symmetric function of p and
q. However, the mass of the spectral measure of P is different with: µN = µ0 =

(1− (q/p)) /
[
2
(
1− (q/p)N

)]
.

2.4. Special cases: spectral positivity. Let

S′ =




√
p0√
q1
√
p1
. . .

. . .√
qN−1

√
pN−1√
qN

√
pN




be a sub-diagonal matrix. It is the transpose of a super-diagonal matrix S. Then,
with Dr := diag(r0, .., rN )

S′S =




p0
√
p0q1√

p0q1 p1 + q1
√
p1q2

. . .
. . .

. . .√
pN−2qN−1 pN−1 + qN−1

√
pN−1qN√

pN−1qN pN + qN



=

I −Dr +




0
√
p0q1√

p0q1 0
√
p1q2

. . .
. . .

. . .√
pN−2qN−1 0

√
pN−1qN√

pN−1qN 0



.

Thus

PS = 2Dr − I + S′S

is the sum of a diagonal matrix and a symmetric positive definite matrix. From
this, we conclude that, if the holding probabilities rx ≥ 1/2, for all x = 0, .., N ,
then for all z ∈RN+1\ {0},

(11) z′PSz =

N∑

x=0

(2rx − 1) |zx|2 + |Sz|2 > 0

and so PS and then P is positive definite with real positive eigenvalues. The Jacobi
matrix P then has all its principal minors non-negative and therefore is oscillatory
(that is totally non-negative and such that PN is totally positive) with all its minors
non-negative (see e.g. [13], page 99). Oscillatory stochastic matrices have distinct
positive eigenvalues, with: 1 = t0 > t1 > .. > tN > 0. As a sequence of numbers, the
right row eigenvector rk = (rk (0) , .., rk (x) , .., rk (N))

′
associated to tk has exactly

k sign changes (See [13], page 101). And so do the numbers: (qx (tk) ; x = 0, .., N) .
The above condition rx ≥ 1/2 is a simple sufficient condition allowing to exhibit
examples of P that are oscillatory but of course, it is not necessary; the full condition
under our assumptions being z′PSz > 0 for all z ∈RN+1\ {0} or

(12) z′Pz =

N∑

x=0

rxz
2
x +

N−1∑

x=0

(px + qx+1) zxzx+1 > 0.
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Equivalently, if sk are the positive eigenvalues of S
′S, we need to check 2rk−1+sk >

0 for all k.

For a simple random walk Xn whose (N + 1)
2−transition matrix P is spectrally

non-negative (respectively spectrally positive), there exists a symmetric random
walk Ym on {0, .., 2N} (respectively on {0, .., 2N + 1}), reflected at the endpoints,
started at an even integer {0, 2, 4, .., 2N} (respectively odd integer {1, 3, .., 2N + 1}),
such that {Xn} d

= {Y2n/2}, (respectively {Xn} d
= {(Y2n − 1) /2}). This follows sim-

ply from adapting [34], Th. 2.1 to our finite-dimensional case. As noted just before,
the spectral measure of the random walk Ym is symmetric on [−1, 1] and by passing

to Xn, the spectrum is being folded: If
∑2N
k=0 µkδtk (respectively

∑2N+1
k=0 µkδtk) is

the symmetric spectral measure of Ym with tN = 0 (respectively tN > 0), then

2
∑N
k=0 µkδt2k is the spectral measure of Xn. Let αy and βy be the up and down

probabilities that Ym → Ym+1 = Ym± 1 in one step given Ym is in state y different
from the endpoints, αy + βy = 1, then:

qx = β2xβ2x−1, rx = β2xα2x−1 + α2xβ2x+1, px = α2xα2x+1.

This, together with p0 = α1 and qN = β2N−1 (respectively qN = β2N ) allows to
determine recursively the transition matrix of Ym from the one of Xn. From these
facts, we get:

Proposition 1. If a BD chain Xn is spectrally non-negative, then it is stochasti-
cally monotone.

Proof: Under our hypothesis indeed,

(13) px + qx+1 = α2xα2x+1 + β2x+2β2x+1 < α2xα2x+1 + β2x+1 < 1,

because this is also α2x < 1. This condition means that Xn is stochastically mono-
tone (see below the construction of the Siegmund dual of a RW where stochastic
monotonicity is needed). See also Lemma 2.4 of [10] for a different proof. △

Remark1: Suppose a BD chain Xn with transition matrix P is not spectrally non-
negative, so P has strictly negative eigenvalues (tN < 0). With ρ ∈ (0, 1), consider
the lazy modified stochastic matrix

Pρ = (1− ρ) I + ρP.

The eigenvalues of Pρ are t
(ρ)
k = 1−ρ+ρtk, k = 0, ..., N with the same left and right

eigenvectors as the ones of P . One can always choose ρ ≤ (1− tN )
−1

small enough

so that t
(ρ)
N ≥ 0. For this ρ, Pρ is now spectrally non-negative and so Pρ governs a

stochastically monotone chain X
(ρ)
n . The RW X

(ρ)
n , with shifted spectrum, clearly

has the same invariant measure as the one of Xn.

For example, solving (13) with the boundary conditions p0 = α1 and qN = β2N gives
the forward and backward recurrences of the unknown odd and even probability
terms in the bulk:

For x = 1, .., N − 1 : α2x+1 = px/ (1− qx/ (1− α2x−1)) , α1 = p0.

For x = N − 1, .., 1 : α2x = px/
(
1− qx+1/

(
1− α2(x+1)

))
, α2N = 1− qN .
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As a conclusion, it is easy to construct spectrally positive RWs by ‘squaring’ two
symmetric random walks, but given a non-symmetric RW, it may be difficult to
decide whether it is or not spectrally positive because one needs conversely to check
whether all the above αs are probabilities. Spectral positivity determines stochastic
monotonicity.

2.5. Scale function and excursion height of a RW. Assume the height H =
h ∈ {1, .., N − 1} for some excursion (sample paths of Xn between two consecutive
visits to state 0). This event will be realized if and only if (i) downward paths
started from h hit state {0} before hitting state h+1 and (ii) upward paths started
at {0} first reach 1 (with probability p0) and then, paths started at 1 hit h without
returning to {0} again in the intervening time. These two events are independent.
Therefore, with τx,y the first hitting time of y starting from x :

(14) P (H = h) = p0P (τ1,h < τ1,0)P (τh,0 < τh,h+1) , h = 1, ..., N.

Assume X0 = x. Let Xn∧τx,0
denote the random walk stopped when it first hits 0.

Its transition matrix is P except for its first row which is (1, 0, 0, .., 0), translating
that state {0} is now absorbing. Define the scale (or harmonic) function ϕ of this

random walk as the function which makes Mn := ϕ
(
Xn∧τx,0

)
a martingale. The

function ϕ is important because, as is well-known, for all 0 < x < h ≤ N, with
τx = τx,0 ∧ τx,h the first hitting time of {0, h} starting from x

(15) P (Xτx
= h) =

ϕ (x)

ϕ (h)
.

Using this remark, we get:

(16) P (H = h) = p0P (τ1,h < τ1,0)P (τh,0 < τh,h+1) =

p0
ϕ (1)

ϕ (h)

(
1− ϕ (h)

ϕ (h+ 1)

)
, h ∈ {1, .., N − 1} .

Note P (H ≥ h) = p0
ϕ(h) if ϕ (1) = 1. The event H = N may also occur, with

probability P (H = N) = p0
ϕ(N) .

The interpretation the event H = N takes on is twofold: either it is the maximal
height of an excursion if the state {N} remains reflecting, either, if state {N}
is itself assumed absorbing, P (Xτx

= N) = ϕ(x)
ϕ(N) = ϕ(x)

p0
P (H = N) constitutes

the probability of a fixation event at {N}, starting from state x. We can thus
compute the probability of a fixation before extinction at {0} occurs. It remains to
compute ϕ (defined up to an arbitrary multiplicative constant). We wish to have:
Ex (Mn+1 |Mn = y) = y, leading to ϕ (0) = 0 and

ϕ (x) = qxϕ (x− 1) + rxϕ (x) + pxϕ (x+ 1) , x ≥ 1

where px+ qx+rx = 1, x ≥ 1. Imposing ϕ (1) = 1 (fixing the arbitrary multiplicative

constant), the searched ‘harmonic’ function is ϕ (x) =: 1 +
∑x−1
y=1 ψ (y) where ψ (y)

satisfies: qyψ (y − 1) = pyψ (y). Thus ψ (y) =
∏y
z=1

qz
pz

and:

(17) ϕ (x) = 1 +

x−1∑

y=1

y∏

z=1

qz
pz

, x ≥ 1, ϕ (0) := 0.
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Equations (16) and (17) characterize the law of the excursion height of the random
walk Xn. We note that ϕ (x) increases with x. From (15) and (17), we get an
explicit expression of the probability of the event τx,h < τx,0 :

P (τx,h < τx,0) = P (Xτx
= h) =

ϕ (x)

ϕ (h)
,

where τx,h is the first hitting time of h starting from x, with 0 < x < h ≤ N.

In particular, if h = N with {N} also absorbing, P (τx,N < τx,0) = ϕ(x)
ϕ(N) is the

fixation probability starting from x, whereas P (τx,0 < τx,N) = 1−P (τx,N < τx,0)
is the extinction probability.

3. A BD example: the Moran Model

The example we have in mind is the 2-allele Moran model with bias mechanism p.
Let

(18) p (u) : u ∈ [0, 1]→ [0, 1] , with 0 ≤ p (0) and p (1) ≤ 1

be continuous and p (u) := 1− p (u).
The Moran model Xn is characterized by the following transition probabilities,
given the walker is in state x ∈ {0, .., N} :

(19) qx =
x

N
p
( x
N

)
, rx =

x

N
p
( x
N

)
+
(
1− x

N

)
p
( x
N

)
, px =

(
1− x

N

)
p
( x
N

)
.

For a Moran model, Xn is the amount of, say allele or type 1 individuals, in a
population of size N and the reproduction law is obtained while choosing two
individuals at random among N , one dying and the other one passing to the next
generation while giving birth to an additional individual so as to keep constant the
full population size N over the generations. Given then Xn = x, the transition
Xn → Xn + 1 (Xn → Xn − 1) occurs with probability px (qx) translating the
fact that the individual bound to die is chosen among type 2 (type 1) individuals
with probability 1 − x

N ( xN ) and the one which splits into two new born is chosen

among the other type, with probability p
(
x
N

)
(respectively p

(
x
N

)
), after deforming

the neutral frequency x
N by the bias mechanism p. These bias p take into account

various evolutionary forces which are the causes of deviation to neutrality (see [28],
[15] and [8], for a discussion on various models of utmost interest in population
genetics, among which selection and mutations). The classical neutral Moran model
is obtained when p (u) = u (no external deformation). Extended Moran models are
studied in [21].

Assuming p0 = p (0) > 0 and qN = 1 − p (1) > 0, with y ∈ {1, .., N}, the corre-
sponding Markov chain is ergodic with invariant distribution

(20)
πy
π0

=

y−1∏

z=0

pz
qz+1

=

(
N

y

) y−1∏

z=0

p
(
z
N

)

p
(
z+1
N

) ,

where

π0 = 1/

(
1 +

N∑

y=1

(
N

y

) y−1∏

z=0

p
(
z
N

)

p
(
z+1
N

)
)
.

We have the obvious facts
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Proposition 2. Let Xn be a Moran process with transition probabilities (19) for
some bias p. Then, Xn := N −Xn is again a Moran process with transition prob-
abilities of the type (19) but with the new bias p̃ (u) := 1 − p (1− u) , namely,
qx = pN−x = x

N

(
1− p̃

(
x
N

))
, px = qN−x =

(
1− x

N

)
p̃
(
x
N

)
. The spectrum of the

transition matrix P of Xn is the same as the one P of Xn. If the bias is such that
p̃ (u) = p (u), then the transition matrix of Xn coincides with the one of Xn.

Proof : we have P (x, y) = P (N − x,N − y) and P is obtained from P applying
the permutation σ : (0, 1, ..., N)→ (N, ..., 1, 0) reversing the order of the rows and
then of the columns. △

3.1. Fixation probability. Forcing the states {0, N} to be absorbing, the scale
function reads

ϕ (0) = 0 and ϕ (x) = 1 +

x−1∑

y=1

1(
N−1
y

)
y∏

z=1

p
(
z
N

)

p
(
z
N

)

with ϕ(x)
ϕ(N) being the fixation probability whereas 1− ϕ(x)

ϕ(N) is the extinction proba-

bility, starting from x(2). The probability of a fixation before extinction occurs in
an excursion reads:

P (H = N) =
p0

ϕ (N)
=

p (0)

1 +
∑N−1
y=1

1

(N−1

y )

∏y
z=1

p( z
N )

p( z
N )

.

We have

P (H = N) = p0P (τ1,N < τ1,0)

where P (τ1,N < τ1,0) = 1/ϕ (N) is the fixation probability of a mutant-type allele
A1 e.g. the probability that, starting from X0 = 1, the RW hits state {N} (fixation
of the mutant-type allele 1) before hitting state {0} (extinction of allele 1).

3.2. Examples of bias mechanisms. We now give three examples of bias that
we shall deal with in the sequel.

Moran model with mutations. A basic bias example is the mutation mechanism

(21) p (u) = (1− µ2)u+ µ1 (1− u) ,
where (µ1, µ2) are mutation probabilities in (0, 1] . We let µ1 := 1 − µ1 and µ2 :=
1− µ2, µ = µ1 + µ2 and µ = 1− µ.
Schematically, type 1 alleles are being produced whenever type 1 alleles do not
mutate to type 2 (with probability µ2) or type 2 alleles mutate to type 1 (with
probability µ1)

µ2

	 A1

µ2

⇋
µ1

A2

µ1

� .

The transition matrix P of this model has therefore the particular BD structure

(22) qx =
x

N

(
µ1 − µ

x

N

)
, rx = 1− (px + qx) , px =

(
1− x

N

)(
µ1 + µ

x

N

)
,

2For the neutral model with p (u) = u, the scale function is ϕ (x) = x and the fixation
probability is trivially x/N.
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with p0 = µ1, qN = µ2. When µ 6= 1, we introduce the auxiliary parameters

ν1 = µ1/µ, ν2 = µ2/µ and ν = ν1 + ν2 = µ/µ,

with ν1 + 1 = µ2/µ and ν2 + 1 = µ1/µ.

The drift of this RW is

E (Xn+1 −Xn | Xn = x) = px − qx = p
( x
N

)
− x

N
= µ1 − µ

x

N
.

The deterministic part of the dynamics of Xn has a stable point at x = Nµ1/µ,
cancelling the drift. When p is non-decreasing, we have µ ≤ 1. We note that in the
expression of p̃ (u), the roles of µ1 and µ2 are interchanged. So p̃ (u) = p (u) if and
only if µ1 = µ2 (symmetric mutations).

If µ1 = µ2 = 1, we recover if N is even the heat-exchange Bernoulli-Laplace model
[9] as a borderline example but p (u) = 1 − u is strictly decreasing in this case.
If µ1 = µ2 = 1/2 then p (u) = 1/2 and we obtain an aperiodic model amenable
(through a suitable time substitution) to the Ehrenfest urn model provided N is
even.

For one-way mutations, (µ1, µ2) = (µ1, 0) or (0, µ2) leading to the simpler forms
µ1+uµ1 and µ2u of p (u) but with p (1) = 1 and p (0) = 0 respectively, correspond-
ing to {N} (respectively {0}) being absorbing. We avoid this situation because it
deserves another treatment due to transience.

Moran model with mutations and selection. Another example could be

(23) p (u) =
µ1 + u ((1 + s)µ2 − µ1)

1 + su
,

which is the composition of the selection bias mechanism

(24) p (u) =
(1 + s)u

1 + su
(s > −1)

with the mutation mechanism (21). When considering the fixation probability
P (H = N) for the Moran model with this particular mechanism, we obtain a
closed-form formula for the fixation probability of a mutant which of course is
an interesting issue in genetics.

Cases with positive eigenvalues. We may look for conditions on the mechanism
p leading to rx ≥ 1

2 in which case the RW is spectrally positive. Assume p (u) : u ∈
(0, 1)→ (0, 1) is continuous and non–decreasing, with 0 < p (0) ≤ p (1) < 1.

Then, as can easily be checked: rx ≥ 1/2 for all x if and only if p (1/2) = 1/2
with p (0) ≤ 1

2 ≤ p (1) . Indeed, imposing rx ≥ 1/2 for all x leads to p (u) ≥ 1/2 if
u ≥ 1/2 and p (u) ≤ 1/2 if u ≤ 1/2. So, if p is non–decreasing with p (1/2) = 1/2,
then rx ≥ 1

2 .

- Take for example the mutation mechanism, now satisfying 0 < µ1 ≤ µ2 < 1. The
condition p (1/2) = 1/2, leads to µ1 = µ2 (fair mutation). In this case, p (u) =
µ1 + (1− 2µ1)u with 0 < µ1 ≤ 1/2. If µ1 = 1/2, then p (u) = 1

2 and qx = x
2N ,

rx = 1
2 , px = 1

2

(
1− x

N

)
.
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For example, if N = 2 :

P =



µ1 µ1 0
1
4

1
2

1
4

0 µ1 µ1




has three distinct real non-negative eigenvalues
{
1, µ1,

1−2µ1

2

}
ordered in decreasing

size. We note however that it is not necessary that µ1 = µ2 for P to be spectrally
positive: indeed, for the full Moran model with mutations µ1 6= µ2, under the sole
condition µ1 + µ2 ≤ 1 (p is non decreasing), the eigenvalues tk can be seen to be
non-negative. Still, we were not able to find a sharp general condition on p that
would lead to a spectrally non-negative Moran chain.

- For the mechanism p of (23) combining mutations with selection, assuming 0 <
µ1 ≤ µ2 < 1 to guarantee that p is non-decreasing, the condition p (1/2) = 1/2
relates (s, µ1, µ2) to give: s = (µ2 − µ1) / (1/2− µ2) where both µ1, µ2 < 1/2. In
this case, the model is spectrally positive.

3.3. Fixation probabilities for the Moran model with mutations and/or
selection. We now study the particular Moran model with mutations and/or se-
lection, starting with fixation probabilities.

• Moran with mutations (sharp threshold phenomenon): We need to evaluate

ϕ (N) = 1 +
∑N−1
y=1

1

(N−1

y )

∏y
z=1

p( z
N )

p( z
N )

for large N and then P (τ1,N < τ1,0) =
1

ϕ(N)

will follow.

− Suppose first µ = 1 and let ρ := µ1

µ1

.

Proposition 3. The fixation probability satisfies the sharp threshold property:

(i) If µ1 = 1/2 (ρ = 1), then P (τ1,N < τ1,0) =
1

ϕ(N) → 1/2.

(ii) If µ1 < 1/2 (ρ > 1), then P (τ1,N < τ1,0) =
1

ϕ(N) ∼ ρ−N → 0.

(iii) If µ1 > 1/2 (ρ < 1), then P (τ1,N < τ1,0) =
1

ϕ(N) → 1.

Proof: With ρ = µ1

µ1

, we first have the identity for sums of inverse binomial

coefficients (see e.g. [27], page 197)

ϕ (N) :=

N−1∑

y=0

ρy(
N−1
y

) =
N

(ρ+ 1)
(

1
ρ + 1

)N
N∑

k=1

(
ρk + 1

)(
1
ρ + 1

)k

k
.

There is therefore a closed-form expression of the fixation probabilityP (τ1,N < τ1,0) =
1

ϕ(N) . Observing now

ϕ (N) :=
N−1∑

y=0

ρy(
N−1
y

) = 1 +
ρ

N − 1
+
ρN−2

N − 1
+ ρN−1 +

N−3∑

y=2

ρy(
N−1
y

) ,

we get:

(i) µ1 = µ1(ρ = 1): ϕ (N)→ 2+. So: P (τ1,N < τ1,0) =
1

ϕ(N) → 1/2.

(ii) µ1 > µ1 (ρ > 1): ϕ (N) ∼ ρN−1. So: P (τ1,N < τ1,0) =
1

ϕ(N) ∼ ρ−N → 0.

(iii) µ1 < µ1 (ρ < 1): ϕ (N)→ 1+. So: P (τ1,N < τ1,0) =
1

ϕ(N) → 1.
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If ρ = 1, because 1

(Ny )
≤ 1

(N2 )
if y ∈ {2, N − 2}: 2 + 2/N < ϕ (N + 1) < 2 +

2/N+2 (N − 3) /(N (N − 1)) and ϕ1 (N + 1) is very close to 2+2/N. The fixation
probability tends to 1/2 from below.

If ρ 6= 1, 1 + ρN + ρ/N + ρN−1/N < ϕ (N + 1) < 1 + ρN + ρ/N + ρN−1/N +

2/(N (N − 1))ρ2 1−ρN−3

1−ρ and ϕ (N + 1) is very close to ρN if ρ > 1 and very close

to 1 up to a ρ/N factor if ρ < 1.

When µ1 < 1/2, the probability, starting from {0} to hit the state {N} (fixation)
starting from 1 before returning to {0} tends to 0 geometrically fast. On the con-
trary, would µ1 > 1/2, this probability would converge to 1: mutations producing
type 1 individuals are sufficiently large to enhance fixation of a mutant allele with
probability 1. If µ1 = 1/2, the fixation probability approaches 1/2. △

− Suppose now µ 6= 1. With AN = N µ1

µ = N (ν2 + 1), BN = N µ1

µ = Nν1

ϕ (N) = 1 +

N−1∑

y=1

1(
N−1
y

)
y∏

z=1

µ1 − µ z
N

µ1 + µ z
N

= 1 +

N−1∑

y=1

1(
N−1
y

)
y∏

z=1

N µ1

µ − z
N µ1

µ + z

= 1 +

N−1∑

y=1

1(
N−1
y

) Γ (AN )

Γ (AN − y)
Γ (BN + 1)

Γ (BN + 1 + y)
=: 1 +

N−1∑

y=1

1(
N−1
y

)ψN (y) .

Proceeding as before, we have

1 +
ψN (1)

N − 1
+ ψN (N − 1) < ϕ (N) < 1 +

ψN (1)

N − 1
+ ψN (N − 1) +O

(
N−2

)
,

showing that ϕ (N) ∼
N large

1+ ψN (1)
N−1 +ψN (N − 1) . The dominating term in ϕ (N)

is thus either the one corresponding to y = 1 or the one corresponding to y = N−1.

With r :=

(
µ
µ1
1

µ
µ2
2

µ
µ1
1

µ
µ2
2

)1/µ

, by Stirling formula, we get

ϕ (N) ∼
N large

1 +
1

N − 1

AN − 1

BN + 1
+

Γ (AN )

Γ (AN −N + 1)

Γ (BN + 1)

Γ (BN +N)

∼ 1 +
1

N − 1

ν2 + 1

ν1
+

Γ (N (ν2 + 1))

Γ (Nν2 + 1)

Γ (Nν1 + 1)

Γ (N (ν1 + 1))

= 1 +
1

N − 1

ν2 + 1

ν1
+
ν1 + 1

ν2 + 1

(
N(ν2+1)
Nν2

)
(
N(ν1+1)
Nν1

)

∼
N large

1 +
1

N − 1

ν2 + 1

ν1
+

√
ν1 + 1

ν2 + 1

(
(ν2 + 1)

ν2+1

νν2

2

νν1

1

(ν1 + 1)
ν1+1

)N

=: 1 +
1

N − 1

ν2 + 1

ν1
+

√
ν1 + 1

ν2 + 1
rN .

Now, whenever µ1 < µ2, regardless of whether µ > 1 or µ < 1,

(25) r :=
(ν2 + 1)

ν2+1

νν2

2

νν1

1

(ν1 + 1)
ν1+1 =

(
µ
µ1

1

µ
µ2

2

µ
µ1

1

µ
µ2

2

)1/µ

> 1.
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Indeed, let H (µ1) = − (µ1 logµ1 + µ1 logµ1) . The condition r > 1 is also:

1

µ
(H (µ2)−H (µ1)) > 0.

If µ1 < µ2, thenH (µ2)−H (µ1) < 0 iff µ2 > µ1 (or µ < 0) and then 1
µ (H (µ2)−H (µ1)) >

0.

If µ1 < µ2, thenH (µ2)−H (µ1) > 0 iff µ2 < µ1 (or µ > 0) and then 1
µ (H (µ2)−H (µ1)) >

0.

We obtained:

Proposition 4. When µ 6= 1, the fixation probability also satisfies a sharp threshold
property:

(i) If µ1 < µ2, the fixation probability tends to 0 geometrically fast because ϕ (N) ∼
N large√

ν1+1
ν2+1r

N =
√

µ2

µ1

rN , leading to P (τ1,N < τ1,0) =
1

ϕ(N) ∼
N large

√
µ1

µ2

r−N . The fix-

ation probability of a mutant tends to 0, algebraically fast at rate r given by (25).

(ii) If µ1 > µ2, regardless of whether µ > 1 or µ < 1, r < 1. Thus ϕ (N) ∼
N large

1+ 1
N
ν2+1
ν1

= 1+ 1
N
µ1

µ1

leading to P (τ1,N < τ1,0) =
1

ϕ(N) ∼
N large

1/
(
1 + 1

N
µ1

µ1

)
→ 1

from below.

(iii) If µ1 = µ2 (balanced mutations), ν1 = ν2, r = 1 and therefore: ϕ (N) ∼
N large

2 + 1
N
µ1

µ1

→ 2+ : the fixation probability tends to 1/2 from below.

• For the Moran model with selection mechanism p (u) = (1+s)u
1+su as in (24),

gene A1 (respectively A2) has fitness w1 = 1+s (respectively w2 = 1) so that, with
w := w1/w2 = 1 + s the mutant relative fitness

ϕ (x) = 1 +

x−1∑

y=1

1(
N−1
y

)
y∏

z=1

p
(
z
N

)

p
(
z
N

) = 1 +

x−1∑

y=1

w−y =
1− w−x

1− w−1
,

showing that: P (τ1,N < τ1,0) = 1
ϕ(N) = 1−w−1

1−w−N . Whenever s > 0 (s < 0), the

mutant gene A1 is selectively advantageous (deleterious) compared to A2. When
w−1 < 1 (s > 0), P (τ1,N < τ1,0) tends to 1 − w−1 whereas when w−1 > 1 (s <
0), this probability tends to 0 exponentially fast like

(
w−1 − 1

)
wN . When s = 0

(neutral case), P (τ1,N < τ1,0) = 1/N tends to 0 much slower.

In this pure selection case, these results are well-known (see e.g. (3.66) page 109 of
[8] and also [1] in [30]).

• For the Moran model with bias mechanism (23) involving both mutation and
selection

ϕ (x) = 1 +

x−1∑

y=1

1(
N−1
y

)
y∏

z=1

p
(
z
N

)

p
(
z
N

) = 1 +

x−1∑

y=1

1(
N−1
y

)ψN (y)

where, with µ̃ = (1 + s)µ2 − µ1 = µ + sµ2, AN = N
µ1

µ̃ , BN = N
µ1

µ̃ , ψN (y) =
Γ(AN )

Γ(AN−y)
Γ(BN+1)

Γ(BN+1+y) .
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From the preceding analysis, we conclude that with

(26) r :=

(
µ
µ1

1

(µ2 (1 + s))
µ2(1+s)

µ
µ1

1

(1− µ2 (1 + s))
1−µ2(1+s)

)1/[µ+sµ2]

,

ϕ (N) ∼
N large

1 +
1

N − 1

µ1

µ1

+

√
(1 + s)

µ2

µ1

rN .

We thus obtained:

Proposition 5. For the Moran model with bias mechanism (23):

(i) If w = 1 + s < µ1

µ2

, the fixation probability tends to 0 geometrically fast because

ϕ (N) ∼
N large

√
wµ2

µ1

rN , leading to P (τ1,N < τ1,0) =
1

ϕ(N) ∼
N large

1√
w

µ2
µ1

r−N . The

fixation probability of a mutant tends to 0, algebraically fast at rate r now given by
(26).

(ii) If w >
µ1

µ2

, ϕ (N) ∼
N large

1 + 1
N
µ1

µ1

leading to P (τ1,N < τ1,0) = 1
ϕ(N) ∼

N large

1/
(
1 + 1

N
µ1

µ1

)
→ 1 from below.

(iii) In the critical regime when w = µ1

µ2

and then ϕ (N) ∼
N large

2 + 1
N
µ1

µ1

: the

fixation probability tends again to 1/2.

Proof: Regardless of whether µ < 1 or µ > 1, the extinction condition r > 1 is
achieved whenever

1

µ+ sµ2

(H (1− µ2 (1 + s))−H (µ1)) > 0.

By the above arguments, this leads to the following mutation-selection balance
condition: µ1 < 1− µ2 (1 + s) which is also

w := 1 + s <
µ1

µ2

.

The selective advantage of allele A1 (its relative fitness) should not be too large and
the upper bound is given by the ratio of the mutation probabilities µ1/µ2. Note
that µ1 < µ2 (respectively µ1 > µ2) ⇒ µ1/µ2 > 1 (respectively µ1/µ2 < 1). In
the presence of selection, the extinction condition can be achieved even if µ1 > µ2

provided s < 0 is small enough. When µ1 = µ2, the extinction of the mutant allele
occurs if it is selectively deleterious: s < 0. △

To the best of the author’s knowledge, the results displayed in Propositions 3 − 5
seem to be new.

3.4. Spectral representation and invariant measure of the Moran model
with mutations. Except for some exceptional special cases, the spectral measure
associated to the Moran model with general bias mechanism p as in (19) is not
known. One of the notable exceptions is the Moran model with positive mutation
probabilities µ1, µ2; see [23], [24] and [17]. The transition matrix P of this model
has therefore the BD structure (22).
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For the Moran model with mutations, the orthogonal polynomials coincide with
the dual Hahn polynomials Rx (λk) := Hk (x) where, with λk = k (k +Nν − 1)

(27) Hk (x) = 3F2

((−k, k +Nν − 1,−x
Nν1,−N

)
; 1

)
, k = 0, ..., N

are the classical Hahn or Hahn-Eberlein polynomials. We note that (Hahn case)
µ < 1⇒ ν1, ν2 > 0 with ν1, ν2 → +∞ (µ→ 1−) and ν1, ν2 → 0 (µ→ 0+) whereas
(Hahn-Eberlein case) µ > 1 ⇒ ν1, ν2 < −1 with ν1, ν2 → −∞ (µ → 1+) and
ν1, ν2 → −1 (µ→ 2−).

The case µ < 1 (µ > 1) corresponds to a weak (strong) mutation regime.

As a truncated hypergeometric series, the polynomials Rx (λk) are of degree k in x.
In this case, thanks to the 3-term recurrence satisfied by the Hk (x), the eigenvalues
of the transition matrix (22) are

(28) tk = 1− λk
N (N +Nν)

= 1− k

N

(
µ+

k − 1

N
µ

)
,

depending only on the total mutation pressure µ. In particular, 1 − t1 = µ
N is the

spectral gap and tN = µ
N is the smallest eigenvalue (with tN < 0 if µ > 1).

- In the weak mutation regime µ < 1, the RW is spectrally positive with

0 < tN =
µ

N
< ... < t1 = 1− µ

N
< t0 = 1.

- In the strong mutation regime 1 < µ < 2, the RW is not spectrally positive with

tN =
µ

N
< ... < 0 < ... < t1 = 1− µ

N
< t0 = 1.

When N gets large, there is a fixed (independent of N) number of negative eigen-
values. Only when µ = 2 do we have a number of negative eigenvalues of order√
N/2.

Invariant measure. Furthermore, with (a)x := Γ (a+ x) /Γ (a) the rising factorial
of a, the invariant probability measure is the generalized bivariate hypergeometric
distribution:

(29) πx =

(
N

x

)
(Nν1)x (Nν2)N−x

(Nν)N
, x = 0, .., N

which may also be recast as

(30) πx =

(
−Nν1

x

)(
−Nν2

N−x

)
(
−Nν
N

) , x = 0, .., N

with the convention
(
−a
x

)
= {−a}x /x!, {−a}x = −a (−a− 1) .. (−a− x+ 1) , the

falling factorials of −a with {−a}x = (−1)x (a)x.
The mean and variance of πx are

m∞ := N
ν1
ν

= N
µ1

µ
and σ2

∞ := N2 ν1ν2
ν2

1 + ν

Nν + 1
=

N2

Nµ+ µ

µ1µ2

µ2
.
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Upon scaling, the law of U∞ := X∞/N is very much peaked around its mean µ1

µ ,

with density

fN (u) = NπNu =
eNV (u)

∫ 1

0 due
NV (u)

, u ∈ (0, 1)

where V (u) = logW (u) and, by Stirling formula

W (u)
(µ<1)
=

(ν1 + u)ν1+u

νν1

1 u
u

(ν2 + 1− u)ν2+1−u

νν2

2 (1− u)1−u
νν

(ν + 1)ν+1 if ν1, ν2 > 0

W (u)
(µ>1)
=

(−ν1)−ν1

uu (−ν1 − u)−ν1−u

(−ν2)−ν2

(1− u)1−u (−ν2 − 1 + u)
−ν2−1+u

(−ν − 1)
−ν−1

(−ν)−ν
if ν1, ν2 < −1

W (u)
(µ=1)
=

µu1µ
1−u
1

uu (1− u)1−u
.

We have V ′ (u) = 0 at u∗ = ν1

ν = µ1

µ and V ′′ (u∗) = − ν2

1+ν

(
1
ν1

+ 1
ν2

)
= − µ3

µ1µ2

< 0.

A saddle point estimate gives

∫ 1

0

dueNV (u) = eNV (u∗)

√
2π

N |V ′′ (u∗)|
and so fN (u) ∼

√
N |V ′′ (u∗)|

2π
e−N(V (u∗)−V (u)).

•When both ν1, ν2 > 0 (µ < 1) the distribution (29) is the negative hypergeometric
distribution which can be obtained as a beta(Nν1, Nν2) mixture of the binomial

distribution
(
N
x

)
px (1− p)N−x

with parameter p ∈ [0, 1] , namely:

πx =

(
N

x

)∫ 1

0

px (1− p)N−x Γ (Nν)

Γ (Nν1) Γ (Nν2)
pNν1−1 (1− p)Nν2−1

dp,

with (by Stirling formula)

π0 =
Γ (Nν)

Γ (Nν1) Γ (Nν2)

∫ 1

0

pNν1−1 (1− p)N(ν2+1)−1
dp =

Γ (Nν)

Γ (Nν2)

Γ (N (ν2 + 1))

Γ (N (ν + 1))

∼
√
ν2
ν

ν + 1

ν2 + 1

(
(ν2 + 1)

ν2+1

νν2

2

νν

(ν + 1)
ν+1

)N
=:

√
µ2

µµ1

ρN ,

displaying exponential decay (ρ =

(
µ
µ1
1
µµ

µ
µ2
2

)1/µ

< 1). Note that, with

ρ :=
(ν1 + 1)ν1+1

νν1

1

νν

(ν + 1)
ν+1 =

(
µ
µ2

2 µµ

µ
µ1

1

)1/µ

< 1

it holds that

πN =
Γ (Nν)

Γ (Nν1) Γ (Nν2)

∫ 1

0

pN(ν1+1)−1 (1− p)Nν2−1
dp

=
Γ (Nν)

Γ (Nν1)

Γ (N (ν1 + 1))

Γ (N (ν + 1))
∼
√

µ1

µµ2

ρN .

Note that both ρ and ρ < 1 because, with h (x) := −x log x, µ < 1 ⇒ h (µ) >
h (µ2)− h (µ1) and h (µ) > h (µ1)− h (µ2) .

Furthermore, the rate r (25) appearing in the fixation probability is r = ρ/ρ.
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The case of symmetric mutations µ1 = µ2 (with µ < 1) is obtained while setting
ν1 = ν2 = ν/2.

• When both ν1, ν2 < −1 (2 > µ > 1) the distribution πx in (30) constitutes
the classical (generalized) hypergeometric distribution arising in sampling without
replacement.

By Stirling formula, for all b > a > 0 (exponential growth):

(31)

(
Nb

Na

)
∼ 1√

2π (b− a)N/b

[
bb

aa (b− a)b−a

]N
.

This shows that, with ρ < 1 and ρ < 1

π0 =

(
−Nν2

N

)
(
−Nν
N

) ∼
√
ν2 (ν + 1)

ν (ν2 + 1)

[
(−ν2)−ν2

(−ν2 − 1)−ν2−1

(−ν − 1)
−ν−1

(−ν)−ν

]N
=:

√
µ2

µµ1

ρN

πN =

(
−Nν1

N

)
(
−Nν
N

) ∼
√
ν1 (ν + 1)

ν (ν1 + 1)

[
(−ν1)−ν1

(−ν1 − 1)
−ν1−1

(−ν − 1)
−ν−1

(−ν)−ν

]N
=:

√
µ1

µµ2

ρN

Note that again

ρ =

(
µ
µ1

1 µµ

µ
µ2

2

)1/µ

and ρ =

(
µ
µ2

2 µµ

µ
µ1

1

)1/µ

,

with ρ and ρ < 1 because, with h (x) := −x logx, µ > 1⇒ h (µ) < h (µ2)− h (µ1)
and h (µ) < h (µ1)− h (µ2) .

• When both ν1, ν2 = −1 (µ1 = µ2 = 1), we get the standard hypergeometric

distribution πx =
(
N
x

)(
N

N−x

)
/
(
2N
N

)
, with π0 = πN = 1

(2NN )
∼
√
πN4−N .

The case of symmetric mutations µ1 = µ2 (with µ > 1) is obtained while setting
ν1 = ν2 = ν/2.

• When µ1 = µ2 = 1 (Bernoulli-Laplace), the transition probabilities read: qx =(
x
N

)2
, rx = 2 xN

(
1− x

N

)
, px =

(
1− x

N

)2
. Here, πx =

(
N
x

)(
N

N−x

)
/
(
2N
N

)
(the stan-

dard hypergeometric distribution), µk = 2N+1−2k
2N+1−k

(
N
k

)
/
(
2N−k
N

)
and tk = 1− k

N2 (2N + 1− k).
The expected return time to {0} is 22N/

√
πN which is huge when N is large,

whereas the expected return time to {N/2} is of order
√
πN/2, much smaller.

• On the critical line µ1 + µ2 = 1, p (u) = µ1 is constant and so the transi-
tion probabilities become affine functions of the state: qx = µ1

x
N , rx = µ1 +

(2µ1 − 1) x
N , px = µ1

(
1− x

N

)
. Here, πx =

(
N
x

)
µx1µ

N−x
1 , µk =

(
N
k

)
µk1µ

N−k
1 are

binomial bin(N,µ1)−distributed and self-dual and tk = 1 − k
N , independent of

µ1 (this RW is spectrally non-negative). The Hahn polynomials boil down to

Hk (x) = 2F1

((
−k,−x
−N

)
;µ−1

1

)
, k = 0, ..., N, a class of Krawtchouk polynomials.

When µ1 = 1/2 (the lazy Ehrenfest urn), the holding probabilities are rx = 1/2
and both πx and µk are symmetric bin(N, 1/2) distributed.



MORAN MODELS WITH MUTATIONS 21

Spectral measure when µ 6= 1.

The spectral probability measure is

(32) µk =
2k +Nν − 1

k +Nν − 1

(
N

k

)
(Nν2)N

(k +Nν)N

(Nν1)k
(Nν2)k

, k = 0, .., N

and the orthogonality relation reads:

(33)

N∑

k=0

µkRx (λk)Ry (λk) =
(Nν2)N
N !

x! (N − x)!
(Nν1)x (Nν2)N−x

δx,y =
π0

πx
δx,y.

Notice, in our notations: qx (tk) = Rx (N (N +Nν) (1− tk)) = Rx
(
N2 (1− tk) / (µ)

)
.

In particular

qx (t1) = : H1 (x) = 1− ν

Nν1
x

qx (t2) = : H2 (x) = 1−Ax+Bx2

where

A =
Nν + 1

Nν1

2Nν1 + 2+ ν2 − ν1
(N − 1) (Nν1 + 1)

, B =
(Nν + 1) (Nν + 2)

N2 (Nν1 + 1) (N − 1) ν1
.

Evolution of the conditional mean and variance of Xn given X0 = x.

qx (t1) and qx (t2) being right eigenvectors of P,

ExH1 (Xn) = tn1H1 (x)

ExH2 (Xn) = tn2H2 (x)

leading, by virtue of (10), to

Proposition 6. For the Moran model with mutations

Ex (Xn) = m∞ (1− tn1H1 (x)) →
n→∞

m∞ = N
ν1
ν

= N
µ1

µ

σ2
x (Xn) =

Am∞

B
(1− tn1H1 (x))−m2

∞ (1− tn1H1 (x))
2 − 1

B
+

1

B
tn2H2 (x) →

n→∞
σ2
∞.

This shows how the mean and variance of Xn varies, during the course of evolution,
as a function of n and the initial condition X0 = x before reaching the mean and
variance of the limit law. Concerning the mean value

Ex (Xn)−m∞ = tn1 (x−m∞)

and depending on x > m∞ or x < m∞, Ex (Xn) approaches monotonically the
limiting value m∞ from above or from below. Note however that for all initial
conditions x,

|Ex (Xn −m∞)| is a decreasing (negentropic) function of n.

Let us now consider the variance. Noting that AB−2m∞ = (µ1 − µ2) (2− µ) / (µ− 1),
rearranging the terms,

σ2
x (Xn) = σ2

∞ −m∞H1 (x)
(µ2 − µ1) (2− µ)

µ
tn1 −m2

∞H1 (x)
2
t2n1 +

1

B
H2 (x) t

n
2

with (µ2−µ1)(2−µ)
µ > 0 if (µ2 > µ1 and µ < 1) or (µ2 < µ1 and µ > 1) and

t2 < t21 < t1 < 1. The corrective term to the limiting variance is a linear combination
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of three terms with geometric decay at different rates. For large n, the discrepancy
between σ2

x (Xn) and σ
2
∞ is indeed controlled by the slower tn1 term. In general, the

variance does not increase monotonically towards its limiting value, starting from
σ2
x (X0 = x) = 0.

Proposition 7. If for instance starting from x < Nµ1/µ = m∞ (which is H1 (x) >

0), depending on (µ2−µ1)(2−µ)
µ > 0 or not, σ2

x (Xn) approaches its limiting value

σ2
∞ from below or from above, respectively. When (µ2−µ1)(2−µ)

µ < 0, there is a time

n = n∗ (x) at which the fluctuation σ2
x (Xn) is maximum and this maximum exceeds

σ2
∞. The conclusions should be reversed would x > Nµ1/µ = m∞ (or H1 (x) < 0).

It can also be shown ([31], page 47) that, for m ≥ 0

covx (Xn, Xn+m) = tm1 σ
2
x (Xn) ,

meaning a geometric asymptotic decay of the auto-covariance also controlled by the
second largest eigenvalue t1.

Evolution of heterozygosity. Let

h (Xn) = Xn (N −Xn) =: XnXn

denote the heterozygosity of the chain. This function is the largest when Xn = N/2
i.e. when both type population sizesXn andXn are the closest. The exact evolution
of Exh (Xn) and σ2

x (h (Xn)) can be derived in a similar way, using (10). For the
variance σ2

x (h (Xn)), qx (t4) =: H4 (x) , as a degree−4 polynomial in x, is needed.
It can be shown that Exh (Xn) tends monotonically to σ2

∞µ (N − 1) ∼ N2 µ1µ2

µ2 ,

geometrically fast at rate t1, as n→∞. The variance tends to 0 geometrically fast
as n→∞ and it is maximal at some intermediate time n = n∗ (x).

Note that, with g (Xn) = Xn −Xn = 2Xn −N denoting the population gap,

Exg (Xn) = 2m∞ (1− tn1H1 (x))−N
and this function, just like Ex (Xn) −m∞, is not always (i.e. independently of x)
decreasing with n.

Increase of the conditional entropy given X0 = x (H−theorem):

Let P (Xn | X0 = x) = Pn (x,Xn), n ≥ 1. For any initial distribution P (X0 = x),
with

Hn := −E logP (Xn | X0) = −
N∑

x=0

P (X0 = x)E logP (Xn | X0 = x) , n ≥ 1 and H0 = 0

the Shannon conditional entropy of the chain, we have [18]

0 ≤ Hn+1 −Hn ≤ Hn −Hn−1.

The first inequality shows that Hn is non-decreasing. It converges to its limiting
maximal value, which is the Shannon entropy of the invariant measure. The second
inequality shows that Hn is n−concave: the speed of increase of entropy decreases
as time passes by. In particular, letting Hn (x) := −E logP (Xn | X0 = x), for all
fixed starting point x, H0 (x) = 0 and

0 ≤ Hn+1 (x)−Hn (x) ≤ Hn (x)−Hn−1 (x) .
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The increase of entropy is a manifestation of irreversibility apparently in conflict
with the reversibility property of all ergodic BD chains and their recurrence of
states.

Empirical average and large deviation ([33]).

Given X0 = x0, let

MU
n :=

1

n
SUn :=

1

n

n∑

m=1

U (Xm)

denote the empirical average of some bounded measurable output function U of
the (ergodic) chain. Examples of interesting Us are U (x) = x in which case MU

n

is directly the empirical average of the Xs, but also U (x) = 1 (x = y) in which
case SUn is the fraction of time spent by the walker at state y (its local time). With
e′x0

the row vector which is 0 everywhere but at position x0 where it is 1 and 1 a
column vector of 1s, we have

E
(
e−βS

U
n | X0 = x0

)
=

∑

x1,..,xn

e−β
∑n

m=1
U(xm)

n∏

m=1

P (xm−1, xm)

=
∑

x1,..,xn

n∏

m=1

P (xm−1, xm) e−βU(xm) = e′x0
Pnβ 1,

where, with wβ a column weight-vector with x entry wβ (x) = e−βU(x), Pβ :=
PDwβ

. By Perron-Froebenius theorem, we have

− 1

n
logE

(
e−βS

U
n | X0 = x0

)
→

n→∞
− logλ (β) =: p (β) ,

where λ (β) is the dominant principal eigenvalue of Pβ and p (β) a concave function
of β ∈ R, with p (0) = 0. Thus

1

n
logP

(
1

n

n∑

m=1

U (Xm) ∈
n→∞

dα

)
→

n→∞
f (α) dα

where f (α) = infβ (αβ − p (β)) ≤ 0 is the concave Legendre transform of the
pressure function p (β), giving the large deviation rate function of MU

n . Clearly,

1

n

n∑

m=1

U (Xm)
a.s.→
n→∞

α∗ := E (U (X∞)) ,

which is the value where f (α) is maximum (β∗ = f ′ (α∗) = 0), equal to 0.

4. A detailed study of the Siegmund dual of BD chains with an

application to the mutation Moran model

In this Section, we shall illustrate the power of the duality/intertwining relation-
ship by considering the simplest Siegmund dual of a birth and death chain, with the
mutation Moran birth and death example in mind. We also address here the ques-
tion of computing the strong stationary time distribution that helps quantifying
the ‘distance’ to equilibrium of the original positive recurrent BD process.



24 THIERRY E. HUILLET

Definition 1. [26]: Two discrete-time Markov processes
(
Xn, X̂n;n ≥ 0

)
, with

state-spaces (X ,Y) , possibly with substochastic transition kernels, are said to be
dual with respect to some non-singular duality kernel H ≥ 0 on the product space
X × Y if ∀x ∈ X , ∀y ∈ Y, ∀n ∈ N :

(34) ExH (Xn, y) = EyH
(
x, X̂n

)
.

When state-spaces (X ,Y) = {0, .., N}2 are finite and identical, the duality kernel is

a square-matrix and the transition matrix of the dual process X̂, say P̂ is obtained
from the one P of the direct process by:

P̂ ′ = H−1PH,

where P̂ ′ stands for the transpose of P̂ . Note that if P̂ is an H−dual to P, then P
is anH ′−dual to P̂ . IfH = H ′, P̂ is anH−dual to P but also P is anH−dual to P̂ .

The Siegmund duality kernel(3). The Siegmund duality kernel is: H (x, y) =

1 (x ≤ y) . If, for a given process Xn a process X̂n exists satisfying the above con-

dition, X̂n is called the Siegmund dual of Xn, see [32]. Clearly, in the BD case for
Xn the condition for the Siegmund dual to exist is that Xn should be stochastically
monotone in that, for all y ≥ 0 and n ≥ 0, Px (Xn > y) should be increasing with
x.

For positive recurrent birth and death processes, and for the Siegmund kernel, the

transition matrix P̂ of the dual process X̂n reads:

P̂ =




r0 − q1 q1
p1 r̂1 q2

. . .
. . .

. . .

pN−1 r̂N−1 qN
0 1



,

where r̂y := 1 − (py + qy+1), y ∈ {1, ..., N − 1} (and q̂y = py, y = 1, .., N − 1,
p̂y = qy+1, y = 0, ..., N − 1). It is again the one of a BD process (but not of a
Moran BD process if P is a Moran transition matrix). Indeed, in this case, H is an
upper-right triangular matrix with non-zero entries 1, whereas the non-null entries
of H−1 are the diagonal (with entries 1) and the upper-diagonal with entries −1.
The structure of P̂ follows from this and the duality relation: P̂ ′ = H−1PH.

For this dual to exist, we need to ensure that py + qy+1 ≤ 1 for y ∈ {0, .., N − 1}
which is a necessary and sufficient condition to guarantee the stochastic mono-

tonicity of Xn. This condition also reads: py+1 − py ≥ −ry+1. The drift of X̂n at
y is:

f̂ (y) := p̂y − q̂y = qy+1 − py = −f (y + 1) + (py+1 − py)
where f (y) := py − qy is the drift of Xn at y. We have:

−f (y + 1)− ry+1 ≤ f̂ (y) ≤ −f (y) + ry .

3For nonneutral population genetics models, other duality kernels have recently been shown
to be of interest, see [19] and [20].
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We already know that if P is a spectrally non-negative BD matrix, the chain is
stochastically monotone. Here is another sufficient condition relative to the specific
ergodic Moran case:

Proposition 8. Consider the Moran model Xn with bias p satisfying 0 < p (0) ,
p (1) < 1. If p (u) is non-decreasing, the condition px + qx+1 ≤ 1 is fulfilled (the
Moran chain is stochastically monotone) and so the Siegmund dual exists.

Proof: We first need to guarantee 1−p0−q1 ≥ 0 corresponding to the row x = 0 of

P̂ . But this is true because p (1/N) ≥ p (0) ≥ Np (0)−(N − 1) . Next, when x = N,
the inequality clearly holds because pN = qN+1 = 0. Finally, for x ∈ {1, .., N − 1}
px + qx+1 = p (x/N)− xp (x/N) /N + (x+ 1) /N − (x+ 1) p ((x+ 1) /N) /N

≤ p (x/N) (1− x/N − (x+ 1) /N) + (x+ 1) /N

= [p (x/N) (N − 2x− 1) + x+ 1] /N ≤ 1

because

p (x/N) ≤ (1− x/ (N − 1)) / (1− 2x/ (N − 1)) if x ∈
{
0, ..,

⌊
N − 1

2

⌋}

p (x/N) ≥ (1− x/ (N − 1)) / (1− 2x/ (N − 1)) if x ∈
{⌈

N − 1

2

⌉
, .., N − 1

}
.

△

For the mutation Moran model in the weak mutation regime 0 < µ < 1, p (u) is
non-decreasing and therefore this chain is stochastically monotone. Although the
condition that p (u) is non-decreasing is a sufficient condition to guarantee that the
chain is stochastically monotone, it is not necessary.

Proposition 9. Consider the Moran model Xn with mutation bias p in the strong
mutation regime 2 > µ ≥ 1. Although p (u) is not non-decreasing, the condition px+
qx+1 ≤ 1 is still fulfilled would N be large enough (in which case the Moran chain
with strong mutations is still stochastically monotone). And then the Siegmund dual
exists.

Proof: When 2 > µ > 1, p (u) = µ1 + µu is monotone decreasing. We need to
check that in that case also px + qx+1 ≤ 1 when x varies from 0 to N − 1, as soon
as N is large enough. After some elementary algebra,

px + qx+1 − 1 = −2µ
( x
N

)2
+

(
2µ1 − µ− 2

µ

N

)( x
N

)
−
(
µ1 −

µ1

N
+

µ

N2

)

The minimum if this convex degree−2 polynomial is attained at the point x =

N
(
2µ1 − µ− 2 µN

)
/(4µ) so, when N is large, to the left (right) of x = N/2 if

µ2 > µ1 (if µ1 > µ2) with a negative value of this minimum. The maximum of
px+ qx+1− 1 is thus attained either at x = N − 1 (at x = 0), with pN−1+ qN − 1 =

−µ2+ 1
N

(
µ2 − µ

N

)
(respectively p0+q1−1 = −µ1+ 1

N

(
µ1 − µ

N

)
). These maxima

are non-positive for all N sufficiently large so that N2 − N > max
(
− µ
µ2

,− µ
µ1

)
.

Then, given a Moran model with 2 > µ > 1, for all N large enough both pN−1 +
qN − 1 < 0 and p0 + q1 − 1 < 0.
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When µ = 1, p (u) = µ1 and px + qx+1 is a linear function of x. The maxi-
mum of px + qx+1 − 1 is thus attained either at x = N − 1 (at x = 0), with

pN−1 + qN − 1 = −µ1

N (N − 1) (respectively p0 + q1 − 1 = −µ1

N (N − 1)), both non-
positive. So px + qx+1 ≤ 1 for all x and the Siegmund dual also exists when µ = 1,
whatever the value of N . △

Remark2: Whenever 0 < µ < 2 therefore, the Moran model with mutations is or
can be made stochastically monotone. When µ = 2, px + qx+1 − 1 < 0 except
at least at both x = 0 and x = N − 1 where px + qx+1 − 1 = 1/N2 > 0. The
Bernoulli-Laplace chain fails to be stochastically monotone.

From the structure of P̂ , it is apparent that the dual process loses mass at y = 0 and
is absorbed at y = N. Let us therefore add a coffin state ∂ := {−1} and consider

the enlarged stochastic matrix which we shall call P̂∂ :

P̂∂ =




1 0
1− r0 r0 − q1 q1

p1 r̂1 q2
. . .

. . .
. . .

pN−1 r̂N−1 qN
0 1




,

The corresponding proper BD chain, call it ∂X̂n, now has two absorbing states,
one at {−1}, one at {N} . Let now ϕ̂ (y), y = −1, 0, 1, ..., N be the scale function

of ∂X̂n, solving P̂∂ϕ̂ = ϕ̂, forcing ϕ̂ (−1) = 0. We can easily check that:

(35) ϕ̂ (−1) = 0, ϕ̂ (0) = 1, ϕ̂ (y) = γcy :=

y∑

z=0

γz =
1

π0

y∑

z=0

πz

so that the scale function of ∂X̂n expresses in terms of the cumulative distribution
πcy :=

∑y
z=0 πz of the invariant measure of the original process.

Let τ̂y := τ̂y,−1 ∧ τ̂y,N be the infimum of the first hitting time of {−1} and {N}
starting from y ∈ {0, ..., N − 1}. We have:

(36) Py

(
∂X̂τ̂y

= N
)
=

ϕ̂ (y)

ϕ̂ (N)
=

γcy
γcN

= πcy.

Doob h−transform. Define a new transition matrix P̃∂ by:

(37) P̃∂ (x, y) =
πcy
πcx
P̂∂ (x, y) , x, y ∈ {−1, 0, ..., N}2 .
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We have

P̃∂ =




1 0
0 r0 − q1 p0 + q1

πc
0

πc
1

p1 r̂1
πc
2

πc
1

q2
. . .

. . .
. . .

πc
N−2

πc
N−1

pN−1 r̂N−1
πc
N

πc
N−1

qN

0 1




,

where state {−1} becomes isolated and disconnected. Deleting the row and column

associated to the entry {−1} of P̃∂ , we get a stochastic matrix, call it P̃ , of a process

X̃n on {0, ..., N} which corresponds to ∂X̂n conditioned to first hit state {N} before
state {−1} . The state {0} of this conditioned BD process now is partially reflecting
whereas the remaining absorbing state, say a, is a = {N}.
We shall also need subsequently to introduce ϕ̃ (x), x = 0, 1, ..., N , which is the new

scale function of X̃n. We have:

(38) ϕ̃ (0) = 0, ϕ̃ (1) = 1, ϕ̃ (x) = 1 +

x−1∑

y=1

y∏

z=1

q̃z
p̃z

= 1 +

x−1∑

y=1

y∏

z=1

πcz+1

πcz−1

qz+1

pz

because q̃z =
πc
z+1

πc
z
qz+1, p̃z =

πc
z−1

πc
z
pz and r̃z = r̂z, z = 1, ..., N − 1, q̃0 = p0 + q1 and

r̃0 = r0 − q1 and r̃N = 1 and p̃N = 0 are the new transition probabilities of X̃n on

{0, ..., N} which can now be read from P̃ .

We now show that P̃ and P are intertwined through a stochastic link.

Proposition 10. (i) The matrices P̃ and P are similar (with the same eigenval-
ues), that is

(39) P̃ = ΛPΛ−1.

The link Λ is given by: Λ (x̃, x) = πx

πc
x̃

1 (x ≤ x̃) , corresponding to the entries of a

lower-triangular stochastic matrix. In other words, for all n ≥ 0

(40) Λ (x̃, x) = P
(
Xn = x | X̃n = x̃

)

and π
′
n = π̃

′
nΛ where πn = Pπ

0
(Xn = ·) and π̃n = Pπ̃0

(
X̃n = ·

)
.

(ii) The link Λ satisfies

(41) Λ (N, x) = πx, x = 0, .., N.

(iii) π̃
′
0 = π

′
0 = e′0 := (1, 0, ..., 0) are admissible initial distributions of the chains

X̃n and Xn, satisfying

(42) π
′
0 = π̃

′
0Λ.

(iv) P̃ is K-dual to P :

(43) P̃ ′ = K−1PK

where K (x, y) = 1
πc
y
1 (x ≤ y) .
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Proof : (i) From (37)

P̃ = D−1
πc P̂Dπc where Dπc = diag (πc0, .., π

c
N ) .

The random walk Xn being reversible, P ′ = DπPD
−1
π

. Thus:

P̃ = D−1
πcH ′P ′H ′−1Dπc = D−1

πcH ′DπPD
−1
π
H ′−1Dπc .

As a result, Λ = D−1
πcH ′Dπ with the right entries Λ (x̃, x) = πx

πc
x̃

1 (x ≤ x̃), satisfying∑
x≤x̃

πx

πc
x̃

= 1.

(ii) The last row of Λ is given by Λ (N, x) = πx so that once X̃n hits state N , the
law of Xn is π.

(iii) The first row of Λ is (1, 0, ..., 0) so that e′0 = e′0Λ.

(iv) Indeed, P̃ ′ = Dπc P̂ ′D−1
πc = DπcH−1PHD−1

πc := K−1PK with K = HD−1
πc

with the right entries. △

So P̃ (as the composition of the Siegmund dual of P with a Doob-transform) can be
obtained from P either from (i) through a stochastic link Λ or from (iv) through the
duality kernelK. This is because BD chains such as the Moran model are reversible.

Strong stationary time. The intertwining construction shows that the original
positive recurrent BD chain Xn with transition matrix P may also be viewed as the

output (through the link Λ) of an intertwined hidden Markov chain X̃n with tran-

sition matrix P̃ . Once X̃n hits its absorbing state {N}, the RW Xn is distributed

like π, provided both Xn and X̃n were started at 0. Furthermore, there exists a

bivariate Markov chain
(
X̃,X

)
with transition kernel:

(44) P ((x̃, x) , (ỹ, y)) =
P (x, y) · P̃ (x̃, ỹ) · Λ (ỹ, y)

(ΛP ) (x̃, y)
1(ΛP )(x̃,y)>0

where x̃ ∈ {x, x ± 1} , ỹ ∈ {y, y ± 1} . We have: (ΛP ) (x̃, y) > 0 iff y ≤ x̃ + 1. We
can check that

∑
y

∑
ỹ P ((x̃, x) , (ỹ, y)) = 1 as required for a stochastic matrix.

With x ∈ {0, ..., N − 1}, we shall let

(45) τ̃ x̃0,N = inf
(
n : X̃n = N | X̃0 = x̃0

)

be the first hitting time of {N} of X̃n, starting from state x̃0 ∈ {0, ..., N − 1} . The
random time τ̃0,N gives some information on the speed of convergence of the law of
the original process Xn to its invariant measure (is a strong stationary time in the
sense of Diaconis and Fill, [4]). The facts (39, 40, 41, 42) indeed guarantee that τ̃0,N

is a strong stationary time of Xn in the sense that Xτ̃0,N

d∼ π and is independent
of τ̃0,N (see [4] Theorems 2.4 and 2.17 or [10] Theorem 2.1). Equivalently (see [1],
Prop. 3.2), it holds that:

(46) sep (πn,π) ≤ P (τ̃0,N > n) ≤ E (τ̃0,N ) /n

where πn (·) := Pn (0, ·) is the law of Xn started at 0, π its invariant measure. In
(46), the separation discrepancy is defined by: sep(πn,π) := supy [1− πn (y) /πy] .
It satisfies sep(πn,π) ≥ ‖πn − π‖TV where ‖πn − π‖TV = 1

2

∑
y |πn (y)− πy| is

the total variation distance between πn and π.
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Furthermore, from (39, 42), there is a unique ‘witness’ state say d = N such that
either π̃n (N) = 0 or π̃n (N) > 0 ⇒ πn (d) = π̃n (N)πd > 0 showing that this
random time is stochastically the smallest since the first inequality in (46) turns
out to be an equality (see Remark 2.39 of [4] and Proposition 11 below).

In the context of BD chains absorbed at N , the probability generating function
(pgf) of τ̃0,N ≥ N is [25], [10]:

(47) E
(
zτ̃0,N

)
=

N∏

k=1

(1− tk) z
1− tkz

, z ∈ [0, 1]

where −1 < tk < +1, k = 1, ..., N are the N distinct eigenvalues of both P̃ and P ,
avoiding t0 = 1. The formula (47) also reads

E
(
zτ̃0,N

)
=

N∑

l=1

Al
z (1− tl)
1− tlz

where

Al =
∏

k 6=l

1− tk
tl − tk

and

(48) P (τ̃0,N > n) =
N∑

l=1

∏

k 6=l

1− tk
tl − tk

tnl , n ≥ N − 1.

Thus, t−n1 P (τ̃0,N > n)→n↑∞

∏N
k=2

1−tk
t1−tk

and τ̃0,N has geometric tails with expo-
nent t1. We have:

(49) E (τ̃0,N ) = trace
(
I − P̃

)−1

=

N∑

k=1

(1− tk)−1 and

(50) σ2 (τ̃0,N ) =
N∑

k=1

tk (1− tk)−2 =
N∑

k=1

(1− tk)−2 −
N∑

k=1

(1− tk)−1 .

Note since t1 is the dominant eigenvalue

(51) σ2 (τ̃0,N) ≤
E (τ̃0,N )

1− t1
.

When the eigenvalues tk are non-negative, then τ̃0,N
d
=
∑N
k=1 τk where the τks

are independent with τk
d∼ geom(1− tk) the geometric distribution with success

parameter 1 − tk on {1, 2, ...} . When the eigenvalues tk are not all positive, it is
not obvious that the above expression (47) of E

(
zτ̃0,N

)
is indeed a pgf but it turns

out that this is the case. Assuming tN < ... < tl+1 < 0 ≤ tl < ... < t1 < t0 = 1,
(47) takes on the interpretation of:

τ̃0,N −
N∑

k=l+1

bk
d
=

l∑

k=1

τk,

where bk
d∼ bernoulli(1/ (1− tk)) , τk d∼ geom(1− tk) and τ̃0,N are all mutually

independent. We can summarize these results that should mainly be attributed to
[1], [4], [10] and [11] as follows:
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Proposition 11. Suppose a Siegmund dual exists for a finite state-space ergodic

BD chain Xn. Then there exists a Markov chain X̃n, intertwined with Xn, with
{N} as an absorbing state and fully described in Proposition 10. The random time
τ̃0,N is a fastest strong stationary time for Xn whose law is characterized either

by (47) or (48) involving the spectrum of either P or P̃ , the transition matrices
governing the two processes.

Remark3: When the RW is symmetric, except for tN = −1 and maybe {0}, the
eigenvalues can be paired because if tk ∈ (0, 1) is an eigenvalue, then tN−k = −tk
is one also. The pgf reads

E
(
zτ̃0,N

)
=

2z2

1 + z

N0−1∏

k=1

(
1− t2k

)
z2

1− t2kz2
, if N = 2N0

E
(
zτ̃0,N

)
=

2z

1 + z

N0∏

k=1

(
1− t2k

)
z2

1− t2kz2
, if N = 2N0 + 1

depending on whether {0} is or is not an eigenvalue.

Computing the mean and variance of τ̃0,N . Suppose that the tk are known
explicitly. In this case, it is possible to compute E (τ̃0,N ) and σ2 (τ̃0,N ) and find
conditions under which

(52) E (τ̃0,N)→∞ and σ2

(
τ̃0,N

E (τ̃0,N )

)
→ 0 as N ↑ ∞.

If this is the case, then
τ̃0,N

E(τ̃0,N ) → 1 in probability and ⌊E (τ̃0,N ) /2⌋ is expected to

be a cutoff time for Xn started at {0}.

We now apply this construction to the particular Moran model under study.

The case of the Moran model with mutations. The eigenvalues tk are known,
leading to: 1 − tk = k

N

(
µ+ µk−1

N

)
. If we scale the characteristic time τ̃0,N to N,

the summations for large N can be replaced by integrals, leading to the estimate

µN ∼ N
∫ 1

0

dx

(x+ 1/N) (µ+ µx)
=

N2

Nµ− µ

(∫ 1

0

dx

x+ 1/N
− µ

∫ 1

0

dx

µ+ µx

)
,

and similarly for σ2 (τ̃0,N ) . From this, we easily get

Proposition 12. For the Moran model with mutations with 0 < µ < 2, whenever
the Siegmund dual exists

µN ∼
N

µ
(logN + logµ) and σ2 (τ̃0,N ) ∼

(
N

µ

)2

,

showing that σ2 (τ̃0,N/E (τ̃0,N)) ∼ (logN)
−2 → 0.

We have

Al =
∏

k 6=l

1− tk
tl − tk

=



∏

k 6=l

(
1− l (Nµ+ (l − 1)µ)

k (Nµ+ (k − 1)µ)

)


−1
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and the tail distribution of τ̃0,N is

(53) P (τ̃0,N > n) =
N∑

l=1

∏

k 6=l

1− tk
tl − tk

tnl , n ≥ N − 1.

Remark4: When µ = 2, the Bernoulli-Laplace RW fails to be stochastically mono-
tone and so the above construction also fails as the chain has no Siegmund dual.
However, as was shown in [2], similar conclusions on the fastest strong station-
ary time holds for the embedded continuous-time version of the Bernoulli-Laplace
chain.

Proposition 13. We have the Gumbel limit law

τ̃Scaled0,N :=
τ̃0,N − N

µ logN
N
µ

d→ X
d∼ e−(x+e−x), x ∈ R.

Proof: Indeed, using tk/ (1− tk) ∼ N/ (kµ) to the dominant order in N

E
(
eitτ̃

Scaled
0,N

)
∼ N−it

N∏

k=1

1− tk
1− tk (1 + itµ/N)

∼ N−it
N∏

k=1

k

k − it

→ Γ (1− it) as N ↑ ∞
which is the Fourier transform of e−(x+e

−x), x ∈ R. △

With nN (θ) =
⌊
N
2µ (logN + θ)

⌋
, then

∥∥∥PnN (θ) (0, ·)− π

∥∥∥
TV

→
N↑∞

c (θ)

where c (θ)→θ↑∞ 0 and c (θ)→θ↑−∞ 1. The expected mixing time is µN ∼ N
µ logN

whereas the spectral gap is 1 − t1 = µ
N , the product of the 2 of which tends to

∞. Recalling σ2 (τ̃0,N ) ≤ µN

1−t1
, σ2 (τ̃0,N/µN ) = µ−2

N σ2 (τ̃0,N ) ≤ 1/ ((1− t1)µN ),

the condition (1− t1)µN → ∞ is a sufficient condition for σ2 (τ̃0,N/µN ) → 0. If

this holds, the contribution of
∑N

k=2 (1− tk)
−1

to µN dominates the lead term

(1− t1)−1 (see [3] and [5] for recent developments and precisions).

5. Related transition times for the Moran model with mutations

Consider the ergodic Moran birth and death Markov chain Xn with mutations on
the state-space {0, .., N} . By (4), the mean return time to state {0} is E

(
τ∗0,0

)
= 1

π0
.

Thus, with ρ =

(
µ
µ1
1
µµ

µ
µ2
2

)1/µ

< 1, regardless of µ < 1 or 2 > µ > 1

E
(
τ∗0,0

)
∼
√
µµ1

µ2

(1/ρ)
N
as N →∞.

When µ = 1, E
(
τ∗0,0

)
= µ−N

1 = µ−N
2 (= 2N if µ1 = µ2 = 1/2).

If µ = 2 (µ1 = µ2 = 1), E
(
τ∗0,0

)
= 1/π0 =

(
2N
N

)
∼ 4N/

√
πN.
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We wish now to estimate the expected time it takes for Xn to move from one end of
the state-space to the other, that is from state {0} to {N} . Let τ0,N be the random
time of such a sweep(4). We shall prove the following estimation of its mean value
growing geometrically fast:

Proposition 14. With ρ =

(
µ
µ2
2
µµ

µ
µ1
1

)1/µ

< 1, regardless of µ < 1 or 2 > µ > 1, it

holds that

E (τ0,N ) ∼ 1

µ2

√
µµ2

µ1

(1/ρ)
N

as N →∞.

When µ = 1, E (τ0,N ) ∼ µ−N
1

µ2

(= 2N+1 in the lazy Ehrenfest case: µ1 = µ2 = 1/2).

When µ = 2, E (τ0,N ) ∼ 4N/
√
πN.

Proof: Let indeed τx,x+1 be the random time to first hit the state {x+ 1} starting
from the state {x} . Depending on whether the move starting in x is up, down or

no move, τx,x+1 is either 1 or 1 + τ
′

x,x+1 (with τ
′

x,x+1 a statistical copy of τx,x+1)

or 1 + τx−1,x + τ
′

x,x+1. If we let µx be the mean value of τx,x+1, we thus get

µx = px + rx (1 + µx) + qx
(
1 + µx−1 + µx

)
, x ≥ 2. This leads to the recurrence

(µ0 = 1/p0):

µx =
qx
px
µx−1 +

1

px
, x ≥ 1.

This recurrence can be solved explicitly to give

µx =
1

pxπx

x∑

y=0

πy =:
πcx
pxπx

.

Thus

E (τ0,N ) =
N−1∑

x=0

µx =
N−1∑

x=0

1

pxπx

x∑

y=0

πy =
N−1∑

x=0

1

px

x∑

y=0

x−1∏

z=y

qz+1

pz
.

Looking at this sum formula, one expects that its leading term is 1
pN−1πN−1

∑N−1
y=0 πy

because this is where
∑x
y=0 πy is the largest and πx the smallest. Observing

πN−1pN−1 = πNqN and qN = µ2,
∑N−1
y=0 πy = 1 − πN → 1, this estimation leads,

recalling πN ∼
√

µ1

µµ2

ρN , to

E (τ0,N ) ∼ 1

pN−1πN−1
∼ 1

µ2πN
∼ 1

µ2

√
µµ2

µ1

(1/ρ)N ,

and this is indeed true because the remaining terms do not contribute significantly,
see [6]. When µ = 1,

E (τ0,N ) ∼ 1

µ2πN
=
µ−N
1

µ2

.

When µ = 2 (Laplace-Bernoulli), E (τ0,N ) ∼ 1
µ2πN

=
(
2N
N

)
.

4Note that the expected fixation time of a wild-type allele is given by E
(

τ1,N
)

= E
(

τ0,N
)

−

1/p0 as a result of τ0,N
d
= τ1,N +G, the sum of τ1,N and an independent geometrically distributed

rv G ≥ 1 with success probability p0.
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Remark : Regardless of whether µ ≤ 1 or 2 > µ > 1, ρ > ρ iff µ2 > µ1. In this case,
the limiting growth rate of the expected value of τ0,N dominates the one of τ∗0,0.
On the contrary, µ1 > µ2 ⇒ ρ < ρ.

Note that if µ1 = µ2 = µ/2 (symmetric Moran model), ρ = ρ and

(
E(τ0,N )

E(τ∗

0,0)

)1/N

→

1 as N →∞, whereas E(τ0,N )

E(τ∗

0,0)
→ 2/µ (> 1 if µ < 2, = 1 if µ = 2).

The physical image of the situation is the following: It takes a small O (N) amount
of time to move from {0} to the stable equilibrium state {Nu∗} because the drift is
favorable to this displacement. Once at state {Nu∗} , Xn returns rapidly and very

often to {Nu∗} (it takes a O
(√

N
)
time to do so) and coming back either to {0} or

to {N} is hard because the drift now pushes Xn inside the domain {0, ..., N} ...As
a result, both E (τ0,N ) and E

(
τ∗0,0

)
are, comparatively, geometrically very large,

with rates computed just before. Recalling it takes about (N logN) /µ steps for
the chain to reach maximum entropy under the ‘sep-distance’, starting from {0},
although the return to {0} will eventually occur, the time it takes is so huge that
such returns will not be observed: In other words, the chain will reach rapidly
the invariant measure inside a single excursion. Let us finally check these last
statements.

First return time to equilibrium state. Indeed, from (30), using (31)

πNu∗
=

(
−Nν1

Nu∗

)(
−Nν2

N(1−u∗)

)
(
−Nν
N

) ∼ 1√
2πµN

.

Thus, by (4), E
(
τ∗Nu∗,Nu∗

)
∼ √2πµN = O

(√
N
)

and the return time to the

equilibrium state is relatively small.

First hitting time of the equilibrium state, starting from {0}. In this case,
we have

E (τ0,Nu∗
) =

Nu∗−1∑

x=0

1

px

x∑

y=0

x−1∏

z=y

qz+1

pz
.

If we scale this characteristic time to N, the summations for large N can be replaced
by integrals, leading to the estimate

E (τ0,Nu∗
) ∼ N2

∫ u∗

0

dv

(1− v) (µ1 + µv)

∫ v

0

dueN(V (u)−V (v)).

Recalling

∫ v

0

dueNV (u) ∼ eNV (u∗)

√
π

2N |V ′′ (u∗)|
if v ≤ u∗,

two successive appeals to the saddle point method shows thatE (τ0,Nu∗
) ∼ πN2

2N |V ′′(u∗)|
µ2

µ1µ2

=
π
2µN, which is indeed O (N) .
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Concerning the related first hitting time of state Nu∗, starting from Nu∗ − 1 (one
step below), we have

E (τNu∗−1,Nu∗
) ∼ Nµ2

µ1µ2

∫ u∗

0

dueN(V (u)−V (u∗)) ∼ µ2

µ1µ2

√
πN

2 |V ′′ (u∗)|
=

√
πµN

2µ1µ2

,

showing that E (τNu∗−1,Nu∗
) is also O

(√
N
)
, in accordance with E

(
τ∗Nu∗,Nu∗

)
=

O
(√

N
)
.
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