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The macroscopic cohesion of granular materials made up of sticky particles depends on the particle shapes.
We address this issue by performing contact dynamics simulations of 2D packings of nonconvex aggregates. We
find that the macroscopic cohesion is strongly dependent on the strain and stress inhomogeneities developing
inside the material. The largest cohesion is obtained for nearly homogeneous deformation at the beginning of
unconfined axial compression and it evolves linearly with nonconvexity. Interestingly, the aggregates in a sheared
packing tend to form more contacts with fewer neighboring aggregates as the degree of nonconvexity increases.
We also find that shearing leads either to an isotropic distribution of tensile contacts or to the same privileged
direction as that of compressive contacts.
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I. INTRODUCTION

Cohesive granular materials are at the heart of a variety
of engineering applications in particle processing, soil me-
chanics, and powder technology. The shear strength of such
materials can be split into an internal angle of friction, as in
cohesionless materials, and a macroscopic cohesion, which
reflects the aptitude of the material to sustain tensile stresses
[1,2]. This cohesion in combination with granular disorder has
drastic effects on the equilibrium states. The angle of repose
increases with cohesion and the material can be molded into
arbitrary shapes. The packing fraction may vary in a broader
range and often long force chains build up despite locally
loose structures [3]. The properties of compressibility and
flowability are essential for the manufacture of homogeneous
and resistant compacts in powder technology [4]. Cohesive
granular materials have been investigated by experiments
and numerical simulations for a better understanding of the
scale-up of interactions between the particles. Very loose
packings characterized by low connectivity and chainlike
structures have been evidenced in assemblies of nano-sized
particles governed by van der Waals forces [5]. Loose cohesive
powders and the dynamics of pore collapse during the
compaction process have been extensively studied by the
discrete element method (DEM), which provides direct access
to the particle-scale information and underlying physical
mechanisms [3,6–9]. The compaction of ceramic and metallic
powders have been modeled by DEM simulations [10–13]. The
shear strength and force distributions of wet granular packings
have been studied as a function of water content and the size
polydispersity of the particles [14–16]. DEM simulations have
also been used to investigate the flow properties of cohesive
granular materials [17–22].

However, all reported studies of cohesive granular materials
by discrete element modeling have dealt with spherical
particles. Most granular materials have complex particle
shapes characterized by various degrees of angularity (e.g.,
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geomaterials), elongation, platiness (e.g., biomaterials), and
nonconvexity (e.g., sintered powders). Ceramic powders are
most of time composed of aggregates or clusters of elementary
particles (cristallites) [23]. In the case of UO2 powders, these
aggregates have complex dendritic shapes. The nonconvexity
of the aggregates varies from superficial roughness of their
surface to deep concavity allowing for interlocked structures
that control the geometrical and mechanical properties of the
material.

Particle shape effects have been investigated in cohesionless
granular materials by considering quasistatic rheology (shear
strength, dilatancy), packing properties (texture, pore size
distribution), and force transmission. A rather counterintuitive
finding is that the packing fraction, first, increases before
declining again when the particles increasingly deviate from
spherical shape [24–29]. The internal friction angle is found
to increase with the angularity and elongation of soil par-
ticles [30–37]. By a detailed comparison between packings
of polygonal particles and circular particles endowed with
rolling friction, it was recently shown that, by hindering
particle rotations, a rolling friction coefficient may mimic
particle shape effects with respect both to shear strength and
packing fraction [38]. This hindering or interlocking effect
has also been evidenced for aggregates of spherical particles
[39–45]. Granular materials develop an anisotropic contact
network under shearing, and DEM simulations indicate also
that enhanced structural anisotropy due to shape anisometry
underlies the increase in shear strength [27,46].

The issue that we would like to address in this paper is
how the macroscopic cohesion is influenced by particle shape.
We consider a 2D model of nonconvex particles in which the
degree of nonconvexity can be varied and that can easily be
simulated by DEM. The model particles are rigid aggregates of
three overlapping disks with a threefold rotational symmetry.
Their nonconvexity can be tuned by adjusting the overlap,
the range of shapes varying thus from simple disk when the
three disks components fully overlap, to a trimer built by three
tangential disks. This model shape was previously used to
analyze the strength and packing properties of cohesionless
packings [28]. The contact dynamics method is employed for
the simulations and the adhesion force is assumed to occur at
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the contact points between aggregates as a tensile threshold
on the normal force. Due to multiple contacts between two
particles, the cohesion increases with nonconvexity. But, as
we shall see, the shape dependence is rather complex and
characterized by fluctuations of the macroscopic cohesion as
a function of nonconvexity. Only the macroscopic cohesion
resulting from the unconfined yield stress of the packing is
monotonic as a function of nonconvexity. The high variability
of packing fraction leads to strong stress or strain concentration
that does not allow for a homogeneous expression of cohesion
within the packings. We consider different configurations
and the spatial variabilities as well as the mean values. We
show that the nonconvexity contributes to create more porous
structures but better connected.

We first introduce in Sec. II the technical details of
our simulations, the nonconvexity parameter, the procedure
of sample preparation and relevant mechanical observables,
which are essential for the interpretation of the results. In
Sec. III, we study the evolution of the mechanical strength
as a function of nonconvexity. Secs. IV and V are devoted
to the analysis of the granular structure. We conclude with a
discussion of the most salient results of this work.

II. NUMERICAL METHOD AND SYSTEM PARAMETERS

A. Particle shape parameter

The particles are regular aggregates of three overlapping
disks of the same radius r , as shown in Fig. 1. The particles are
assumed to be uncrushable and treated as a single rigid particle.
Their shape can be characterized by considering the radius R

of the circumscribing circle as compared to the radius R′ of
the inscribed circle. The difference �R = R − R′ represents
the concavity of the aggregate, i.e., the inward deviation from
the surface of the circumscribing circle. Hence, we define the
nonconvexity η of an aggregate by the ratio

η = �R

R
. (1)

It varies from η = 0, corresponding to a disk, to η � 0.73,
corresponding to a trimer of three disks of vanishing overlap.

The parameter η is related to the “roundness” parameter
expressed in geology as the ratio of the average radius of
curvature of the edges or corners to that of the maximum
inscribed sphere [47,48]. With our notations, the roundness of
the aggregates is simply r/[(1 − η)R], which decreases from
1.72 to � 0.367 as η varies from zero to 0.73.

FIG. 1. Geometry of a model aggregate used in numerical
simulations.

(a) (b) (c) (d)

FIG. 2. Four different contact types between two aggregates: (a)
simple, (b) double simple, (c) double, and (d) triple.

The nonconvex shape allows the aggregates to touch one
another at one, two, or three contact points as shown in Fig. 2.
We distinguish four contact types: (1) simple contact (S), (2)
double-simple (DS) contact, defined as two simple contacts
between two pairs of disks belonging to the aggregates, (3)
double (D) contact, defined as two contacts between one disk
of one aggregate with two disks of the other aggregate, and (4)
triple (T) contact, defined as the combination of one simple
and one double contact. While the physical effects related to
multiple contacts are essential, as we shall see in Sec. II, their
numerical treatment is similar to contacts between disks since
each individual contact point is a contact between two disks
belonging to two different aggregates.

B. Numerical method

The aggregates are assumed to be perfectly rigid so the
relevant kinematic variables attributed to each potential contact
are the relative normal velocity un and the sliding velocity ut .
The variable un is the separation velocity defined as the time
derivative of the gap δn between two disks, with a positive sign
when two disks get separated. The conjugate force variables
are the normal force fn and friction force ft , respectively.

The frictional-cohesive laws governing sticky contacts
consist of piecewise linear graphs relating un and fn, on one
hand, and ut and ft on the other hand, as shown in Fig. 3. The
first graph, called also Signorini’s graph [49,50], represents the
set of admissible values of un and fn at a contact point (δn = 0)
between two disks. The positive definiteness of un reflects the
unilateral nature of contact (no interpenetration). The normal
force fn may take arbitrarily large positive values, but it is
bounded by a lower threshold −fnc, which defines the adhesion
force between two disks. Depending on the physicochemical
nature of adhesion, the force fnc � 0 may depend on the
particle size as in the case of capillary bonds [51,52]. For the
sake of simplicity, and since we focus on the effect of particle
shape, we assume here a constant value of fnc. The dependence
of fnc is important only for highly polydisperse systems.

un

fn

−fnc
−ftc

ftc

ft

ut

0 0

(a) (b)

FIG. 3. (Color online) Graphs of a frictional-cohesive contact
law: (a) Signorini’s graph for normal forces and (b) Coulomb’s
graph for friction forces. The friction force threshold is given by
equation (2).
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An essential feature of Signorini’s graph is that it cannot be
reduced to a (single-valued) function (fn as a function of un

or the reverse). It is a “complementarity relation” in the sense
that at least one of the two variables is zero [53]. In a purely
numerical treatment, however, this relation may be regularized
by replacing the vertical branch of the graph by a linear
dependence of finite slope representing a fictitious viscosity. In
the molecular dynamic method, for example, the normal force
is expressed as a function of δn with a slope expressing the
contact stiffness. But the implicite time-stepping scheme of
the contact dynamics (CD) method, used in this work, allows
for an exact treatment of Signorini’s graph [49,50,54–56].

The second graph in Fig. 3 is the Coulomb friction law
represented by the set of the admissible values of ut and ft at a
contact point. The friction force threshold ftc for a noncohesive
contact is μfn, where μ is the friction coefficient. But this
threshold for a sticky contact is enhanced due to the effect of
the adhesion force fnc. In the simplest approximation, we have

ftc = μ(fn + fnc). (2)

This friction threshold vanishes only when fn = −fnc, i.e.,
at incipient separation between two particles. It should also
be remarked that, in the same vein as Signorini’s condition,
Coulomb’s graph is a complementarity relation. It can be
regularized by replacing the vertical branch by a linear relation
and a fictitious tangential viscosity but is implemented without
regularization in the framework of the CD method described
in more detail in the Appendix.

C. Sample preparation

The samples are prepared by the same procedures as those
reported in Ref. [28]. Each sample is composed of 5000
aggregates for eight different values of η ∈ [0,0.7]. To avoid
long-range ordering, a size polydispersity was introduced by
taking R in the range [Rmin,Rmax] with Rmax = 3Rmin and
a uniform distribution of particle volumes (∝ R−2), which
leads to a high packing fraction ρ [57–60]. It is worth
mentioning that a lower level of size polydispersity might be
sufficient for topological disorder (disorder in the connectivity
of the particles and force transmission) but does not lead to
appreciable metric disorder of the contact network.

A dense packing composed of disks (η = 0) was first
constructed by means of random pluviation of the aggregates
into a rectangular box of dimensions l × h. For other values
of η, the same packing was used with each disk serving as
the circumscribing circle. The aggregate was inscribed with
the given value of η and random orientation inside the circle.
This geometrical step was followed by isotropic compaction
of the packings by the contact dynamics method inside a
rectangular frame. The gravity g and friction coefficients μ and
μw between the aggregates and with the walls, respectively,
were set to zero during compaction in order to optimize the
packing homogeneity. The samples prepared by this procedure
are isotropic, isostatic, and dense. Two snapshots of the initial
packing configurations for η = 0 and η = 0.7 are shown in
Fig. 4.

The isotropic samples for all values of η were subjected to
two different tests:

(a) (b)

FIG. 4. (Color online) Snapshots of the initial packing configura-
tion for η = 0 (a) and η = 0.7 (b). The line thickness is proportional
to the normal force acting at the contact points between aggregates.

(i) Biaxial compression: The granular sample is sheared
by applying a slow downward velocity ε̇yy on the top wall
with a constant confining stress acting on the lateral walls.
The friction coefficient is set to 0.5 between aggregates and to
0 with the walls. The zero friction with the walls prevents from
stress gradients as those that lead to the Janssen effect [61].

(ii) Simple compression: The two side walls are removed
and a vertical stress σ 0

yy is applied on the top wall. We keep
the same friction coefficient μ = 0.5 between the aggregates
as in the biaxial compression tests but the friction coefficient
μw between the aggregates and the top and bottom walls is
set to 1 to prevent sideways slip of the sample. The sample
may slip sideways as a result of slightest asymmetry about the
vertical axis without friction. But with friction, it reaches a
state of static equilibrium under the action of the initial stress
σ 0

yy due to adhesion forces between aggregates. The sample
is then compressed by increasing incrementally the vertical
stress σyy .

These tests will be described in more detail in the following
sections. They are meant to measure the macroscopic strength
of the packings in terms of the internal angle of friction
and Coulomb cohesion as a function of shape parameter
η and adhesion of the aggregates. Animation videos of the
simulations are available at www.cgp-gateway.org/ref015.

D. Dimensionless parameters

The state of the packing can be characterized by two
dimensionless numbers: bond number B and inertia number
I . For undeformable aggregates, the adhesion force fnc is the
only internal force and it should be compared to the repulsive
contact forces induced by the confining stress. Hence, the
“effective” cohesion of the system is characterized by a bond
number defined as

B = fnc

pd
, (3)

where p is the average stress and d is the mean aggregate
diameter [3,6,9,52,62,63]. A granular material with weak
adhesion force can have a large bond number at low confining
pressure. This is the case of wet fine sand, for example, which
can easily be shaped into sand arts on a beach [15].

The inertial number I represents the inertial particle
displacements as compared to the driving strain. For a vertical
shear rate ẏ/y, we have (in 2D) [64]

I = ẏ

y

√
m

p
, (4)
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where m is the average mass of an aggregate and p is the mean
2D pressure. In our simulations, I was kept below 10−3 in
different tests, corresponding to quasistatic conditions.

III. MACROSCOPIC COHESION

The mechanical strength of the packings is evaluated by the
Mohr-Coulomb criterion which is represented by the following
failure envelope in 2D:

q = p sin ϕ + c cos ϕ, (5)

expressing the stress deviator q = (σ1 − σ2)/2 as a linear
function of the average stress p = (σ1 + σ2)/2, where σ1 and
σ2 are the principal stresses. The internal angle of friction ϕ and
Coulomb cohesion c are material parameters at well-defined
states of the material such as the shear stress peak state and the
residual state reached after a long shearing. We consider below
different tests performed to extract the values of ϕ and c.

A. Biaxial compression

To estimate the values of c and ϕ, we use biaxial
compression tests with three different values of p for each
value of nonconvexity η. The three tests are performed starting
with the same initial isostatic states briefly described in the
Sec. II. The same downward velocity ε̇yy is used for all the
tests and for all packings. The adhesion parameter fnc is the
same although the bond number B defined by (3) varies with p.
Figure 5 shows the normalized shear stress q/p as a function
of the cumulative shear strain εq for different values of η and
p = 7.5 MPa, B = 2.66, and I � 10−4. The shear stress q/p

increases rapidly to a peak value before softening and reaching
a residual or “critical” value. The initial peak reflects the high
initial packing fraction and the rigidity of the aggregates. The
critical state strength and packing fraction are independent
of the initial state and depend only on η. For a given value
of the initial packing fraction, the peak stress also represents
an objective measure of the strength depending only on the
parameter η. Both the peak and critical-state values of q/p

increase with η.
Figure 6 presents the (p,q) values at the peak state for

three values of the mean stress p and different values of η.
Figure 7 shows the pairs of points (p,q) averaged this time
in the residual state with error bars representing the standard

0.0 0.1 0.2 0.3 0.4 0.5 0.6
εq

0.30

0.40

0.50

0.60

0.70

0.80

0.90

q/
p

η=0.0
η=0.1
η=0.2
η=0.3
η=0.4
η=0.5
η=0.6
η=0.7

FIG. 5. (Color online) Normalized shear stress q/p as a function
of the cumulative shear strain εq for different values of the shape
parameter η.
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η=0.0
η=0.1
η=0.2
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η=0.4
η=0.5
η=0.6
η=0.7

FIG. 6. (Color online) The peak strength envelopes for different
values of the shape parameter η.

deviation of the fluctuations. As expected, the data are well
fitted by affine Mohr-Coulomb failure envelopes, with a linear
correlation coefficient of �0.99.

We extract from the Mohr-Coulomb envelops the internal
angles of friction ϕpeak and ϕ∗ given by the slope for the
peak state and residual state, respectively, as well as the
corresponding cohesion parameters cpeak and c∗, as a function
of η. These data are displayed in Figs. 8, 9, 10, and 11.

The internal friction angle at the peak and residual states
increase as a function of η for the packings of cohesive
aggregates. Figure 8, shows that ϕ steadily increases with
η in these two states and tend to saturate as it was observed
previously in the cohesionless case [28] and as we see for ϕ∗
in Fig. 9. As expected, ϕ∗ is not affected by adhesion between
particles. We also note that for η � 0.1 the difference between
ϕpeak and ϕ∗ is nearly constant and is larger than that of the disk
packing (η = 0.0). The saturation of the values of the internal
friction angle at large nonconvexity was analyzed in Ref. [28]
and shown to reflect the interlocking of the aggregates.

The peak cohesion cpeak increases steadily as η varies
from 0 to 0.7. But discontinuous changes are observed in
the ranges [0.2,0.3] and [0.6,0.7]. cpeak is nearly multiplied
by a factor 8 between η = 0 and η = 0.7. This increase of
cohesion for a constant value of the local tensile threshold
fnc between the aggregates clearly demonstrates that the

0 5 10 15
p(MPa)

0

1

2

3

4

5

6

7

q(
M

P
a)

η=0.0
η=0.1
η=0.2
η=0.3
η=0.4
η=0.5
η=0.6
η=0.7

FIG. 7. (Color online) The residual strength envelopes for differ-
ent values of the shape parameter η.
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FIG. 8. (Color online) Internal friction angle ϕ at the peak state
and in the sheared state as a function of η.

effect of local adhesion is amplified by nonconvex particle
shape to enhance the macroscopic cohesion. Surprisingly, the
residual-state cohesion c∗ does not offer a similar trend and
fluctuates instead as η is increased. c∗ declines between η = 0
and η = 0.2 and then increases between η = 0.2 and η = 0.6
and, finally, slightly declines at η = 0.7. Moreover, the values
of c∗ are by one order of magnitude below those of cpeak.
This discrepancy and discontinuous changes indicate that the
cohesion is only partially expressed. A snapshot of the packing
in the residual state is shown in Fig. 12 for η = 0.3 where we
observe very pronounced shear bands characterized by high
porosity and spanning the whole packing. We also observe
that the patterns of shear bands vary with the evolution of the
system due to the motions of the walls and strongly fluctuate
for different values of η.

These features, partially related to the boundary conditions,
indicate that, in contrast to the internal friction angle, the
macroscopic cohesion is sensitive to such inhomogeneities.
The cohesion of the material can fully manifest itself only
if the tensile forces are uniformly mobilized throughout the
system. This is clearly not the case as c∗ is not a well-defined
function of η and cpeak shows irregular changes. But the larger
values of cpeak are consistent with a more uniform deformation
at the peak state, where the shear bands begin to develop, as

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
η

10

15

20

25

30

ϕ∗ (d
eg

re
es

)

cohesive packing
non cohesive packing

FIG. 9. (Color online) Internal friction angle ϕ in the sheared state
as a function of η for both the cohesive and noncohesive packings.
Error bars represent the standard deviation.
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FIG. 10. The macroscopic cohesion cpeak at the peak state as a
function of η.

compared to the residual state, where the extent of shear bands
and their porosity are further developed.

The issue raised by this irregular behavior of the macro-
scopic cohesion is whether we can get larger values of cohesion
by loading the same packings differently. In particular, the
largest cohesion is expected for the largest connectivity, which
is the case of the initial state prepared by isotropic compaction,
and for the most diffuse deformation allowing the adhesion
forces between the agregates to be mobilized. Since the walls
seem to enhance shear bands, we analyze in the next section
the same samples subjected to unconfined compression.

B. Unconfined yield strength

In unconfined tests, known also as simple compression
test, the lateral stress σxx is set to zero and the sample is
deformed along the y direction. Assuming that the principal
stress directions σ1 and σ2 are the same as those of the sample,
we have σ1 = σyy and σ2 = 0. As a consequence, the stress
ratio is q/p = 1 and, thus, the Coulomb criterion implies that
the unconfined cohesion is given by

cu = 1

2
σ rupt

yy

1 − sin ϕ

cos ϕ
, (6)

where σ
rupt
yy is the yield stress in simple compression and ϕ is

the peak value of the internal friction angle evaluated at the
peak state by biaxial shearing, as shown in Fig. 8.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
η

0.2

0.3

0.4

0.5

0.6

0.7

c*
(M
Pa
)

FIG. 11. The macroscopic cohesion c∗ in the residual state as a
function of η.
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FIG. 12. A snapshot of a cohesive sample for η = 0.3 in the resid-
ual state where we observe shear bands, which can be distinguished
by their higher porosity.

We start with the samples prepared by isotropic compres-
sion under a stress of σ 0

yy = 10 MPa without friction between
the aggregates. The side walls then are removed and a load of
10 MPa is applied on the upper wall. The samples keep their
mechanical equilibrium without deforming. At this point, we
have B � 1.89 for all samples. In order to prevent the samples
from sidewise slip, we also set the friction coefficient μw

between the aggregates and the top and bottom walls to 1. All
other parameters have the same values in biaxial compression
tests.

Figure 13 shows the normalized vertical stress as a function
of the vertical strain εyy for different values of η. As in biaxial
compression (see Fig. 5), the vertical stress increases rapidly
to a peak value and then declines much faster than in biaxial
compression tests. This difference is clearly related to the fact
that the material under unconfined conditions is unstable and
tends to fail by strain localization as discussed below. The fact
that σyy does not fall off to zero after the peak stress is due
to the reversible nature of the adhesion law. Figure 14 shows
the cohesion cu calculated from Eq. (6) as a function of η. cu

declines nearly linearly from η = 0 to η = 0.6. The point for
η = 0.7 deviates from this trend and needs to be checked by
further simulations. It is remarkable that the cohesion values
are almost 10 times higher than those obtained for the peak
state in biaxial shear tests; see Fig. 10.

These high values of cohesion suggest that the samples
are far more homogeneous at the beginning of unconfined

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70
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FIG. 13. (Color online) Normalized vertical stress σyy/σ
0
yy as a

function of vertical strain εyy in unconfined compression tests.
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FIG. 14. Macroscopic cohesion as a function of η obtained by
unconfined compression tests.

compression. This is what we observe in Fig. 15(a) dis-
playing the force chains for η = 0.5 at the beginning of
unconfined compression. The tensile and compressive forces
are statistically homogeneous, with tensile contacts orientated
preferentially in the horizontal direction and compressive
forces in the vertical direction. We also observe no sign of
shear bands at this stage of deformation.

When σyy approaches its maximum value, a horizontal
stress gradient appears inside the packing and the strongest
force chains concentrate at the center of the sample, as shown
in Fig. 15(b). The stress gradients are a consequence of friction
forces with the top and bottom walls mobilized towards the
center to resist the motions of the particles towards the left and
right free edges of the packing. This effect is similar to the
Janssen effect in a silo geometry with an exponential increase
of the mean and shear stresses from the left and right edges,
where the stress components are zero, towards the center of
the sample [65].

Finally, as shown in Fig. 15(c), the sample fails by strain
localization. The failure starts out by tensile breakage (mode
I) at the center of the sample but continues in mode II along
shear bands that divide the sample into four triangular parts.
The two vertical triangles are squeezed gradually against each
other by vertical shortening of the sample while the two lateral
triangles fall apart into small clusters.

From these biaxial and simple compression simulations,
we conclude that the macroscopic cohesion of granular
materials is strongly dependent on the boundary conditions.
The largest measured cohesion represents an intrinsic property
of the material and it can be obtained only by homogeneous
deformation with a homogeneous mobilization of the adhesion
forces along the direction of extension. These conditions are
satisfied at the beginning of unconfined compression tests.

IV. PACKING FRACTION

Since the original samples are prepared in a dense state by
setting the friction coefficient to zero, they all dilate by shear.
But, as a result of inhomogeneous shearing, all parts of the
samples do not dilate at the same time. The evolution of the
shear bands during deformation leads to a gradual decrease of
the packing fraction as the shear bands go through different
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(a)

(b)

(c)

FIG. 15. (Color online) Snapshots of the dense cohesive sample
of nonconvex aggregates for η = 0.5 at the beginning of unconfined
compression test (a), at the stress peak (b) and later (c). Line thickness
is proportional to the normal force. Compressive and tensile forces
are shown in red and blue, respectively.

parts of the sample. In this section, we analyze the evolution
of both global and local packing fractions.

Figure 16 displays the packing fraction ρ as a function of the
cumulative shear strain εq for different values of η in biaxial
compression tests. For �20% of cumulative deformation, ρ

declines at nearly the same rate for all values of η in exception
to the disk packing, which dilate at a lower rate. Beyond 20%
of deformation, ρ continues to decrease at a much lower rate.
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η=0.5
η=0.6
η=0.7

FIG. 16. (Color online) Packing fraction as a function of cumu-
lative shear strain during biaxial compression for the different values
of η.

The initially high rate of dilation reflects the homogeneous
character of deformation at this stage. Dilation continues
afterwards only inside shear bands.

The packing fraction ρ is computed by considering the
ratio of the total volume of aggregates and the volume of the
simulation cell. The volume of one aggregate is given by

A = 3πr2 − 6r2(arccos(d∗) − d∗√1 − d∗2) + 1.5αr2

+ 0.75
√

3r2(
√

1 − d∗2 − d∗/
√

3)[1 − cos(α)], (7)

where

α = 2 arcsin(0.5
√

3 − 3d∗2 − d∗/
√

3) (8)

and d∗ is the gap between two disks that compose an aggregate
and defined by the ratio d/2r , where d and r are, respectively,
the distance between the two centers and the radius of the
disks. The above expression is valid if 0 � d∗ <

√
3/2, i.e.,

when the three disks are fully overlap.
Note that the initial value ρ iso of the packing fraction

corresponds to the isostatic packings prepared by isotropic
compression. ρ iso does not vary steadily with η, as shown in
Fig. 17: It increases with η and then declines beyond η = 0.2.
The larger values of ρ iso for η = 0.1 and η = 0.2 as compared
to the disk packing (η = 0) indicates that small values of
nonconvexity enhance interlocking between the aggregates
[28]. This unmonotonic evolution of the packing fraction with
different shape parameters was recently discussed by several
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FIG. 17. (Color online) Packing fraction as a function of η in the
isotropic state issued from analytic formula (in black) and by image
processing (in red).
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FIG. 18. Map of local packing fractions for the sample η = 0.4
in the final stage of biaxial compression. The cell size is three times
aggregates mean diameter.

authors [24–29,45]. The results of Ludewig et al. [45] provide
a counterexample indicating that the packing fraction may be
monotonic depending on the shape parameter.

In the case of cohesionless rigid aggregates, the “critical”
packing fraction ρ∗ in the residual state is assumed to be
independent of the initial state and, thus, a property of the
material. However, as pointed out by many authors, ρ∗ is only
a “theoretical” packing fraction which should be measured
inside the shear bands [66–69]. In the case of cohesive
materials, the inhomogeneities are considerably amplified.
Hence, the global packing fraction reached after 50% of
deformation is still quite far from the low values inside the
shear bands corresponding to the true value of ρ∗.

Obviously, the packing fraction at the mesoscopic scales
is a crucial parameter in the manufacture of products from
cohesive powders. The inhomogeneities in packing fraction
(and connectivity) lead to failure problems such as splitting
or delamination during discharge and ejection phases of green
compacts and influence the quality of the local densification of
the greens during sintering. In the following, we briefly inves-
tigate the packing fraction distribution at different mesoscopic
scales by a pixel-based routine.

For this purpose, the images of the packings are pixelized
with solid and void phases represented respectively by black
and white pixels. A regular grid of mesh size �c in multiples
of the mean aggregate diameter then is superimposed on
the pixelized image. The packing fraction in each mesh is
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FIG. 19. (Color online) Evolution of the range of the local
packing fraction �ρ as a function of the size of the mesh for the
value η = 0, η = 0.4, and η = 0.7 in the isotropic state.
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FIG. 20. (Color online) Evolution of the range of the local
packing fraction �ρ as a function of the size of the mesh for the
value η = 0, η = 0.4, and η = 0.7, in the residual state.

given by the proportion of the pixels representing the solid
phase. This method has the advantage of being applicable to
granular materials composed of particles of different shapes or
issued from experimental observations. An example is shown
in Fig. 18, representing a map of local packing fractions in
the sample η = 0.4 in the final stage of biaxial shearing with
�c = 3〈d〉, where 〈d〉 represents the mean diameter of the
aggregates. While the mean packing fraction is �0.8, the local
packing fraction at the considered scale ranges from 0.56 in the
shear bands to 0.95 in the most compact parts of the sample.

The packing fraction inhomogeneity can be characterized
by the difference �ρ = ρmax − ρmin between the largest value
ρmax and the lowest value ρmin of the packing fraction as
a function of the scale �c (cell size in particle diameters).
Figures 19 and 20 display �ρ for the packings η = 0.0,
η = 0.4, and η = 0.7 in the isostatic packings and in the
packings at 40% of cumulative shear strain, respectively. In
the isostatic case, �ρ strongly decreases as the cell size varies
from �c to 5�c in the three packings. But for larger cell size,
�ρ is small (�2%) and declines very slowly until 15�c. The
observed small-scale variability reflects the natural porosity of
the samples and, hence, it does not depend on the mesh size.
The length �c = 5〈d〉 may be considered as the size of the
representative volume element for the packing fraction in the
isotropic state.

In the sheared case, Fig. 20, �ρ decreases from �c = 1 to
�c = 7 and remains practically constant in the range �c = 7
to �c = 15. The largest value of �ρ is 0.04 for the packing
η = 0 and 0.1 for the packings η = 0.4 and η = 0.7. These
values roughly correspond to the difference of packing fraction
between the shear bands and other parts of the samples.
The difference is strongly influenced by shape nonconvexity
in transition from η = 0.4 and η = 0.7. Clearly, still longer
shearing is necessary for the dilation of all parts of the samples.

V. GRANULAR TEXTURE

Beyond packing fraction, which represents the space-filling
properties of the particles, the granular texture may be
described in terms of various fabric parameters pertaining to
the contact network as the backbone of stress transmission in
granular materials. In this section, we use such descriptors in
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FIG. 21. (Color online) Proportions of simple, double, double-
simple, and triple contacts as a function of η in the residual state.

order to characterize the effect of nonconvexity on the contact
network in our cohesive granular packings.

Let us consider the proportions KS , KDS , KD , and KT

of simple, double simple, double, and triple contacts, respec-
tively. Given these multiple contacts between aggregates, we
also distinguish between the coordination number Z, defined
as the mean number of contact neighbors per particle, and
the connectivity number Zc, defined as the mean number
of contacts per particle. For disks, these two definitions
coincide and we have Z = Zc. But for nonconvex particles,
we have Z < Zc and, thus, the contact network can also be
characterized by the ratio K = Zc/Z.

Figure 21 displays these contact type proportions as a
function of η in the residual state in our biaxial compression
simulations. Simple contacts represent more than 80% of all
contacts but it decreases with increasing η and saturates for
η > 0.4. At the same time, the proportions of other contact
types are almost equal and they increase with η and saturate
like simple contacts. We expected that double contacts should
be enhanced in the presence of cohesion between aggregates
as they represent strong interlocking. But these contacts do not
seem to play a special role in steady shearing.

Figure 22 shows the evolution of Z during shear for
different values of η. Z has its highest value in the initial
state and it declines fast by contact loss at the beginning of
biaxial compression to reach a nearly constant level after 20%
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FIG. 22. (Color online) Coordination number Z as a function of
cumulative shear strain εq .
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FIG. 23. Coordination number Z∗ averaged in the residual state
as a function of η. Error bars represent standard deviation.

deformation. Figure 23 shows the residual values of Z∗ as
a function of η. The aggregates which have higher degree
of nonconvexity have on average less contact neighbors. It
decreases from 3.15 for η = 0.0 to 3.05 for η = 0.6. In other
words, in steady shearing, the effect of cohesion is to allow for
the formation of loose structures with less contact neighbors.

The connectivity number Zc is shown in Fig. 24. Again,
we observe a constant value after a rapid falloff. Figure 25
shows the residual value Z∗

c as a function of η. In contrast to
Z∗, here we have an increasing function of η, from 3.15 for
η = 0 to 3.85 for η = 0.7. This paradoxical evolution of the
texture (increasing Z∗

c and decreasing Z∗ with η) means that
when the degree of nonconvexity increases, the aggregates tend
to form more contacts with fewer neighbors. As a result, the
parameter K∗ in the residual state increases with η as shown in
Fig. 26. This observation is in agreement with the simulations
of Ludewig et al. [45], who found that K during compaction
under vibrations increases as the aggregates become rougher.

It is also interesting to distinguish between the partial
connectivty numbers Z+

c and Z−
c corresponding to the con-

tacts sustaining compressive and tensile forces, respectively.
Figure 27 shows the evolution of Z−

c and Z+
c with shear strain

εq . Since the packings are initially very dense, both Z−
c and Z+

c

decrease rapidly with εq by loss of contacts. Then Z+
c continues

to decrease steadily, whereas Z−
c increases. This increase of

the proportion of tensile contacts indicates the mobilization
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FIG. 24. (Color online) The connectivty number Zc as a function
of cumulative shear stress.
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FIG. 25. The connectivity number Z∗
c averaged in the residual

state as a function of η. Error bars represent standard deviation.

of adhesion forces along the direction of extension. Hence,
a fraction of compressive contacts transforms into tensile
contacts. But a nearly constant level is reached at ε � 0.3
for both compressive and tensile contacts.

For all values of η, Z+
c is larger than Z−

c . This is consistent
with the fact that in a biaxial compression test the material is
globally in a compressive state of stress. We also note that the
evolution of Z+

c shows less fluctuations than that of Z−
c . These

fluctuations reflect a complex process as the adhesion forces
are mobilized in a direction of extension where the stresses are
globally compressive. In contrast, the compressive contacts
occur mainly in the direction of contraction, which is that of
the major principal stress direction.

The cohesive texture can be chatacerized by two dimen-
sionless numbers α and β defined by

α = −〈f −
n 〉

〈f +
n 〉 + 〈f −

n 〉 (9)

and

β = Z−
c

Zc

. (10)

The averages 〈f −
n 〉 and 〈f +

n 〉 represent the mean tensile and
compressive normal forces, respectively. We note that 〈f −

n 〉
is negative, but the sum 〈f −

n 〉 + 〈f +
n 〉 remains positive due

the mean compressive stress which is applied on the packings
during the shear test. The cohesion of the material may increase
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FIG. 26. The ratio K∗ of connectivity number to coordination
number averaged in the residual state as a function of nonconvexity
η. Error bars represent the standard deviation.
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FIG. 27. (Color online) Connectivity numbers Z−
c and Z+

c for
tensile (a) and compressive (b) contacts as a function of εq for the
different values of η.

as a result of the increase of either the proportion of tensile
contacts or the magnitude of tensile forces carried by the tensile
contacts.

Figure 28 displays the evolution of α and β as a function of
εq in the biaxial tests with different values of η. In general, α
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FIG. 28. (Color online) Evolution of the descriptors of the
cohesion state α and β with shear strain εq for the different values of η.
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FIG. 29. Descriptors of the cohesion state α∗ and β∗ in the
residual state as a function of η. Error bars represent standard
deviation.

has a high value at the beginning of the test. Then, it undergoes
a sharp decrease and increases again to move towards a steady
value when the system is in the sheared state. On the contrary
β is monotonic as a function of εq . We observe a sharp increase
at the beginning of the test, followed by a slow gradual increase
towards the steady state.

Since the cohesive strength of the material involves for
both α and β, their opposite variations at the beginning of
shear test means that the cohesion increases initially only due
to an increasing proportion of tensile contacts although they
carry lower tensile forces.

A similar argument holds for the steady-state cohesion as a
function of η. Figure 29 shows α∗ and β∗ in the steady state
as a function of η, where we observe an increase of α∗ and a
decrease of β∗ as η increases. This observation implies that the
cohesion increases with η only due to an increasing magnitude
of tensile forces although their proportion declines. This is
again consistent with the fact that higher nonconvexity leads
to packing structures with more mobilized cohesive bonds but
less bonded particles.

In our discussions about the connectivity of the aggregates,
we pointed out the fact that, although the packings are sub-
jected to a compressive state of stress, the tensile contacts occur
in the direction of extension, whereas the compressive contacts
point mostly in the direction of compression. Figures 30
and 31 display the contact networks separately for tensile
and compressive forces at the beginning of the biaxial shear
tests for the packings η = 0 and η = 0.7. In both cases, the
priviledged direction of compressive contacts can be observed
with long force chains. But the tensile contacts appear to be

(a () b)

FIG. 30. (Color online) Tensile (a) and compressive (b) forces at
the beginning of the biaxial shear test for η = 0. The linewidth is
proportional to the normal forces.

less connected and their orientations less marked than those of
compressive contacts.

In order to measure the orientational distribution of the
contacts, it is useful to consider the fabric tensor F defined
from the contact normals 
n by

F = 〈n ⊗ n〉 =
[ 〈cos2 θ〉 〈sin θ cos θ〉

〈sin θ cos θ〉 〈sin2 θ〉
]

, (11)

where ⊗ is the dyadic product and the averages are taken over
all contacts [70–73]. The anisotropy ac of the contact network
is defined by

ac = 2(F1 − F2), (12)

where F1 and F2 are the principal values of F. The major
principal direction θc of F represents the privileged direction
of the contacts.

To follow the anisotropy with shear strain it is useful to
consider the “signed” anisotropy a′

c defined by [74]

a′
c = 2(F1 − F2) cos 2(θc − θ ′), (13)

where θ ′ is a reference direction, which can be θc in the initial
state or the major principal direction of the stress tensor. We
now define fabric tensors F+ and F− as in Eq. (11) but
with averages restricted to the sets of compressive and tensile
contacts, respectively. We also take the reference direction
θ ′ to be that of the major principal stress direction. The
corresponding signed anistropies a′+

c and a′−
c describe the

mean polarization of the two networks.
Figure 32 shows the evolution of a′+

c and a′−
c as a function

of εq for all the values of η. We see that, for all η, a′+
c increases

from 0 (due to the initial isotropic compression), passes by a
pronounced peak at εq � 0.1, and declines to a contsant value
at large strains. At the same time, a′−

c begins to increase with

(a () b)

FIG. 31. (Color online) Tensile (a) and compressive (b) forces at
the beginning of the biaxial shear test for η = 0.7. The linewidth is
proportional to the normal forces.
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FIG. 32. (Color online) Fabric anisotropy of tensile (a) and
compressive (b) contacts as a function of shear strain for different
values of η.

low negative values and increases rapidly to become positive
at larger strains excepting disk packing and the case η = 0.1
which tend to an isotropic distribution of tensile contacts. After
a peak value reached at εq � 0.2, a′−

c declines but remains
positive.

The negative sign of a−′
c means that the average orientation

of the tensile contacts is orthogonal to the major principal
stress direction (vertical) at low strains. This is consistent with
our intuitive image of the mobilization of adhesion forces
along the direction of extension. However, the positive values
at larger strains contradict this image: In sheared nonconvex
packings of aggregates, the tensile contacts tend to be oriented
as compressive contacts. Since a−′

c continues to decline with
shear strain, it is plausible to assume that it may vanish
after longer shearing as in the case of η = 0 and η = 0.1.
The positive values then may be attributed to the fact that
most tensile contacts appear in the shear bands where the
local kinematics is different from the global kinematics. In
particular, the aggregates tend to rotate by local shearing
and the shear bands expand. As more tensile contacts are
activated by the evolution of the shear bands and gradual
homogenization of the texture, the packing may thus tend to
an isotropic state of tensile contact orientations.

In the case of simple compression tests, the initial high value
of cohesion reflects the high value of the initial connectivity,
which increases with nonconvexity. Figure 33 shows the initial
values of α and β (noted α0 and β0, respectively) as a function
of vertical strain in the case of simple compression tests from
the beginning up to the peak stress; see Fig. 13. The observed
behaviour is similar to that in the biaxial tests. α0 drops from a
high initial value (higher than in biaxial compression), which
reflects the high state of cohesion of the packings. However, the
mean values of α0 and β0 reached at εyy � 0.03 both decrease
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FIG. 33. (Color online) Descriptors of the cohesion state α0 and
β0 at the beginning of simple compression test as a function of η.

as η increases despite the increase of cohesion as observed in
Fig. 14. This shows that α and β do not always reflect the state
of cohesion of the packing. The large connectivity allows a
packing to resist vertical compression by building up vertical
compressive force chains requiring less mobilized adhesion
forces as nonconvexity increases.

VI. CONCLUSION

In this paper, we used contact dynamics DEM simulations
to investigate the cohesive behavior of 2D packings composed
of nonconvex aggregates. The adhesion force between the
aggregates was kept constant, whereas the nonconvexity was
varied in a broad range. The contact adhesion upscales to
a macroscopic cohesion which is expected to be amplified
by interlocking effect induced by shape nonconvexity. It was
shown, however, that the macroscopic cohesion evaluated
from the Mohr-Coulomb criterion is sensibly dependent on
the boundary conditions. Even with homogeneous loading,
the packings develop strain inhomogeneities in the form of
shear bands and/or stress inhomogeneities in the form of
gradients due to the mobilization of friction forces at the
walls. Therefore, the tensile forces are not homogeneously
mobilized within the packings and the resulting cohesion
does not reflect an intrinsic material property but represents
a cohesion state which either fluctuates with nonconvexity or
remains far below the expected cohesion. For example, the
cohesion levels measured in simple compression tests were
found to be one order of magnitude above those in biaxial
compression tests. The largest cohesion was found at the
beginning of unconfined compression test where the sample
is homogeneously deformed without showing stress and strain
gradients. In this case, the macroscopic cohesion is a linear
function of nonconvexity. In order to get more insight into the
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particle-scale mechanisms of cohesion and its evolution, we
analyzed the local packing fractions and textures in terms of
connectivity and anisotropy. A nontrivial observation is that, as
the nonconvexity increases, the coordination number (number
of contact neighbors) declines, whereas the connectivity
number (number of contacts) increases. In other words, the
aggregates tend to make more contacts with less contact
neighbors. Moreover, we found that the compressive contacts
always point along the direction of compression, whereas the
tensile contacts in sheared packings have either an isotropic
distribution or follow the direction of compression. It was
argued that this behavior relates to the local kinematics within
the shear band and the incomplete mobilization of adhesion
forces elsewhere. In order to handle more realistic model, an
interesting issue for this work could be to introduce adhesive
forces that depend of the particles local radius of curvature.
Analytical model such as that introduced in Ref. [75] could be
a interesting perspective.

Further simulations are required to test other boundary
conditions. For example, a major issue in many applications
is whether uniaxial compression (oedometric test) may erase
the inhomogeneities in packing fraction. Simulations are
underway to investigate this issue and the general compaction
properties of nonconvex particles with and without cohesion.

APPENDIX: CONTACT DYNAMICS METHOD

In this Appendix, we briefly describe the contact dynamics
(CD) method in 2D by adapting a detailed description given in
Ref. [56]. The implementation of the CD method with adhesion
forces is given in Sec. II.

1. Contact laws

Let us consider two particles i and j with a contact at a
point κ within a granular material. We assume that a unique
common line (plane in 3D) tangent to the two particles at κ

can be geometrically defined so the contact can be endowed
with a local reference frame defined by a unit vector 
n normal
to the common line and a unit vector 
t along the tangent line
with an appropriate choice of the orientations of the axes.

Geometrically, a contact potentially exists if the gap δn

between two particles is so small that within a small time
interval δt (time step in numerical simulations) a collision may
occur between the two particles. If the contact is effective, i.e.,
for δn = 0, a repulsive (positive) normal force fn may appear at
κ with a value depending on the particle velocities and contact
forces acting on the two partners by their neighboring particles;
see Fig. 34. But if δn is positive (a gap), the potential contact
is not effective and fn at the potential contact κ is identically
zero. These disjunctive conditions can be described by the
following inequalities:

δn > 0 ⇒ fn = 0
(A1)

δn = 0 ⇒ fn � 0.

The important point about this relation between δn and fn,
called Signorini’s conditions, is that it cannot be reduced to a
(mono-valued) function. Signorini’s conditions imply that the
normal force vanishes when the contact is not effective. But
the normal force may vanish also at an effective contact. In

i

j

c κ
i

c κ
j

nκ
t κ

κ

FIG. 34. (Color online) Geometry of a contact κ between two
particles i and j with contact vectors 
cκ

i and 
cκ
j , and contact frame

(
nκ,
tκ ).

particular, this is the case for un = δ̇n > 0, i.e., for incipient
contact opening. Otherwise, the effective contact is persistent
and we have un = δ̇n = 0. Hence, Signorini’s conditions can
be split as follows:

δn > 0 ⇒ fn = 0

δn = 0 ∧
{

un > 0 ⇒ fn = 0
un = 0 ⇒ fn � 0.

(A2)

We see that for an effective contact, i.e., for δn = 0, Signorini’s
conditions hold between the variables un and fn.

Like Signorini’s conditions, the Coulomb law of dry friction
at an effective contact point can be expressed by a set of
alternative inequalities for the friction force ft and the sliding
velocity ut ,

ut > 0 ⇒ ft = −μfn

ut = 0 ⇒ −μfn � ft � μfn (A3)

ut < 0 ⇒ ft = μfn,

where μ is the coefficient of friction and it is assumed that
the unit tangent vector t points in the direction of the sliding
velocity so 
ut · 
t = ut . Like Signorini’s conditions, this is a
degenerate law that cannot be reduced to a (mono-valued)
function between ut and ft .

Signorini’s conditions (A2) and Coulomb’s friction
law (A3) are represented as two graphs in Fig. 35 for an
effective contact between two particles. We refer to these
graphs as contact laws in the sense that they characterize the
relation between relative displacements and forces irrespective
of the material behavior (viscoelastic or plastic nature) of
the particles. These contact laws should be contrasted with
force laws (employed in MD simulations), which describe a
functional depedence between elastic or plastic deflections

un

fn

0
ut

ft

0

μfn

−μfn

(a () b)

FIG. 35. (Color online) Graphs of (a) Signorini’s conditions and
(b) Coulomb’s friction law.
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(attributed to the contact point) and forces extracted from
the material behavior of the particles. The force laws often
employed in MD may also be considered as a “regularization”
of the contact laws, in which the vertical branches in Sig-
norini’s and Coulomb’s graphs are replaced by a steep linear
or nonlinear function.

2. Augmented contact laws

The use of contact laws in the CD method is consistent with
the idea of a discrete model defined only at the scale of particle
motions and involving no small subparticle length or force
scales inherent to the force laws. But such a “coarse-time”
model of particle motion implies nonsmooth dynamics, i.e.,
possible discontinuities in particle velocities and forces arising
from collisions and variations of the contact status (effective
or not, persistent or not, sliding or not). Such events occur
frequently in granular flows and, hence, the approximation of
the contact force fn during δt is a measure problem in the
mathematical sense [49,76]. A static or regular force f s is the
density of the measure f s dt with respect to time differential
dt . In contrast, an impulse p generated by a collision has
no density with respect to dt . In other words, the forces at the
origin of the impulse are not resolved at the scale δt . In practice,
however, we cannot differentiate between these contributions
in a “coarse-time” dynamics, and the two contributions should
be summed up to a single measure. The contact force then is
defined as the average of this measure over δt .

In a similar vein, the left-limit velocities u−
n and u−

t at time
t are not always related by a smooth variation (acceleration
multiplied by the time step δt) with the right-limit velocities u+

n

and u+
t at t + δt . Hence, we assume that the contact laws (A2)

and (A3) are satisfied for a weighted mean of the relative
left-limit and right-limit velocities,

un = u+
n + en u−

n

1 + en

, (A4)

ut = u+
t + et u−

t

1 + |et | . (A5)

The physical meaning of the coefficients en and et is best
illustrated by considering a binary collision between two
particles. A binary collision corresponds to an effective contact
occuring in the interval [t,t + δt] and a persistent contact in
the sense of the mean velocity un. In other words, we have
un = 0 and, thus, −u+

n /u−
n = en. Hence, en may be identified

with the normal restitution coefficient. In the same way, for
ut = 0, corresponding to a nonsliding condition (adherence of
the two particles during their contact), implies −u+

t /u−
t = et ,

which is the tangential restitution coefficient. We see that when
Signorini’s and Coulomb’s graphs are used with the mean
velocities given by Eq. (A12), a contact is persistent in terms
of u+

n (i.e., u+
n = 0) only if en = 0.

When a collision is not binay, the generated impulses
propagate through the contact network so a contact may
experience several successive impulses during δt . Such events
can be resolved for a sufficiently small time increment δt or
they may be tracked according to an event-driven scheme. The
event-tracking strategy is, however, numerically inefficient,
of limited applicability and in contradiction with the scope
of the CD method based on coarse-time dynamics. The use

of mean velocities (A12) with the contact laws, thus should
be considered a generalization of restitution coefficients to
multiple collisions and contact networks for which the right-
limit veocities u+

n and u+
t are not simply given by the left-limit

velocities multiplied by the coefficients of restitution as in
binary collisions but by combining the contact laws with the
equations of dynamics.

3. Nonsmooth motion

The rigid-body motion of the particles is governed by
Newton’s equations under the action of imposed external bulk
or boundary forces 
Fext, and the contact reaction forces 
f κ

exerted by neighboring particles at the contact points κ . An
absolute reference frame with unit vectors (x̂, ŷ) is assumed,
and we set ẑ = x̂ × ŷ. Each particle is characterized by its
mass m, moment of inertia I , mass center coordinates 
r , mass
center velocity 
U , angular coordinates θ , and angular velocity
ωẑ. For a smooth motion (twice differentiable), the equations
of motion of a particle are

m 
̇U = 
F + 
Fext

I ω̇ = M + Mext,
(A6)

where 
F = ∑
κ


f κ and M = ẑ · ∑
κ 
cκ × 
f κ , where 
cκ is the

contact vector joining the center of mass to the contact κ and
Mext represents the moment of external forces.

For a nonsmooth motion with time resolution δt involving
impulses and velocity discontinuities, an integrated form of the
equations of dynamics should be used. Hence, the equations
of dynamics should be written as an equality of measures,

m d 
U = d 
F ′ + 
Fext dt

I dω = dM′ + Mext dt,
(A7)

where d 
F ′ = ∑
κ d 
f ′κ and dM′ = ẑ · ∑

κ 
cκ × d 
f ′κ . These
measure differential equations can be integrated over δt with
the definitions of 
F and M as approximations of the integral
of d 
F ′ and dM′. With these definitions, the integration of
equation (A7) over δt yields

m ( 
U+ − 
U−) = δt 
F + δt 
Fext

I (ω+ − ω−) = δt M + δt Mext,
(A8)

where ( 
U−,ω−) and ( 
U+,ω+) are the left-limit and right-limit
velocities of the particle, respectively.

The equations of dynamics can be written in a compact form
for a set of Np particles by using matrix representation. The
particles are labeled with integers i ∈ [1,Np]. The forces and
force moments F i

x,F
i
y,Mi acting on the particles i are arranged

in a single high-dimensional column vector represented by a
bold letter F belonging to R3Np . In the same way, the external
bulk forces Fext,x,Fext,y,Mext applied on the particles and
the particle velocity components Ui

x,U
i
y,ω

i are represented
by column vectors Fext and U , respectively. The particle
masses and moments of inertia define a diagonal 3Np × 3Np

matrix denoted by M. With these notations, the equations of
dynamics (A8) are cast into a single matrix equation,

M(U+ − U−) = δt(F + Fext). (A9)
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4. Contact dynamics equations

Since the contact laws are expressed in contact variables
(un, ut , fn, and ft ), we need to express the equations (A9) in
the same variables. The contacts are labeled with integers κ ∈
[1,Nc], where Nc is the total number of contacts. Like particle
velocities, the contact velocities uκ

n and uκ
t can be collected in

a column vector u ∈ R2Nc . In the same way, the contact forces
f κ

n and f κ
t are represented by a vector f ∈ R2Nc . We would

like to transform the equations of dynamics from F and U to
f and u. The formal transformation of matrix equations (A9)
is straightforward. Since the contact velocities u are linear in
particle velocities U , the transformation of the velocities is an
affine application,

u = G U, (A10)

where G is a 2Nc × 3Np matrix containing basically infor-
mation about the geometry of the contact network. A similar
linear application relates f to F,

F = H f , (A11)

where H is a 3Np × 2Nc matrix. We refer to H as a contact
matrix. It contains the same information as G in a dual or
symmetric manner. It can be shown that H = GT , where GT

is the transpose of G. This property can be inferred from the
equivalence between the virtual power F · U developed by
“generalized” forces F and the virtual power f · u developed
by the bond forces f . In general, the matrix H is singular and,
by definition, its null space has a dimension at least equal to
2Nc − 3Np.

The matrix Hiκ can be decomposed into two matrices Hiκ
n

and Hiκ
t such that

uκ
n =

∑
i

HT,κi
n Ui

(A12)
uκ

t =
∑

i

HT,κi
t U i

and

F i =
∑

κ

(
Hiκ

n f κ
n + Hiκ

t f κ
t

)
. (A13)

Using these relations, the Eqs. (A9) can be transformed into
two equations for each contact κ ,

uκ+
n − uκ−

n = δt
∑
i,j

HT,κi
n M−1,ij

×
{∑

λ

(
Hjλ

n f λ
n + H

jλ
t f λ

t

) + F
j
ext

}
,

(A14)
uκ+

t − uκ−
t = δt

∑
i,j

HT,κi
t M−1,ij

×
{ ∑

λ

(
Hjλ

n f λ
n + H

jλ
t f λ

t

) + F
j
ext

}
.

We now can make appear explicitly linear relations between
the contact variables from Eqs. (A14) and definitions (A12).
Let us set

Wκλ
k1k2

=
∑
i,j

H
T,κi
k1

M−1,ijH
jλ

k2
, (A15)

where k1 and k2 stand for n or t . With this notation, Eqs. (A14)
can be rewritten as follows:

1 + en

δt

(
uκ

n − uκ−
n

) = Wκκ
nn f κ

n + Wκκ
nt f κ

t

+
∑
λ(�=κ)

{
Wκλ

nn f λ
n + Wκλ

nt f λ
t

}

+
∑
i,j

HT,κi
n M−1,ijF

j
ext. (A16)

1 + et

δt

(
uκ

t − uκ−
t

) = Wκκ
tn f κ

n + Wκκ
tt f κ

t

+
∑
λ(�=κ)

{
Wκλ

tn f λ
n + Wκλ

nt f λ
t

}

+
∑
i,j

HT,κi
t M−1,ijF

j
ext. (A17)

The coefficients Wκκ
k1k2

for each contact κ can be calculated
as a function of the contact network geometry and inertia
parameters of the two partners 1κ and 2κ of the contact κ . Let

cκ
i be the contact vector joining the center of mass of particle

i to the contact κ . We get

Wκκ
nn = 1

m1κ

+ 1

m2κ

+
(
cκ

1t

)2

I1κ

+
(
cκ

2t

)2

I2κ

,

Wκκ
tt = 1

m1κ

+ 1

m2κ

+
(
cκ

1n

)2

I1κ

+
(
cκ

2n

)2

I2κ

, (A18)

Wκκ
nt = Wκκ

tn = cκ
1nc

κ
1t

I1κ

+ cκ
2nc

κ
2t

I2κ

,

where cκ
in = 
cκ

i · 
nκ and cκ
it = 
cκ

i · 
tκ are the components of the
contact vectors in the contact frame. The coefficients Wκκ

k1k2
are

inverse reduced inertia.
An alternative representation of Eqs. (A16) and (A17) is

the following:

Wκκ
nn f κ

n + Wκκ
nt f κ

t = (1 + en)
1

δt
uκ

n + aκ
n , (A19)

Wκκ
tt f κ

t + Wκκ
tn f κ

n = (1 + et )
1

δt
uκ

t + aκ
t . (A20)

The two offsets aκ
n and aκ

t can easily be expressed from
Eqs. (A16) and (A17). Equations (A19) and (A20) or,
equivalently, Eqs. (A16) and (A17) are contact dynamics
equations as they replace the equations of dynamics of the
system in terms of contact variables [56]. The two terms an

and at are given by the following expressions:

aκ
n = bκ

n − (1 + en)
1

δt
uκ−

n +
( 
F 2κ

ext

m2κ

−

F 1κ

ext

m1κ

)
· 
nκ. (A21)

aκ
t = bκ

t − (1 + et )
1

δt
uκ−

t +
( 
F 2κ

ext

m2κ

−

F 1κ

ext

m1κ

)
· 
tκ . (A22)

The effect of left-limit velocities (uκ−
n ,uκ−

t ) appears in these
equations as an impulse depending on the reduced mass and the
restitution coefficient. The effect of contact forces 
f λ

i acting
on the two touching particles are represented by the terms bκ

n

and bκ
t given by

bκ
n = 1

m2κ

∑
λ(�=κ)


f λ
2κ

· 
nκ − 1

m1κ

∑
λ(�=κ)


f λ
1κ

· 
nκ, (A23)
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un

fn

0
ut

ft

0

μfn

−μfn

C
D
E

CDE

(a () b)

FIG. 36. (Color online) Solution of the local Signorini-Coulomb
problem at the intersection points between contact dynamics equa-
tions (CDE) and contact laws.

bκ
t = 1

m2κ

∑
λ(�=κ)


f λ
2κ

· 
tκ − 1

m1κ

∑
λ(�=κ)


f λ
1κ

· 
tκ . (A24)

The contact dynamics equations (A19) and (A20) define a
system of two linear equations between the contact variables at
each contact point. The solution, when the values of an and at at
a contact are assumed, should also verify the contact laws (A2)
and (A3). Graphically, this means that the solution is at the
intersection between the straight line (A19) and Signorini’s
graph, on one hand, and between (A20) and Coulomb’s graph,
on the other hand.

5. Iterative resolution

In order to solve the system of 2Nc contact dynamics
equations (in 2D) with the corresponding contact laws, we
proceed by an iterative method which converges to the solution
simultaneously for all contact forces and velocities. We first
consider a single-contact problem which consists of the
determination of contact variables f κ

n , f κ
t , uκ

n, and uκ
t at a

single contact given the values of the offsets aκ
n and aκ

t at the
same contact. The solution is given by intersecting the lines
representing contact dynamics equations with Signorini’s and
Coulomb’s graphs; see Fig. 36. The intersection occurs at a
unique point due to the positivity of the coefficients Wκκ

k1k2

(positive slope).
Notice, however, that the two intersections cannot be

established separately when Wκκ
nt �= 0. To find the local so-

lution, one may consider the intersection of contact dynamics
equations with the force axis, i.e., by setting un = ut = 0. This
yields two values gκ

n and gκ
t of f κ

n and f κ
t , respectively,

gκ
n = Wκκ

tt aκ
n − Wκκ

nt aκ
t

Wκκ
nnWκκ

tt − (
Wκκ

nt

)2 , (A25)

gκ
t = Wκκ

nn aκ
n − Wκκ

tn aκ
t

Wκκ
tt Wκκ

nn − (
Wκκ

tn

)2 . (A26)

It can be shown that the denominator is positive. If gκ
n < 0, then

the solution is f κ
n = f κ

t = 0. This corresponds to a breaking
contact. Otherwise, i.e., if gκ

n � 0, we have f κ
n = gκ

n . With this
value of f κ

n , we can determine the solution of the Coulomb
problem. If gκ

t > μf κ
n , the solution is f κ

t = μf κ
n and in the

opposite case, i.e., if gκ
t < −μf κ

n , the solution is f κ
t = −μf κ

n

(sliding contact). Otherwise, i.e., when −μf κ
n < gκ

t < μf κ
n ,

the solution is f κ
t = gκ

t (rolling contact).
In a multicontact system, the terms bκ

n and bκ
t in the offsets

aκ
n and aκ

t depend on the forces and velocities at contacts

λ �= κ; see Eqs. (A21), (A21), (A23), and (A24). Hence,
the solution for each contact depends on all other contacts
of the system and it must be determined simultaneously for
all contacts. An intuitive and robust method to solve the
system is to search the solution as the limit of a sequence
{f κ

n (k),f κ
t (k),uκ

n(k),uκ
t (k)} with κ ∈ [1,Nc]. Let us assume

that the transient set of contact forces {f κ
n (k),f κ

t (k)} at iteration
step k is given. From this set, the offsets {aκ

n (k),aκ
t (k)} for

all contacts can be calculated through the relations (A21)
and (A22). The local problem can then be solved for each
contact κ with these values of the offsets, yielding an updated
set of contact forces {f κ

n (k + 1),f κ
t (k + 1)}.

Remark that this force update procedure does not require
the contact velocities uκ

n(k + 1),uκ
t (k + 1)} to be calculated

since the offsets depend only on the contact forces. The set
{f κ

n (k),f κ
t (k)} evolves with k by successive corrections and it

converges to a solution satisfying the contact dynamics equa-
tions and contact laws at all potential contacts of the system.
The iterations can be stopped when the set {f κ

n (k),f κ
t (k)}

is stable with regard to the force update procedure within a
prescribed precision criterion εf ,

|f κ (k + 1) − f κ (k) |
f κ (k + 1)

< εf ∀κ. (A27)

Finally, from the converged contact forces, the particle
velocities { 
Ui} can be computed by means of the equations
of dynamics (A8).

The iterative procedure depicted above provides a robust
method which proves efficient in the context of granular
dynamics. The information is treated locally and no large
matrices are manipulated during iterations. The number Ni

of necessary iterations to converge is strongly dependent on
the precision εf but not on δt . The number of iterations is
substantially reduced when the iteration is initialized with a
globally correct guess of the forces. This is the case when the
forces at each time step are initialized with the forces computed
in the preceding step.

The uniqueness of the solution in a multicontact system
with rigid particles is not guranteed at each step of evolution.
We have 3Np equations of dynamics and 2Nc contact relations.
The unknowns of the problem are 3Np particle velocities and
2Nc contact forces. The indeterminacy arises from the fact that
the 2Nc contact relations are inequations. Thus, the extent of
indeterminacy of the solution reflects all possible combinations
of contact forces accommodating the contact inequations. The
degree of indeterminacy may be high, but it does not imply
significant force variability since the solutions are strongly
restrained by the contact laws. In practice, as a result of finite
numerical precision, the risk of not finding a mechanically
admissible solution (verifying the contact laws and equations
of dynamics) is higher than that of finding too many solutions.
In other words, the variability of the solution is often below
the precision controlled by εf when the forces are computed
at each time step from the forces at the preceding step.

6. Time-stepping scheme

In CD method, the global problem of the determination of
forces and velocities, as described above, is associated with a
time-stepping scheme. This scheme is based on the fact that
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the first condition of Signorini’s relations in (A2) is the only
condition referring to space coordinates. Both the equations
of dynamics and contact laws are formulated at the velocity
level, and the first condition of Signorini is accounted for by
considering only the effective contacts where δn = 0. Hence,
the contact network is defined explicitly from particle positions
and it does not evolve during the time interval δt . But the
treatment of forces and velocities is fully implicit, and the
right-limit velocities { 
Ui+,ωi+} should be used to increment
particle positions.

These remarks devise the following time-stepping scheme.
Let t and t + δt be the considered time interval. The configu-
ration {
ri(t)} and particle velocities { 
Ui(t),ωi(t)} are given
at time t . The latter play the role of left-limit velocities
{ 
Ui−,ωi−}. The contact network {κ,
nκ,
tκ} is set up from the
configuration at time t or from an intermediate configuration
{
ri

m} defined by


ri
m ≡ 
ri(t) + δt

2

Ui(t). (A28)

When this configuration is used for contact detection, other
space-dependent quantities such as the inverse mass pa-
rameters Wκκ

k1k2
and external forces 
Ui

ext should consistently
be defined for the same configuration and at the same
time t + δt/2. The forces and velocities then are iteratively
determined for the contact network, and the right-limit particle

velocities { 
Ui+,ωi+} are calculated. The latter correspond to
the velocities at the end of the time step t + δt ,


Ui(t + δt) = 
Ui+, (A29)

ωi(t + δt) = ωi+. (A30)

Finally, the positions are updated by integrating the updated
velocities,


ri(t + δt) = 
ri
m + δt

2

Ui(t + δt), (A31)

θ i(t + δt) = θ i
m + δt

2
ωi(t + δt). (A32)

This scheme is unconditionally stable due to its inherent
implicit time integration. Hence, no damping parameters at
any level are needed. For this reason, the time step δt can be
large. The real limit imposed on the time step is cumulative
round-off errors in particle positions, which are updated
from the integration of the velocities. Although the excessive
overlaps have no dynamic effect in the CD method, they
falsify the geometry and, thus, the evolution of the system.
A sufficiently high precision or a large enough number of
iterations is required to avoid such errors. The time step is
not a precision parameter but a coarse-graining parameter
for nonsmooth dynamics. It should be reduced if the impulse
dynamics at small time scales is of interest.
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by M. Frémond and F. Maceri (Springer-Verlag, Berlin, 2004),
pp. 1–46.

052207-18

http://dx.doi.org/10.1103/PhysRevE.84.041302
http://dx.doi.org/10.1209/0295-5075/98/44008
http://dx.doi.org/10.1016/S0032-5910(99)00179-5
http://dx.doi.org/10.1016/S0032-5910(99)00179-5
http://dx.doi.org/10.1680/geot.2002.52.3.209
http://dx.doi.org/10.1029/2001JB000516
http://dx.doi.org/10.1029/2001JB000516
http://dx.doi.org/10.1007/s10035-007-0038-2
http://dx.doi.org/10.1007/s10035-007-0038-2
http://dx.doi.org/10.1002/nag.314
http://dx.doi.org/10.1002/nag.314
http://dx.doi.org/10.1139/t07-010
http://dx.doi.org/10.1103/PhysRevE.76.011301
http://dx.doi.org/10.1103/PhysRevE.76.011301
http://dx.doi.org/10.1016/j.mechmat.2009.01.021
http://dx.doi.org/10.1016/j.mechmat.2009.01.021
http://dx.doi.org/10.1103/PhysRevE.84.011306
http://dx.doi.org/10.1103/PhysRevE.84.011306
http://dx.doi.org/10.1051/jp2:1993109
http://dx.doi.org/10.1108/02644409910271894
http://dx.doi.org/10.1108/02644409910271894
http://dx.doi.org/10.1002/(SICI)1096-9853(199905)23:6<531::AID-NAG980>3.0.CO;2-V
http://dx.doi.org/10.1002/(SICI)1096-9853(199905)23:6<531::AID-NAG980>3.0.CO;2-V
http://dx.doi.org/10.1016/j.sedgeo.2006.07.011
http://dx.doi.org/10.1103/PhysRevE.85.051307
http://dx.doi.org/10.1016/S0045-7825(98)00383-1
http://dx.doi.org/10.1016/j.physa.2004.03.047
http://dx.doi.org/10.1098/rsta.2009.0185
http://dx.doi.org/10.1098/rsta.2009.0185
http://dx.doi.org/10.1103/PhysRevE.66.031303
http://dx.doi.org/10.1103/PhysRevE.66.031303
http://dx.doi.org/10.1029/2003JB002955
http://dx.doi.org/10.1029/2003JB002955
http://dx.doi.org/10.1103/PhysRevE.76.021301
http://dx.doi.org/10.1016/S1359-0294(99)90004-3
http://dx.doi.org/10.1080/17461390500402657
http://dx.doi.org/10.1140/epje/i2003-10153-0
http://dx.doi.org/10.1103/PhysRevE.86.031308
http://dx.doi.org/10.1103/PhysRevE.86.031308
http://dx.doi.org/10.1016/0266-352X(94)90002-7
http://dx.doi.org/10.1016/0266-352X(94)90002-7
http://dx.doi.org/10.1680/geot.1998.48.4.465
http://dx.doi.org/10.1002/(SICI)1099-1484(199704)2:2<121::AID-CFM27>3.0.CO;2-2
http://dx.doi.org/10.1002/(SICI)1099-1484(199704)2:2<121::AID-CFM27>3.0.CO;2-2
http://dx.doi.org/10.1016/S0032-5910(99)00237-5
http://dx.doi.org/10.1680/geot.1989.39.4.601
http://dx.doi.org/10.1680/geot.1989.39.4.601
http://dx.doi.org/10.1016/0167-6636(90)90030-J
http://dx.doi.org/10.1103/PhysRevLett.80.61
http://dx.doi.org/10.1103/PhysRevLett.80.61
http://dx.doi.org/10.1016/j.ijpharm.2004.05.001
http://dx.doi.org/10.1016/j.ijpharm.2004.05.001



