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4.1.

CARLEMAN ESTIMATES FOR ELLIPTIC BOUNDARY VALUE PROBLEMS
WITH COMPLEX COEFFICIENTS

MOURAD BELLASSOUED AND JEROME LE ROUSSEAU

ABSTRACT. We consider elliptic operators of order m = 2pu with complex coefficients and we derive mi-
crolocal and local Carleman estimates near a boundary, under sub-ellipticity and strong Lopatinskii conditions.
Carleman estimates are weighted a priori estimates for the solutions of the associated elliptic boundary prob-
lem. The weight is of exponential form, exp(7¢), where 7 is meant to be taken as large as desired. Such
estimates have numerous applications in unique continuation, inverse problems, and control theory. Based on
inequalities for interior and boundary differential quadratic forms, the proof relies on the microlocal factoriza-
tion of the symbol of the conjugated operator in connection with the sign of the imaginary part of its roots. We
further consider weight functions of the form ¢ = exp(at)), with & meant to be taken as large as desired, and
we derive Carleman estimates where the dependency upon the two large parameters, 7 and «, is made explicit.
In this second setting, the proof is made under strong pseudo-convexity and strong Lopatinskii conditions.
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1. INTRODUCTION AND MAIN RESULT

Let ) be a bounded and connected domain in R"™ with a °°-boundary 0f2. Points in §2 are denoted by

z = (x1,...,T,) and we write D; = —id/dx; where i = /—1. Let us consider a linear partial differential
operator of order m = 2u, p > 1:
(1.1) P= > as(x)D",

|a|<m

where the coefficients a,, () are bounded measurable complex-valued functions defined in Q. The higher-
order coefficients a,(x) with || = m are required to be €’ in Q). In what follows, we assume that the
operator P is elliptic.

Moreover, we consider a system of linear boundary operators of order less than m

(1.2) B¥= Y k@)D, k=1,...,u=m/2,
|| <Br

where the coefficients bf (x) are > complex-valued functions defined in some neighborhood of 9.
The aim of the present article is to derive a Carleman estimate for the following elliptic boundary value
problem

Bru(z) = g*(z), 2€09, k=1,...,u

Carleman estimates are weighted a priori inequalities for the solutions of a partial differential equation
(PDE), where the weight is of exponential type. For the partial differential operator P away from the
boundary it takes the form:

(1.3) le™Pw|| 2 < Clle™Pwl 2, w e EX(N), T> 7.

{Pu(m) = f(z), z€Q,
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The exponential weight involves a parameter 7 that can be taken as large as desired. Additional terms in the
Lh.s., involving derivatives of u, can be obtained depending on the order of P and on the joint properties of
P and ¢. For instance for a second-order operator P such an estimate can take the form

(14 B lemulds + 7P Vauls < ClePPul?s, 72w, ue E(Q).

This type of estimate was used for the first time by T. Carleman [7] to achieve uniqueness properties for
the Cauchy problem of an elliptic operator. Later, A.-P. Calder6én and L. Hérmander further developed
Carleman’s method [6, 15]. To this day, Carleman estimates remain an essential method to prove unique
continuation properties; see for instance [41] for an overview. On such questions more recent advances
have been concerned with differential operators with singular potentials, starting with the contribution of
D. Jerison and C. Kenig [24]. The reader is also referred to [39, 26, 27]. In more recent years, the field of
applications of Carleman estimates has gone beyond the original domain; they are also used in the study of:

e Inverse problems, where Carleman estimates are used to obtain stability estimates for the unknown
sought quantity (e.g. coefficient, source term) with respect to norms on measurements performed
on the solution of the PDE, see e.g. [5, 22, 28, 20]; Carleman estimates are also fundamental in the
construction of complex geometrical optic solutions that lead to the resolution of inverse problems
such as the Calder6n problem with partial data [25, &].

e Control theory for PDEs; through unique continuation properties, Carleman estimates are used for
the exact controllability of hyperbolic equations [2]. They also yield the null controllability of linear
parabolic equations [33] and the null controllability of classes of semi-linear parabolic equations

[ » Ao ]'

Here, we seek an estimate similar to (1.3) in the neighborhood of a point of the boundary 02. The
estimate we shall obtain will exhibit additional terms that account for the boundary conditions given by
the operators B*, k = 1,..., u. This question was addressed by D. Tataru for general operators with real
coefficients [40] and applied to the unique continuation problem near the boundary. Here, we shall focus on
the case of general elliptic operators, yet allowing for complex coefficients. In such case there is no general
theory for the derivation of Carleman estimates at the boundary. In [40] because of the generality of the
types of operators treated, norms in the Carleman estimates are not optimal in the case of elliptic operators
with real coefficients. Here we obtain norms that precisely coincide with those one could anticipate from the
known estimates away from the boundary and from particular cases of operators for which such an estimate
has been derived at the boundary, e.g. for the Laplace operator [33, 21].

The key conditions for the derivation of the Carleman estimate are compatibility properties between the
elliptic operator P, the weight function ¢, and the boundary operators B*, k = 1,..., . Those are the
sub-ellipticity and the strong Lopatinskii conditions. The former involves P and ¢ and is known to be
necessary and sufficient for the estimate to hold away from the boundary in the case of an elliptic operator.
The latter involves P, ¢, and the B¥. The Lopatinskii condition is used in [40]. Here, by proper (tangential)
microlocalizations at the boundary we show the precise action of this condition. These microlocalizations
are important as the Lopatinskii condition is function of the sign of the imaginary parts of the roots of’
po(x,&,7,&) = p(x,§ + it/ (x)) viewed as a polynomial in &,. Of course the configuration of the
roots changes as the other parameters (2/,¢’, 7) are modified. Roots can for instance cross the real axis.
Each configuration needs to be addressed separately through a microlocalization procedure. For the Laplace
operator at the boundary this was exploited to obtain a Carleman estimate in [34] for the purpose of proving
a stabilization result for the wave equation.

Here to simplify we consider the case Q@ = {z, > 0}. Then &, corresponds the (co)normal direction at the boundary
9 = {z,, = 0}. In the main text we shall use change of variables to reach this configuration locally.
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As in [40] the method of the present article is based on the study of interior and boundary differential
quadratic forms, an approach that originates in the work of [16] for estimates away from boundaries and in
[37, 38, 36] for the treatment of boundaries. In connection with the microlocalizations described above we
give a microlocal treatment of those differential quadratic forms. Positivity arguments rely on the Garding
inequality for homogeneous polynomials in connection with the position of the roots of the polynomial
po(x, &, 7,&). In fact the roots are split into three groups: roots with positive imaginary part, roots with
negative imaginary part, and real roots. Accordingly, gathering the associated monomials we write p,, as a
product of three factors:

Po = D5D, DY
The regularity of each factor is important to carry pseudo-differential calculus and applying Garding type
inequalities. Roots can however cross and only their continuity is certain. Yet, using the Rouché theorem,

the three factors can be shown smooth in proper microlocal regions.
The Carleman estimate we prove is of the form:

leull® + |7y (u)* < C([|e™ P(w, D)ul* + S e BH(a, Dyul?),
k=1
for u supported near a point at the boundary, where ~(u) stands for the trace of (u, D,u, . .., D™ u), the
successive normal derivatives of u, at 9€2. In this form, the estimate is incorrect as norms needs to be made
precise. For a correct statement please refer to Theorem 1.6 below.

For Carleman estimates, one is often inclined to choose a weight function of the form ¢ = exp(«a)), with
the parameter o > 0 chosen large. Several authors have derived Carleman estimates for some operators in
which the dependency upon the second parameters « is kept explicit. See for instance [13]. Such result can
be very useful to address systems of PDEs, in particular for the purpose of solving inverse problems. On

such questions see for instance [9, 11, 23, 4].
Compatibility conditions need to be introduced between the operator PP and the weight ¢). Those are
the so-called strong pseudo-convexity conditions introduced by L. Hormander [16, 19]. With the weight

function ¢ of the form ¢ = exp(«at)), the parameter « can be viewed as a convexification parameter. As
shown in Proposition 28.3.3 in [19] the strong pseudo-convexity of the function 1) with respect to P implies
the sub-ellipticity condition for ¢ mentioned above’. Away from the boundary, for a second-order estimate
the resulting Carleman estimate can take the form (compare with (1.4)):

(1.5) (aT)?’ng/zewuHiQ + aanpl/QewauHiQ < HewPuH%g , T > 170, @ > ap, u€ EC(0).

We aim to extend such estimate in the neighborhood of the boundary. We then assume that the strong
Lopatinskii condition holds for the operators P, B* and the weight 1. The work [29] provides a general
framework for the analysis and the derivation of Carleman estimates with two large parameters away from
boundaries. For that purpose it introduces a pseudo-differential calculus of the Weyl-Hormander type that
resembles the semi-classical calculus and takes into account the two large parameters 7 and « as well as
the weight function ¢ = exp(at)). Here, the analysis of [29] is adapted to the case of an estimate at
the boundary. Estimates with the two large parameters 7 and « are derived in the case of general elliptic
operators.

If we strengthen strong pseudo-convexity condition of ¢ and P, assuming the so-called simple character-
istic property, sharper estimates can be obtained [29]. We also derive such estimates at the boundary.

2The terminology for the strong pseudo-convexity condition and the sub-ellipticity condition are often confused by authors.
Here we make a clear distinction of the two notions.
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Perspectives. The treatment of transmission problems for elliptic operators is a natural extension of the
present work. If elliptic operators are given on both sides of an interface and transmission conditions are
given by interface operators, the potential derivation of a Carleman estimate is a natural question. It was
studied for second-order elliptic operators for the purpose of stabilization of the associated wave equations
[3] and the controllability of the associated heat equation [32, 31]. The treatment of general elliptic trans-
mission problems is the subject of an ongoing joint work by the two authors of the present article.

Here, we consider Carleman estimates with the loss of a half derivative. It would be interesting to carry
out a similar analysis for estimates with a larger loss of derivatives. Such estimates can be very important in

some classes of inverse problems; see for instance [25, 8].
1.1. Setting. We shall now give more precision on the setting we consider. For x = (z1,...,x,) € R", we
denote by £ = (&1, ..., &) the corresponding Fourier variables. Moreover, for every £ € R™ and o € N"

we define £& = &' - - - €&, We denote by

p(@,8) = > aa(r)€”

|a|=m

the principal symbol of the operator P given in (1.1) and, for £ = 1, ... u, we denote by

W(2,8) = 3 ba(z)E”
|oe|=PBk

the principal symbol of the boundary operator B in (1.2).
Here, we assume that the operator P is elliptic, viz.,

p(a,&) #£0, Ve, vEeR {0}

Let v = v(x) denotes the unit outward conormal vector to 9f) at x. We assume that the system B =
(B, ..., B") of boundary differential operators is normal at x € 052, that is,

0<B1 <Pa<--<Pu<m,
and, forall k =1,..., u, that
Ve (x,v(z)) #0, Ve .
Moreover since P is elliptic we have that OS2 is not characteristic with respect the operator P(x, D):
p(z,v(z)) #0, Ve .
We now review the definition of important properties that will be used in what follows: the sub-ellipticity

and the strong Lopatinskii conditions.

1.2. Sub-ellipticity condition. For any two functions f(x, &) and g(z, &) in €°°(2 x R™) we denote their
Poisson bracket in phase-space by
of o9 Of Og
{f,9t =2 (8787 36 90
j=0 0&; 0; §j O0x;
It is to be connected with the commutator of two (pseudo-)differential operators. In fact, if f and g are poly-
nomials in &, then the principal symbol of the commutator [f(x, D), g(x, D)] is precisely —i{ f, g}(x,§).

The sub-ellipticity condition connecting the symbol p and a weight function ¢ is the following (See [16,
Chapter 8] and [19, Sections 28.2-3]).
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Definition 1.1. Let ¢(z) be a smooth functions on Q and let U be an open subset of ). The pair {P, ¢}
satisfies the sub-ellipticity condition on U if /() := Vp(x) # 0 at every point in U and if
1
P ingd) =0 = o AP.E —ing) (e +irg)} >0,
forall x € U and all non-zero € € R", 7 > 0.

For an elliptic operator p the sub-ellipticity condition is necessary and sufficient for a Carleman estimate
of the form of (1.3) to hold away from the boundary [19, Section 28.2]. For a simple exposition of the
derivation of Carleman estimates for second-order elliptic operators under the sub-ellipticity condition we
refer to [30].

Note also that the sub-ellipticity condition is invariant under changes of coordinates. This is an important
fact here as we shall work in local coordinates in what follows.

Remark 1.2. Note that here, as the operator P is elliptic, we have p(x, &) # 0 for each § € R™, £ # 0. The
sub-ellipticity condition thus holds naturally at 7 = 0.

Remark 1.3. Setting p,(z,&,7) = p(x,§ + i7¢") and writing p, = a + ib with a and b real, we have

1 . . T,
277; {]3(1‘,5 - ZT(p/),p(JE,f + 27_90/)} = 271 {pgoapgo} (.%',5,7') = {a> b}(l‘,f,T).
Below, we shall use the sub-ellipticity condition in the form
p(@.E+irg') =0 = {ab}z,{7) >0,

forall x € U and all non-zero £ € R™, 7 > 0.

In connection with the symbol interpretation of the Poisson bracket given above, we see that the sub-

ellipticity condition guarantees some positivity for the operator i[a(x, D, T),b(x, D, T)] on the character-
istic set of p(x, D + iTy') = a(x, D, T) + ib(x, D, 7). A proper combination of a(x, D, 7)*a(x,D,T) +
b(x, D, 7)*b(x, D, 1) and ila(x, D, T),b(x, D, T)] thus leads to a positive operator. This is the heart of the
proof of Carleman estimates.
1.3. Strong Lopatinskii condition. Elliptic boundary value problems are well-posed only if boundary con-
ditions are chosen appropriately. By well-posedness one usually means that the solution exists and is unique
in some space, and it depends continuously on data (boundary conditions and source terms) and parameters.
A sufficient condition to obtain well-posedness is the so-called Lopatinskii condition that is of algebraic
nature. Here, we shall treat conditions of this type adapted to the elliptic operators we consider after conju-
gation by the Carleman weight function.

For = € 09 we denote by N} (0f2) the conormal space at = given by
N;(09) = {N € T;(); N(Z) =0,VZ € T,(69Q) } .
The conormal bundle of 952 is given by
N*(09) = {(z,N) € T*(Q); x € 9Q, N € N;(09Q)} .
By a boundary quadruple w = (z,Y, N, 7) we shall mean z € 09, Y € T:(9Q), N € N;(9Q) \ {0}
and 7 > 0. For a boundary quadruple w and A € C, we set
(1.6) Po(w,A) :=p(z,Y + AN +irdp(x)).

For a fixed boundary quadruple wy = (¢, Yo, No, 70), we denote by o; the roots of p,(wp, A) with multi-
plicity p;, viewed as a polynomial of degree m in A, with leading-order coefficient c¢y. We can then factorize
this polynomial as follows:

ﬁgo (w(]a )‘) = COﬁ; (w()? A)ﬁ; (w(]a )‘)ﬁgop (w07 )‘)a



ELLIPTIC BOUNDARY VALUE PROBLEMS 7

with
Pplwo, )= TI (A=), Pplwo,N) = TI (A—o0y)H,

+Imo;>0 Imo;=0

We define the polynomial ., (wg, A) by
(17) Ry (WO’ >‘) = ﬁ; (WO’ )\)ﬁg(wo, )‘)

Similarly, for B = {B*} _ . the set of boundary operators and b*(z, €) their principal symbols, for
a boundary quadruple w = (z,Y, N, 7) we set

(1.8) b (w, A) = b"(2,Y + AN +irdp(x)).

Definition 1.4. (1) We say that {P,B*, ¢, k = 1,..., u} satisfies the strong Lopatinskii condition at a
boundary quadruple wy = (z, Yo, No, T0) if the set of polynomials {Bl; (wo, A) }i<k<y is complete
modulo Ky, (wo, \) as polynomials in \: for all f(X\) polynomials there exist q(\) polynomial and
c, € C, 1<k < pu, such that

B
f(>\) = E Ckb:co(w()) )‘) + q(/\)'%s@(w()a )‘)7 AeR.
k=1
(2) We say that {P,B*, @, k = 1,...,u} satisfies the strong Lopatinskii condition at xq € 0N if
the previous property holds for all boundary quadruples w = (vo,Y, N,T) with Y € T (952),
N € N; (0%2), and T > 0.

Remark 1.5. (1) Observe that the strong Lopatinskii condition only depends on dy rather than p. It
is thus a geometrical condition that concerns the level sets of  (as here dp(x) # 0 — see Defini-
tion 1.1) in connexion with the differential operators P and B*, k = 1,..., pu.

(2) Observe that for a polynomial f(\), the Euclidean division yields the existence of two polynomials
g(X) and q(\), with d°g < d°ky,(wo, To, A), such that

F) =9\ + q(Nrp(wo, ),  AeR.

In the statement of the strong Lopatinskii condition we may thus restrict ourselves to polynomials of
degree less than that of k,(wo, \). Considering the definition of k,(wo, A) in (1.7) that depends on
the roots of the polynomial of p,(wo, \), in what follows we shall restrict ourselves to polynomials
f(X) of degree less than or equal to m — 1.

(3) Note that the strong Lopatinskii condition implies d°k, < m — 1. Hence d°p, > 0. In fact,
otherwise, the vector space of the polynomial functions of degree less than or equal to m — 1, of
dimension m, is generated by a family of i = m/2 polynomials; a contradiction.

Invariance by change of coordinates. We finish the presentation of the strong Lopatinskii condition by
observing that this definition is of geometrical nature, independent of the choice of coordinates. This fact is
important as we shall make use of local coordinates at the boundary 02 of the open set 2 in what follows.

In fact, for a point x € 9€2 we consider an open neighborhood X € R" of z and two coordinate systems
(X1,%1) and (X2,19), thatis ¢y : X — X and ¢9 : X — X are diffeomorphisms and X, X9 are open
sets in R™. We set 21 = ¢ (x) and 25 = 19(x).

We then introduce the diffeomorphism x : X7 — X5 given by k = 12 0 1) ! and we have k(z1) = 2.
Let Y1, N; (resp. Ya, No) be the local versions of Y and N in the two coordinate systems. Similarly let p(!)
and b,(cl), k=1,...,u, (resp. p@ and b,(f)) be the local versions of the principal symbols of the differential
operators P and B*. We also define ¢1 = ¢ 01} and ¢y = ¢ 0 1), the local versions of the weight function
in the coordinate patches.
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With standard differential geometry arguments we have the following relations:
Y1 ='W (21)Ys, Ni="'6(x1)No, doi(z1) ="x'(x1)dps(22),
V(. €) =P (s(e). "W (2)71), B (2,6 =) (w(2), '/ (2) 7€),
If we set f;(\) = pY)(z;,Y; +itdp;(x;) + AN;), j = 1,2, we find
fin) = p(l)(:cl, Y1 4+ ANy + itdpi(x1)) = p (m(wl), b/ (1) (Y1 + AN, + de(pl(iL‘l)))
= p®) (@, Y2 + ANz + itdips(w2)) = fo(N),

which simply means that the polynomial function p,, defined in (1.6) does not depend on the coordinate sys-

tem chosen. The same holds for the polynomial function I;’; defined in (1.8), which allows one to conclude
that the strong Lopatinskii condition of Definition 1.4 can be stated (and checked) in any coordinate system.

1.4. Sobolev norms with a parameter. For non-negative integer m and a real number 7 > 0, we introduce
the Sobolev spaces H™(£2) and H"(0N2) defined by the following norms respectively:

k) 2 -
[ IIW—kZOTQ(m lullf () and IUImT—kZOT " Jul e ag

where we denote the usual Sobolev norms on € and 02 by ||. | s () and |.| (90 The L? inner-products
on €2 and 02 will be denoted by (.,.) and (., .), respectively.

For m € N and s € R we introduce the following boundary space
m .
H™(09) = [] H'7(09),
j=0
equipped with the norm

m—j

m
(1.9) |u|3n7577 =3 3 pAmeih) |uj|12qk+5(89), u = (ug,...,Uny).
7=0 k=0
If u € €°°(Q2) we denote 7™ (u) = (yo(u), ..., Vm(u)) where v;(u) = (20,)7u is the sectional trace of

u of order j and we define

m m— )
Y™ (W) 7 Z_:O ZO T |y () [Fpess gy
In what follows we shall write (u) in place of 4™ (u) for concision.

1.5. Statement of the main result. We can now state the local Carleman estimate that we prove in the
neighborhood of a point of the boundary, with the sub-ellipticity and strong lopatinskii conditions.

Theorem 1.6. Let xg € 02 and let p € €°°(2) be such that the pair { P, ¢} has the sub-ellipticity property
of Definition 1.1 in a neighborhood of xq in Q. Moreover, assume that {P, o, Bk k=1,... ,u} satisfies
the strong Lopatinskii condition at xo. Then there exist a neighborhood W of x¢ in R™ and two constants
C and 1. > 0 such that

(1.10) 77 [e™Pul5, -+ €7y (W2 110, < C(l€7P(a, D)uHLz+k21\e”’B’“<x DYul?, 19 g, )

for all u = wq with w € €2°(W) and T > .
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This results will first be established microlocally: at a boundary point g we shall assume that the strong
Lopatinskii condition holds for some Yj and Ny in the cotangent space at x¢ and 79 > 0 (as introduced in
Section 1.3) and we shall prove that a Carleman estimate of the form above holds in a conic neighborhood
of (zo, Yo, No, 70) in phase-space; localization in phase-space will be done by means of cut-off functions
and associated pseudo-differential operators. We refer the reader to Section 4.4.

Estimates of the form of (1.10) are local. Yet, they can be patched together to form global estimates. We
do not cover such details here. Patching of local estimates away from the boundary can be found in [16,
Lemma 8.3.1]; for estimates near the boundary one can for instance consult [30].

In Section 6 we shall prove Carleman estimates with a weight function of the form p(x) = exp(at)(z))
as is usually done in practice with the parameter o chosen as large as desired. We shall provide the precise
dependency of the Carleman estimate with respect to this second large parameter.

1.6. Local reduction of the problem. Let xqg € 0€2. There exists a neighborhood V of x( and a local
system of coordinates z = (x1,...,x,) where VN Q C {z, > 0} and 2/ = (21, ..., 2,_1) parametrizes
the boundary V' N 02 C {x, = 0}. We denote by R”} the half space {z,, > 0} and V. = V N R . For our
purpose here, without any loss of generality, we may assume that V; is bounded. We shall write 92 NV to
denote {z € V; x,, = 0} in the local system of coordinates.

In such local coordinates, in V., the tangential differential operator’ P of order 1 with complex coeffi-
cients takes the form

P=P(z,D) =

Pj(l‘,D,)D%, Dn = fam
j=1 L
where Pj(z,D’), j = 1,...,m, are tangential differential operators with complex coefficients of order
m — j. We have P,, = P,,(x) # 0. Upon dividing by P,,,(x) we may assume that P,,(x) = 1.

Similarly the boundary operators take the form
k k Bk Lk N
B" = B%(z,D)= ) Bi(x,D')Dj),, 1<k<uy,
§=0

where B]’?(x, D), j=0,..., [y are tangential differential operators of order (8 — 7).

Calling (', &,,) the Fourier variables corresponding to (', :,) we have, for the principal symbol of P,
m .
p(z,§) = Zjopj(mvgl)‘fgw
j:

which is a polynomial homogeneous of degree m in the n variables (¢, &,,).

We introduce p,(z,§,7) = p(z,§ +it¢). Setting ¢’ = (z,&,7) and o = (¢',&,), for simplicity we
shall write p,, (o) in place of p,(x, &, 7) and often p,, (¢, &,) to emphasize that the symbol is polynomial in
&n-

For a fixed point o, = (0, &, 70) € withxzg € IQ and (&, 70) € Sql__l ={¢,m)eR", >0, |(¢, 1) =1},
the closed upper semi-sphere in R", we denote the roots of p,(gf, &n) by au, . . ., an, with respective multi-
plicities p1, . . ., v satisfying pg 4+ - -+ puxy = m. By Lemma A.2, there exists a conic open neighborhood
U of g, such that

Po(0,&n) =5 (0 &)y, (0 En)P2(0 6n), 0 €U, & ER,

3By abuse of notation, in the new local coordinates, we keep the notation P and B*, k = 1, ..., , for the operators introduced
in Section 1.
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with pf and pg, polynomials in &, of constant degrees in %/, smooth and homogeneous; in % the imaginary
parts of the roots of p} (¢',&n) (resp. p; (¢', ,)) are all positive (resp. negative) and we have

pi(@é)agn) = II (& —ay), pg(@&in) = I (& —ay)".

+Ima;>0 Im ;=0

The polynomial p, is thus decomposed into three factors in a neighborhood of ¢f,. For pi the sign of the
imaginary part of their roots remain constant equal to & respectively; for pg this sign may change and the
roots are precisely real at o' = gy,

We then define the polynomial k. (o', &) by

(1.11) k(0 &n) = Db (0, &)D0(0 n).

For B = {Bk} —— the set of boundary operators and b*(z, &) their principal symbols, we set

bf;(x,f,T) = bF(x, & +iT¢’). As above we write bf;(g’,fn) where ¢ = (z,&’,7) to emphasize that the
symbol is polynomial in &,,. We have

B (0 60) = 5 B (d)él
sogv n _j:0 %J"Q no

with bf;’j(g’) homogeneous of degree Sy — j in (¢, 7).

The strong Lopatinskii of condition Definition 1.4 is invariant under change of variables as seen at the
end of Section 1.3. A conormal vector N is given by (0,...,0,N,,) in the present coordinate system.
For the statement of the strong Lopatinskii condition we can choose N = (0,...,0,1) without any loss
of generality. In the local coordinate system (z’, z,,) in V, a boundary quadruple w = (z,Y, N, 7), with
Y = (¢',0) can thus be identified with ¢’ = (z, ', 7). The strong Lopatinskii condition at g, = (z0, &, 70)
thus reads as follows:

The set {bf;(gf), &n) }kzl,..-,u is complete modulo k. (0p, &) as polynomials in &p,.

We shall now prove that this property remains true for ¢’ in a small conic neighborhood of gf).

We set m~ = d° (p;(g’ , )) that is independent of o' € %/, with the open conic neighborhood % as
introduced above, and we let £, (¢', ) be the polynomial function given in (1.11). It takes the form

k(0 6n) = ZO Kk (0)E, o €U, &y ER,
J:

where k,, ; is homogeneous of degree (m —m™ — j) w.r.t. (¢, 7).

Remark 1.7. If we denote by M~ (o) the number of roots (counted with their multiplicities) with negative
imaginary parts of p,(¢', &n) polynomial in &, with o' € %. We have m~ = M~ (g,). We may however
have m~ # M~ (¢') for some o' € % . Note that in such case we have m~ < M~ (¢') from the construction
of the neighborhood % given in Lemma A.2.

We set m' = m~ + pand for k = 1,...,m’, we shall introduce a family of polynomial functions of
degree less than or equal to m — 1 denoted by eﬁ(g’ ,&n), all taking the form

m—1 .
(1.12) ek (o, &) = gefz,j(@’) i, dew,
J:

with 6{;7 ; homogeneous w.r.t. (&', 7). This family of polynomials is composed of two different sets:
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— kE _ pk 3 ;
(1) Fork =1,...,pu, we set e, = b, yielding

€pj = .
#J 0  otherwise.

Then e’;)j(g') is homogeneous of degree 3y, — j w.r.t. (¢, 7).

(2) Fork=p+1,...,m, weset 6];(@’7 &) = /%(g’, &) /nf—(/ﬁ-l)’ yielding
k Kpj—kturt ifk—p—1<j<m-—m'+k—1,
(& .=
- 0 otherwise.

Setting B, = m —m~ + k — (1 + 1) we have that e’;’j is homogeneous of degree (5, — j W.r.t.
(&, 7).
The strong Lopatinskii condition of Definition 1.4 (using Remark 1.5) means precisely that the family
(efp(g’ .&n))1<k<m’ generates the space of polynomials of degree less than or equal to m — 1 in &, for
o' = gf, implying m’ > m and that the matrix
M(h) = (el ;(eh)) osizm—1
1<k<m/’
is of rank m. Then there exists a m x m sub-matrix My(o() such that det M(o[) # 0. As the coefficients
of My(¢') are continuous and homogeneous of degree 3, — j we then have det Mg(o’) # 0 for ¢/ in a
small conic neighborhood ¥ C % of g[,. Note that the homogeneity of the coefficients is important for #
to be chosen conic since det Mg(¢') is itself homogeneous w.r.t. (¢’, 7). The rank of M (o) thus remains
equal to m in ¥/, meaning that the strong Lopatinskii condition is valid in the whole 7.

We have thus reached the following result.

Proposition 1.8. Let the strong Lopatinskii condition hold at ¢, = (x¢, &)y, 70). Then we have m™ + pu > m.
Moreover there exists a conic neighborhood V" of o, such that this property remains true at every point o

of V.

This result can be commented in view of the proof of the Carleman estimate we give below. In fact, with
the factorization p, = p,, K, the following states roughly the proof strategy we shall adopt:

(1) The factor p,, associated with roots with negative imaginary part yields a perfect elliptic estimate at
the boundary.

(2) The factor x,, yields an estimate at the boundary that involves trace terms. These terms will be esti-
mated via the actions of the boundary operators BZZ by means of to the strong Lopatinskii condition.

The inequality . > m—m™~ thus indicates that we shall have at hand a sufficiently large number of boundary
operators to control the terms originating from the estimate with the factor x,, that is of degree m —m™.
As here 1 = m/2 note also that we have m~ > m/2.

1.7. Some examples. Here give simple examples of operators for which the present analysis applies.

A natural example is P second-order elliptic with real coefficients. We can find local coordinates at the
boundary such that V. = {z,, > 0} and P = D,,, +r(z, D") where r(xz, D") = r(2', x,, D') is a x,,-family
of elliptic operators with r(z,£’) > C|¢'|%. For any smooth 1 the pair { P, ¢}, with ¢ = exp(a1)), satisfies
the sub-ellipticity condition of Definition 1.1 if ¢’ # 0 and « is chosen sufficiently large (see e.g. [30]).
First for simplicity we consider ¢ = ¢(zy,). If 9;, ¢ > 0, the strong Lopatinskii condition is for example
satisfied in the following cases:

(1) Bu = uj,—g+, Dirichlet condition;
(2) Bu = (Dg,u + a(z)u)|;,—o+, Robin conditions.
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(3) Bu = (Dy,u+ iaDy,u),, o+ With a® < 7.

These results remain true if we consider ¢ = p(z', z,,) with |0, p| < |0;, | allowing for small variations
of  in the tangential direction. With Theorem 1.6 we thus recover known results for second-order operators
[33, 34].

For a simple example of higher-order operators we consider P = D} . T D;"Q inVy = {9 > 0}
Here also for any smooth 1 the pair {P, ¢}, with ¢ = exp(a)), satisfies the sub-ellipticity condition of
Definition 1.1 if ¢/’ # 0 and « is chosen sufficiently large (see e.g. [29]). Here also, considering ¢ = p(x2),
if 05, > 0, the strong Lopatinskii condition is for example satisfied in the following cases:

(1) B'u = tg,—0. B>t = DayUjz,—0;
(2) Bl = ujg,—0, B>t = Aujg,—o;
(3) Blu = U|zy=0> B*u = Dy Attjzy—o-

This list of examples for P = D} + D3, is by far not exhaustive. Here also, including small variations of
 in the tangential direction preserves these properties.
Details on these examples are given in Appendix A.1.

1.8. Notation. If V C @i we denote the semi-classical unit half cosphere bundle over V' by

:—,T(V) = {(:E?g/aT); x 6 ‘/7 5, E Rn_l, T 6 R+, |£,|2 +T2 = 1}

m—1 / /
2y, forz = (20,...,2m-1),2' =

The canonical inner product in C™ is denoted by (z,2z)cm = o

(2h,...,2h 1) € C™. The associated norm will be denoted |z|%., = Z;n:_ol 2%

We shall use some spaces of smooth functions in the closed half space. We set
COE) = g w € CXRY),  S(®}) = {ugns ue SR},
For two u,v € .%(R;) we set

(U, U)—i— = (u7 U)LQ(Ri) (u|xn:0+7v|xn:0+)a = (u|a:n:0+7U|xn:0+)L2(Rn—1) .

In this article, when the constant C'is used, it refers to a constant that is independent of the large parameter
7. Its value may however change from one line to another. If we want to keep track of the value of a constant
we shall use another letter.

In what follows, for concision, we shall sometimes use the notation < for < C, with a constant C' > 0.
We shall write a < b to denote a < b < a.

1.9. QOutline. We start by a review of pseudo-differential calculus with a large parameter in Section 2,
including regularity results on appropriate Sobolev spaces. Section 3 is an exposition of results concerning
interior and boundary differential quadratic forms. In particular we write a (microlocal) Garding inequality
for homogeneous differential operators at the boundary and a generalized Green formula.

Section 4 is devoted to the proof of the Carleman estimate of Theorem 1.6. First a microlocal Carleman
estimate is proven (Theorem 4.4). The proof exploits the factorization p, = p;ﬁ Py pg. To ease the reading of
the proof we have separated the action of each factor and corresponding condition to form partial estimates.
The factor p, yields a perfect elliptic estimate as in Section 4.1. The factor ., = p;fpg yields an estimate
controlling the traces of the unknown function at the boundary with the operators B¥, through the strong
Lopatinskii condition (see Section 4.2). The sub-ellipticity condition is exploited in Section 4.3 and, based
on the generalized Green formula of Proposition 3.15, the derivation leads to a control of the norm of the
unknown function in €2 yet with remainder terms involving the traces of the function at 0€2. Collecting the
different arguments we obtain the microlocal Carleman estimate in Section 4.4. Then in Section 4.5 we
show how the patching of such estimates yields the result of Theorem 1.6.
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In Section 5 we present the pseudo-differential calculus with two large parameters and how the analysis
of differential quadratic forms can be revisited.

In Section 6, with the weight function ¢ = exp(a)), to prove the Carleman estimate with two large
parameters, 7 and «, by means of the Garding inequality at the boundary we need some positivity results
on the symbol of some homogeneous differential operator. This follows from the strong pseudo-convexity
condition on ¢ and P. In Section 6.5 the approach of Section 4 is then adapted to prove a microlocal Car-
leman estimate with two large parameters. This estimate is finally improved if the strong pseudo-convexity
condition is replaced by the simple characteristic property.

In Appendix A we have collected some intermediate technical results.

2. PSEUDO-DIFFERENTIAL OPERATORS WITH A LARGE PARAMETER

Parameter-dependent pseudo-differential operators have proven to be important tools for the derivation
of Carleman estimates. The general aim is to obtain a pseudo-differential calculus with a large parameter,
and then to derive estimates with constants that are independent of the parameter. Often such a pseudo-
differential calculus is referred to as a semi-classical calculus.

2.1. Classes of symbols. We first introduce symbols that depend on a parameter.

Definition 2.1. Let a(p) € €°(R™ x R"), o = (,§,T), with T as a parameter in [Tyin, +00), Tmin > 0,
and m € R, be such that for all multi-indices o, 5 € N we have

2.1

838?@(@)‘ < Ca’g)\m*m, x €R" £ €R", 7 € [Tmin, +0),

1
where A = |(§,7)| = (\§|2 + 7'2) 2. Thus differentiation with respect to £ improves the decay in & and T
simultaneously. We write a € ST (R™ x R"™) or simply ST". For a € S we denote by o(a) its principal
part, that is, its equivalence class in S™ /S 1.

We also introduce tangential symbols. Let a(¢') € €®°([R] x R"™), o = (,&,7), with T as a
parameter in [Tmin, +00), Tmin > 0, and m € R, be such that for all multi-indices o € N", § € N1 e
have

8?8’6,&(9') < C’aﬁ)\TTnf"Bl, T € err, g eR"L re [Timin, +00),

1
where A\t = |(&/,7)] = (|¢']* + 7%)2. We write a € S??T(E x R™"™1) or simply ST".. For a € S{, we
denote by o(a) its principal part, that is, its equivalence class in ST,/ ST'; L

We also introduce symbol classes that behave polynomially in the &, variable. Let a(p) € € (Rﬁ xR™),
with T as a parameter in [Tyin, +00), Tmin > 0, and m € Nand r € R, be such that

a(o) = Zoaj@’)fz, aj € ST 0=(d, &), o = (2.€,7),
j:

withx € R, £ € R", 7 > Tyin, and &, € R. We write a(o) € ST (R, x R") or simply S7*".
Note that we have S™" C STF™"~™ if ;. m’ € Nand r € R. We shall call the principal symbol of
a the symbol

m

a(a)(e) = 3 a(a;)(e)g),

Jj=0

which is a representative of the class of a in S7™" /S,
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Note that S7"" ¢ S™*". For example consider a(x,&,7) = [(¢/,7)|&, for |(¢',7)] > 1. We have
ae SN Sy and yet a ¢ S2. In fact observe that differentiating with respect to ¢ yields

08 al(z,&,7) < Cal (€)' Enl.

An estimate of the form of (2.1) is however not achieved for |« > 2. A microlocalization is required
to repair this flaw and to use the two different symbol classes in a pseudo-differential calculus (See [18,
Theorem 18.1.35]).

Finally, we define the corresponding spaces of poly-homogeneous symbols. Such symbols are often
referred to as classical symbols; they are characterized by an asymptotic expansion where each term is
positively homogeneous with respect to (£, 7) (resp. (£, 7)):

Definition 2.2. We shall say a € ST (ﬁi xR™) or simply ST

,C

 (resp. ST 4 (Rﬁ x R 1Y or simply ST

if there exists a; € S (resp. S-??T_j), homogeneous of degree m — j in (§,7) for |(§,7)| > 1o, (resp.
(&', 71) for |(&',7)] > ro), with rg > 0, such that

. N
(2.2) a~ Y a9, inthe sensethat a— Y. a¥) € SN (resp. SN,
720 =0 ’
A representative of the principal part is then given by the first term in the expansion.
Finally for m € N and r € R, we shall say that a(p) € Sm’r(ﬁi x R™) or simply S:?C’lr, if

T,cl
n /N ] . m—j+r /
a(o) = > aj(0)E, witha; € Sngl , 0= (0,&n).
=0
The principal part is given by quﬂzo o(aj)( Ql)fgz and is homogeneous of degree m in (&, 7).

2.2. Classes of semi-classical pseudo-differential operators. For a € SI(R"™ x R™) we define the fol-
lowing pseudo-differential operator in R"™:

a(z, D, 7)u(x) = Op(a)u(z) = (277)*an" @ Oa(x, &, () dE,  we S(RY),

where @ is the Fourier transform of u. In the sense of oscillatory integrals we have
a(z, D,7)u(z) = Op(a)u(z) = (2n) ™" J[ '“"Sa(w, & 7)uly) dE dy.
R2n
We write Op(a) € P7(R™) or simply W”". Here D denotes D,. The principal symbol of Op(a) is
o(Op(a)) = o(a) € S7 /S

Tangential operators are defined similarly. For a € 57", (@1 x R™) we set

a(z, D', )u(z) = Op(a)u(z) = (2r)~ =V 1 @V gz, & ryuly,z,) d€' dy', uwe S (R}),

R2n—-2

where z € R',. Here D’ denotes D,,. We write A = Op(a) € ¥7_(R") or simply U"_. The principal
+ T, 7\ T,7
symbol of A = Op(a)iso(A) =o(a) € S%?T/Sﬁj‘;l.
Finally form € N,r € R,and a € S;”’T(@i x R™) with

m 3 .
a(o) = Y a;(0)&), a; € ST, 0= (&),
7=0
we set

a(x,D,7) = Op(a) = aj(a:,D’,T)D%,

s

0

J
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and we write A = Op(a) € U7""(R") or simply U7"". The principal symbol of Ais o(A)(0) = o(a)(e) =
oo o(a)(¢)g in ST/ ST

We provide some basic calculus rules in the case of tangential operators.

Proposition 2.3 (composition). Leta € ST, and b € S?”‘; be two tangential symbols. Then Op(a) Op(b) =
Op(c) € ‘11m+m with ¢ € Sm+m defined by the (oscillatory) integral:

(o) = (a#b) (o) = 2m)~ "V [ e Wz, ¢ + 1, 7) bz’ + o s, €, 7) dy dif

LI
:l\ZN al 9zia(e") 95ib(d') + T,
o< .
where 1 € S?:‘:meN is given by
—i)N IN(L— )Nl )
= (2(71')(7)7’_1)' ‘Z g ( a' ) ffe (y " )85’0‘(377 5/ + nl7 T)ax/b(.’ﬂl + Sy/, Tn, 6/, T) dy/dn/ds'
al=N .

Proposition 2.4 (formal adjoint). Let a € ST',.. There exists a* € SY', such that

(Op(a)u,v), = (u,0p(a*)v),,  w,ve L (R]).
and a* is given be the following asymptotic expansion
a* (o) = (2m)~ " Jf e WA +of g, & 40 ) dy df
|atf
— Z ( ) aé-/ 1 (Q,)+TN, TN -~ S?:L;N,
o<y A

where
Y N0

rN = Z [ [fe W ogo%a(x’ + sy, an, € + 1y, 7) dy'difds.
(271’)” 1 : N O

We denote Op(a)* = Op(a ). We refer to Op(a)* as to the formal adjoint of Op(a).
A consequence of the previous calculus results is the following proposition.

Proposition 2.5. Let a(o') € ST, and b(o') € S?f;, with m,m' € R. Define h(¢') = Dy (bdga)(o') €
S;”‘*‘m/_l. Then we have
Op(a)* Op(b) — Op(ab + h) € WFF™2,

or equivalently a*#b —ab — h € S%f_r’L:-m/—Q‘

For semi-classical operators in the half space with symbols that are polynomial in &, we also provide a
notion of formal adjoint.

Definition 2.6. Let b € SI", with

s

b(z,D,7) =Y bj(z,D',7)Di, b€ ST

0

J
We set

m .
b(z,D,7)" = OD%bj(x,D’,T)*.
]:
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In other words, in this definition we ignore the possible occurrence of boundary terms when performing
the operator transposition.
Note that for a € ST, | we have [D,,, Op(a)] = Op(Dna) € YT, , and more generally, for j > 1, we
have
j—1

(D3, Op(a)] = > Op(ax)DE,  aj e ST,
=0

where the symbols a4, involve various derivatives of a in the z,,-direction. As an application we see that if
we consider a; € ST/ then we have

Diaj(x,D',7) = aj(z,D',7)DI,

MS
1

Jj=0
where a; € ST T_ifr " and its principal part satisfies o(d;) = a; in S}”:_” "/ S?ff "1, Hence
& j / o / ] 1
0( >. D}aj(x,D ,7‘)) = > aj(z,&,7)¢, mod ST
J=0 Jj=0

From the calculus rules given above for the tangential operators and the above observation we have the
following results on the principal symbols.

Proposition 2.7. Leta € S7"" and b € S T with
m . .
a(o) = 3 a;(d)&,. blo) = 3 bi(d)&, o=(d.&), o = (2,£.7).
(1) We have a(z, D, 7)* € """ and

o(a(z,D,7)") = Y- a;(d)g), € S /S

Moreover we have Op(a)* — Op(a) € U1,
() a(z, D, 7)b(z,D,7) € WP and

o(a(z, D, 7)b(x, D, 7)) = zk a;j(0)br(0)ELTH € gmtmirtr’ ygmamlari=l,
0<7,k<m

We have Op(a) Op(b)u — Op(ab)u € \II:—n+m’7r+r’_1.

2.3. Sobolev continuity results. Here we state continuity results for the operators defined above using the
Sobolev norms with parameters introduced in Section 1.4. Such results can be obtained from their standard
counterparts.

1/2
Let A\r(¢,7) = (72 + ¢/ and At := Op(At). For a given real number s, the boundary norm given
by (1.9) is equivalent to the following norms:

m
(2.3) ul s = 2 Al ke w= (o, ).
k=0

Moreover, we define the following semi-classical interior norm

(2.4) ull?, ;= |ASul)?

m,Ss,T m,T "’
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Proposition 2.8. If a(o) € S7"", withm € N and r € R, then for m’ € N and r' € R there exists C > 0
such that

|Op(a)ull < Clull ue S (RY).

m' ' T m~+m/ r+r/ 7

A consequence of this results and Proposition 2.7 is the following property.
Corollary 2.9. Leta € S7"" and m' € Nand s € R. We have

Ha(:b',D,T)*U—a(Z',D,T)’LLH CHU’H

m/,s,T — m+m/ r+s—1,7 "
bt b b

The following simple inequality will be used implicitly at many places in what follows when we invoke

the parameter 7 to be chosen sufficiently large. This will then allow us to absorb semi-classical norms of
lower order.

Corollary 2.10. Let m € Nand s € R and £ > 0. For some C > 0, we have

letll s < CT7

m,s,T m,s+4,7 °

3. INTERIOR AND BOUNDARY QUADRATIC FORMS

In this section, we present quadratic forms involving pseudo-differential operators that are differential in
the normal direction and some of their properties.

3.1. Interior quadratic forms.

Definition 3.1. Letu € . (Ri) We say that

N
(3.1) Q(u) = > (A, B®u) A® =a®(x,D,T), B =b°(z, D, 1),

s=1
is a quadratic form of type (m, o) with € coefficients, if for each s = 1,...N, we have a*(p) €
Kl (R} x R™), b*(0) € S7oy (R x R™), with o’ + 0" = 20, 0 = (,, 7).

The symbol of the quadratic form Q) is defined by

N _ _
(3.2) q(o) = Zl a*(0)b(0) € ST (R} x R™),
s=
Remark 3.2. Note that ' and ¢” can vary with s € {1,..., N}. Their sum yet remains constant equal to

20. In what follows we shall not write this dependency explicitly for concision.

Clearly, this definition raises an ambiguity as one symbol can be associated with several quadratic forms.
As an example, in one dimension, for N = 1 we can choose A = D,QL S ‘11370 and B = A% S \119’2 C \113’0
yielding to |¢’|2£2 for the symbol. The choice A = B = AtD,, € Uh! © 029 jeads to the same symbol.

In fact if u € €2°(R”) then

N
Q(u) = S; (B*)* o A%u,u) . .

The symbol of ) thus coincides with the principal symbol of Zévz 1(B*®)* o A%. Note that considering test

functions with non-vanishing traces at the boundary x,, = 0" will naturally generate boundary terms when

performing such operator transpositions. Such questions will be dealt with bellow.
Fors=1,..., N, as we have

a*(0) = iﬁ a3(d)E, b*(o) = f:o B(E, 0= (06, & = (x.€.7),
Jj= J=
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e e/, X
with a? € se 7 and b € se T we write

m . m .
A% = Zo A;D}, B®= ZOB;’D%, Aj = CL;(.T,D/,T), Bj = bjf(x,D',T).
Jj= Jj=
Then, for u € . (@i), the quadratic form given by (3.1) can be written as
m m . &
Q(u) = Z(JkZO (ijk‘D‘ZLu’ Dnu)Jr’
J= =

where C} ;. are tangential operators given by

N
Cie = ;(B;i)*Ai,
with symbols
N .
cik(d) = ;(bz)*#aj(g’) € gAmra)=(+h)

We have the following lemma whose proof is left to the reader.

Lemma 3.3. We consider the interior quadratic form of type (m, o), as above,
m m . —(j+k
Qu) = Z{)kzo (CjrDiu, DfLu)Jr, Cik=cjp(x, D', 7), cj€ Sif:?;ra) k),
1= =
We have
2 —n
Q) < Cllullgrs ue S (RY).

Next we consider the case of a quadratic form with a vanishing symbol. Such a result will be usefull
when comparing quadratic forms associated with the same symbol.

Lemma 3.4. We consider the interior quadratic form of type (m, o), as above,
m m . 2 —(j+k
Qu) =Y 3 (CjxDlu, Diu) ., Cjp = ciu(,D',7), ¢ € STEZTCTU) Uk,
§=0 k=0

and we further assume that the principal part of its symbol vanishes, that is,

1<;< Cj’k(gl) =0 mod S_?_f:?;*;”)—e—l’ Ve € {07 cees Qm} ) Q, = (xvgla T)'
SJ,Rsm
J¥k=¢

Then the following estimate holds
1Q(u)] < C( Hqun,o’—l/Q,T + |’Y(“)|3n—1,a+1/2,7)7 ue S (RY).

Proof. Let{ € {0, ...,2m}. We introduce oy = max(0,¢—m) and 3y = min(m, ¢). Note that 5, = {—ay.
We set

. Be
I, = Z (Cj,kD%U, Dflu)Jr = Z (Cg_thf;ku, DfLu)Jr
1<j5,k<m k=ay

JHh=¢
We first consider 0 < ¢ < 2m. For k > «ay we write

(Cg_kjkDfl_ku, Dflu)—i— = (Cg_k,kDfL_kH_lu, D,]fb_lu)+ + (Op(Dan_ng)Dfl_ku, Ds_lu)_i_

. l—k k—1
—Z(Cg_chDn u|xn=0+>Dn U|xn:0+)a,
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which by induction yields,

k—ay
(Cg,thfL_ku, Dﬁu)Jr = (Cg,thgéu, Df{@u)Jr + ii (Op(Dan,;@k)Dﬁ_Hs_lu, Df’;_su)Jr
o kg {—k+s—1 k—s
i 21 (Co—r i Dy, Upgr =0+ > Dy "z, =0+ ) o
s=
As Dpcpp i € S%EZ}:{U)_E we note that
3.3) | (OP(Dnee—i i) Dy " u, Di~5u) |
e P I I
+otk—l—s+3 +o—k+s—3
<CHAm 7 T HE k+s— 1THAm o Hk S,T

< ¢ ||u||€fk+sfl,m+o+kféfs+§,‘r | ||kfs,m+a'fk+sf§,7'

< Cful;

m— 10'Jr27'7
asm+k—¥¢—s>0andm—-1—k+s>0.

Similarly we write

‘(Céfk,kDﬁik+87lu|xn:O+7 szsu\xn:m)a‘ <C |7(u)|2

m—l,a-‘,—%,‘r .

We thus obtain

Be
1 <| 3 (CopaDitu, Ditu), |+ C(Jlul’?

m— 1cr+ T+|Py( )|m 10’+2,T)
k=ay

As by assumption we have

Be —r—
> Cokrp= > Cippe€ \I’T(TZEU) o

k=a, 1<), k<m

j+k=¢t
we find
Be +o—Be—3 + -3
kz (Co—p e DEu, D) )<CHAm TR DR L AT 2DSZUHL2
=y
<C Hu”ﬁz,m-i—a Be—3.7 HuHO&[,m-‘rU—az—%,T
< CHUHmU_,T,

since m — ay > 0 and m — By > 0. In the case 0 < ¢ < 2m we have thus obtained
(3.4) 1L < O IIUHmo_, LW Lotlr):

Let now £ = 0. Then Iy = (Coou,u), and as Coo € \I/?r(;?:{”)_ we find |Io| < C ul?,

Similarly for £ = 2m we have Iy, = (CymD)'u, fou)Jr with Cp, ;€ \Il-zl-"T Cll yielding |I,| <

O’**T'

Cllul|®> 1 . This concludes the proof. O
m,o—5,T

We shall need a Géarding inequality for the quadratic forms we have introduced.
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Proposition 3.5 (Garding inequality). Let % be an open conic set in Ri x R*™1 x R, and let QQ be an
interior quadratic form of type (m, 0) with its symbol q € ST Cl’ satisfying, for some C > 0 and Ry > 0,

Regq() > CA*™,  for A= |(&,7)| = Ro, 0= (d',&), ' = (2,8, 1) €U, & €R.

Let then x € SY . be such that supp(x) C %. For 0 < Cy < C and N € N there exist 7., C' > 0, and
C% > 0 such that the following inequality holds

ReQ(Op( )U) > CO HOp(X)uH?n,T - Cl IV(OP(X)U)|3YL*1,1/2,T ”uHm —N,7>
foru e .7 (R )andT > Ty

The important feature of this version of the Garding inequality is that it concerns functions defined on a
half space. Such an inequality can be found in [40, 10]. Here we give a microlocal version of the inequality.

Remark 3.6. In the case % = Uy x R™ x RT, with Uy open subset of Ri then, by continuity, there exists
Ui open subset of @1 such that Uy is a neighborhood of Uy and

Req(o) > CoN*™,  for A =|(&,7)| > Ry, 0= (0,&n), ¢ = (z,&,7) €Uy x R" x RT, &, € R.
for Cy < C < C. Then there exist C' and .. > 0 such that
Re Q(u) > Co lull?, , — C" v(w)l2, 1 1/0+

foru € €°(R ) with supp(u) C Uy. This is obtained from Proposition 3.5 by choosing x = x(z) €
¢ (R™) with supp(x|$n>0) C Uy and x = 1 on Uy and by taking T sufficiently large.

Proof. Letx € S%T have the same properties as x with moreover 0 < x < 1 and y = 1 on supp(y).
We introduce the interior quadratic form

Q(u) =ReQ(u) = ((Asu, B*u), + (B®u, A®u), ),

||M2

1
2,
that we may write in the form of (3.1) with 2N terms in the sum. Its symbol is given by (see (3.2))
15 S | — 18 N s 2m,0
552::1 (b a® +agb ) = Reszz:lasb € STCl .

Without any loss of generality we may thus assume that the interior quadratic form () has a real symbol
q(0)-

The symbol (o) is in S>"+ and thus is written as

2m

.

q(0) = E)Qj( N, 4 €Sty 0= (0 &), o = (x,€,7).
j:

Each symbol ¢; takes the form g; ~ Zkzo qj,& With ¢; , homogeneous of degree 2m — j — k in (¢, 7) for
|(&,7)] > 7o with g > 0 (see Definition 2.2). We set ¢° as the principal part of ¢:

2m .
(3.5) ¢°(0) = Z)()qy,o(g’)é‘%
=

Observe that ¢° satisfies, for Cy < C; < C,
Reqo(g) > C’1/\2m, oecw, &, cR.

With Cy < Cy < C1, we see that qo(g) —CA\?™ is areal polynomial function in the variable &,, of order 2m,
that takes positive values on the real line for o' € % . The leading coefficient ag(o") € S? is homogeneous
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of degree 0 in (&', 7), for (&', 7)| > ro, and is positive. The roots of the polynomial come into conjugated
pairs and are functions of the other variables ¢’ € 7. We may thus write

°(0) — CoX*™ = f(0)f(0), o0=1(d.,&), d €%, & €R,

with
m
f(0) = Vao(d) l_[1 (& — i (),
1=
where pj, i = 1,...,m, denote the roots with positive imaginary parts. For all of, = (z0,&),70) € %,

there exists a neighborhood %96 of ¢, in % such that, with the Rouché theorem, arguing as in Appendix A.2

we find that f(p) € S7" Ofor o € % ;» more precisely a polynomial in , with smooth homogeneous
coefficients |(£’, 7)| > ro. Note in particular that this uses the homogeneity of the functions ¢; o in (3.5).

We pick 7 a conic open set such that ¥ C % and supp(¥) C 7. Making use of the conic structure in
the variables (¢’, 7), as above we can then pick Q;- € 7 and conic neighborhoods %;, j € J, such that we
obtain a locally finite covering of ¥'. We then associate a partition of unity of the form

X =2 x5 supp(x;) C %
JjeJ
and f;(0) = x;(0)f(0) € S’{L’TO. Since the supports of the x; are locally finite Yf = >_, f; € S??’TO. We
have
(3.6) (0 (6" (0) = CaA*™) = RP(2)I f1%(0),
for 0 = (¢/,&,) with o € R} x R"' x Ry and &, € R. We now take 7 > rg. Observe that v —
||Op(x)vHiw is an interior quadratic form of type (m,0) with symbol %2|(¢,7)[*™. We thus see that

Q(Op(x)v) —Cy ||Op(>2)v||72nﬁ - HOp()Zf)vH%g is an interior quadratic form of type (m, 0) with a symbol
r with vanishing principal part:

r(o) = > ri(d) J with 7 € S§2m=i=1,
3=0

Lemma 3.4 (with 0 = 0) then yields
3.7 [ReQ(Op(X)v) — C2 [Op(V)vll7, - — IOP(A)wlIZz | < C(II0l5 —1/2r + V051120 )

forv e (Ri) The triangular inequality then yields

i}

Re Q(Op(x)v) > Co ||OP(>Z)U”31,T - Cl( Hv”fn,_1/2,r + "Y(U)|3n—1,1/2,7)a ve S (RY),

by taking 7 sufficiently large. We now set v = Op(x)u. We have Op(x)v = Op(x)u + Ru with R €
N NeN\II#TV by pseudo-differential calculus. We then obtain the sought estimate by taking 7 sufficiently
large. O

3.2. Boundary quadratic forms.

Definition 3.7. Let u € €°°(R"}). We say that

N
B(u) = (Asu|xn:0+,Bsu‘xn:0+)a, A® =ad’(x,D,7), B> =b0°(z, D, 1),
s=1
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is a boundary quadratic form of type (m — 1,0) with € coefficients, if for each s = 1,... N, we have
a*(p) € STCIL‘T (Ri x R™), b%(p) € S™ 17 (Ri x R™) with o' + ¢ = 20, 0 = (0, &) with ¢ =

T,cl

(x,&', 7). The symbol of the boundary quadratic form A is defined by

- N _ -
B¢, n:&n) = 32 a’(0,€0)b% (0, &n)-
s=1

Forz = (20,...,2m-1) € C™and a(¢',&,) € S we set

., m—1 ,

a(e,z) = > aj(0)z-

j=0
From the boundary quadratic form % we introduce the following bilinear symbol B:C"xC™ —C

N =
B(d,z,72') =Y a’(d,2)b°(d',7)) =z,2 € C™.
s=1

As above we let 7 be an open conic set in R}, x R"~! x R..

Definition 3.8. Let P be a boundary quadratic form of type (m — 1, o) associated with the bilinear symbol
B(¢',z,2"). We say that A is positive definite in % if there exist C > 0 such that

Y m=1 2(m—1—j+o0) 2 / / m
B(¢',z,2) > C Y A} 1zi|*, M =&, 7)), €, z="z20,...,2m-1)€C™.
j=0
We have the following Lemma.

Lemma 3.9. Let & be a boundary quadratic form of type (m — 1, o), positive definite in % , with bilinear

symbol B(0',z,2). Let x € S%T be homogeneous of degree 0, with supp(x) C % and let N € N. Then
there exist T, > 1, C > 0, C'y > 0 such that

B(0p(x)u) > C [7(Op(x)u)|> — On [y(u)|?

m—1,0,7 m—1,0—-N,7>

foru e y(@i) and T > T,

Proof. The boundary quadratic form can be written as

m—1
+o—1-j nj —1-k nk
,%(’U) = 'kzo (ijAT ’ ]D%U‘xn:0+,/\-rrn+a 1 Dnv|xn:0+)a
]7 =

where G, = Op(g;x) € ‘I'OT,T,cl-

We introduce y € S%T that has the same properties as x with moreover 0 < y < land y = lina
neighborhood of supp x. We then set

9ij = X9i5 + (1 — X)d45,
where 6;; = 1if i = j and 0 otherwise. As Z is positive definite we have (g;;z,z) > C |z|(2Cm in  with
C > 0. Thus we have (j;jz,2) > C' |z|&, in R} x R"~! x Ry with ¢’ > 0.

For a function v we define the m-tuple functions V' = (vg, ..., vmy—1) by

—1-k nk
v, = AP Dpvig,—ot, k=0,...,m—1.
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We then have, for N € Z,

2 mlo o1k ok 2
(38) |V|N,T = kzo |vk|N,T = kZO |AT Dnlen:0+‘N,T

m—1
2 2
= X 85D e = O o

We set uw = Op(x)u and introduce U = (ug, ..., um—1) and U = (uy, . . ., U,,_1) as above:
U = ATrnJroilikDZ“\xn:oh Up = Aanrgilikbeylxn:O*’ k=0,...,m—1L
We have
m—1
@(2) = (ijﬂjaﬂk)a .
7,k=0

Writing g;; = Gi; + ri; with r; = (gi; — d;5)(1 — x) we find
m—1 B m—1
B(u) = 'kzo (Op(gz‘j)ﬂpﬂk)a + %:o (Op(n‘j)@jaﬂk)a
]7 = j7 —

As the supports of 1 — y and x are disjoint, with the pseudo-differential calculus and with the Garding
inequality in the transverse direction, for any N € N we find C' > 0 and C'y > 0 such that

’%(y) 2 C |Q‘(2),T - CN ‘U|2—N,T '
for 7 sufficiently large. Combined with (3.8) this yields the conclusion. (|

Lemma 3.10. Let hi(C), k = 0,...,m' — 1, be a set of polynomials of degree less than or equal to (m — 1)
with m’ > m. Consider the following bilinear form B(z,2') = S 3" hx(2)hy(2), for 2,2’ € C™. Then
the following statements are equivalent:

(1) the set of polynomials is complete;
(2) the quadratic form given by B(z,z) is definite positive: there exists C' > 0 such that

B(z,z) > C |z](2Cm , z=(20,...,2m-1) € C™.
Proof. Writing hy(¢) = E;”:_Ol hyj¢7, the completeness of the set of polynomials means that the matrix

H= (hkj) 0<k<m/—1,

0<j<m—1
is of maximal rank, that is of rank m. As we have rank “H H = rank H and

B(z,z) = ]Hz|ém/ = (tﬁHz,z)Cm,

the conclusion follows. U

3.3. Bézout matrices.

m : m .
Definition 3.11. Given two univariate polynomials a(¢) = Y a;¢’, b(¢) = _ b;¢’? of degree less than or

7=0 7=0
equal to m (note that any coefficient could be zero), we build the following bivariate polynomial

= _ a(Qb() — a(Ob(Q)

m—1 o~
Ba,b(CaC) C Z = ‘kzogj,k ngka
_ k=
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called the Bézoutian of a and b, and the corresponding symmetric matrix g, = (g; 1) of size m x m with
entries g; i, bilinear in the coefficients of a and b, is called the Bézout matrix and given by (see [14]):

min(j.k)

(3.9) gik= > (beajir—r41 = bjrh—rr100),
=0

upon letting ay, = b, := 0 for k > m and k < 0. With this Bézout matrix we associate the following bilinear
form

~ m—1
Ba,b(Z, Z/) = Z gj»kZ]E;w z= (207 ceey Zm-1); 7z = (Z67 R Z;nfl) eC™.
j7 :0
Lemma 3.12. Given two univariate polynomials a(¢) = Y a;¢?, b(Q) = > bj¢? of degree less than or
j=0 j=0
equal to m, we have the following identity
. k—j—1
(3.10) Buy(z,2') ==Y 9 12j4r -1 2,2 €C™,
j<k r=0

where
3.11) 9 = (ajby, — ayby) = —gj. ;.

Moreover if a = ajag and b = @ we have the following property

(3.12) Ba,b((y O = a2(<)62(C>Ba1ﬁl (Ca C) +ax (C)GI(OB@,EQ (Cv C)

Remark that this expression is not symmetric in ay and as.

Proof. Fort,s € R, we write

a()b(s) — a(s)b(t) = 3> (aby — axby) sk = 3 ¢f sk,

k,j=0 j,k=0
and using the anti-symmetry of ¢’, viz. g;c’j =— g;’ .» we find
, , k—j—1
a(t)b(s) = a(b(t) = 32 g (t's" —t'57) = (s 1) T g 23 ¢TSI
j<k i<k 7 =0

By continuity we then obtain the following identities
k—j—-1
(3.13) Boy(t,s) = Boy(t,s) == 3 gjy 3o #77s"7170
' j<k 7 =0
With the matrix g’ = (g’ ;) we associate the following bilinear form

- k—j—1
B;ﬁ(z,z’) =—-> g;kzjwézflﬂq, z,z € C".
j<k r=0
To prove the first result, i.e., B{l’b = me, it is sufficient to have B(’Lb(vp,vq) = me(vp,vq), p,q €
{1,...,m}, for any basis (v1,...,vy) of C™.
Let then wy, ..., wn € Cbe such that w; # w; fori # j. Setting v; = (1,wj,...,w
yields a basis of C™, as we have the Vandermonde determinant
det(vi,...,vim) =  [[ (wj—w;)#0.

1<i<j<m
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Observe then that we have

Bap(vp, vq) = Bap(wp,wy), B:z,b(vpvvq) = B;,b(wpqu)'

We then deduce the first result from (3.13).
Finally the proof of (3.12) is a simple algebraic manipulation that is left to the reader. g

The following Hermite Theorem provides a relation between the position of the roots of a polynomial and
the Bézout matrix associated with the real and imaginary parts of the polynomial. We give an elementary
proof in Appendix A.3.

Proposition 3.13 (Hermite Theorem). Let h({) = a(¢)+1ib({) be a polynomial of degree k > 1, where a(()
and b({) are polynomials with real coefficients. Assume that all the roots of h(C) are in the lower complex
half-plane {Im { < 0}. Then the roots of a(() and b(() are real and distinct. Moreover, the bilinear form
Ba,b(z, z') is positive, ie., there exists C' > 0 such that

Ba,b(zvz) >C |Z|27 VS (Ck'

3.4. A generalized Green formula. Consider two symbols of a € S;”é? and b € S™ 1 ¢ §70,

T,cl

s

(3.14) a(o) =
0

m—1
j k -7 —k
a;j(0")&,, blo) = > bj(0)&n, a; € ST 0, b €57 a
J Jj=
with o = (¢, &,) and ¢’ = (x,&’, 7). Considering them as polynomials in &, we introduce a quadratic form
(Bézout form)

a(o,&)b(d, &) — Cf(e’,fn)b(g’,fn) m=]

Ba,b(fnyén) = = Z gj,k(g')ﬁﬁfﬁ,
&n —&n J.k=1
where according to (3.9)
min(j,k) ,
2m—1—(j+k
gik = > (beajir—et1 = bjrr—rr1a0) € ST o),
£=0

With a and b we associate the following boundary quadratic form

m—1 .
(3.15) %’mb(u) = Z (Gj,kDgLulzn:0+7Dﬁu|xn=0+)a
J,k=0

where G 1, = Op(g;,x). By Lemma 3.12 we deduce that

k—j—1 ,
’@lhb(u) == Z Z (Op(g;,k)DgLJreuh:n:OJﬂ Dﬁilieumn:O*)a

j<k £=0
where A
6.(€) = (abr — aidy)(d) € 5777
For any a and b as given by (3.14), we introduce
(3.16) sub(a,b) = > 07 (bd¢a — adg'd)
la|=1
= {a,b} + | |Z—1 (b0g0%a — adgogb) € S2m 10,

We have the following lemma.
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Lemma 3.14. We have
sub(a,b)(p) = —

j?

hjk(Q/)§£+k -
0 Js

ANE
[N
ANE

On (i) (&) (k — j)ghti—t e §2m=1.0,
0

where o = (Q’7 &) and
= 32 0w ) €S
|B]=1

We refer to Appendix A.4 for a proof.
We shall now prove the following proposition.

Proposition 3.15 (Generalized Green’s formula). Consider two smooth and real symbols a € S;"C’? and

be s The following identity holds true

7,cl

(3.17) 2Re (Au,iBu) = Hqp(u) + Bop(u) + R(u), A=a(z,D,7), B=>b(z,D,T),

for any u € y(m) Here, B, is the boundary quadratic form of type (m — 1,1/2) given by (3.15) and
H,y is an interior quadratic form of type (m, —1/2) with real symbol

hap(0) = sub(a,b)(0).

Finally, the remainder term R(u) is a quadratic form that satisfies

[R(w)] < C ully,

7_177— ’
Proof. We write the first term in the Lh.s. of (3.17) as the following interior quadratic form of type (m, 0)
m
Q(u) = 2Re (Au,iBu), = —i( (Au, Bu), — (Bu,Au), ) = > Ljx(u),
jk=0
where the 71 (u) are given by
Lix(u) = —i((A;Diu, ByDfu) 4 — (BjDiu, A D)),

with the tangential operators A; = Op(a;), Bj = Op(b;), j = 1,...,m. We write the interior quadratic
form I, in the form

L(u) = —i((Bj o Aj — A} o Bj) Dju, Dju) .
From symbolic calculus (Proposition 2.5) we have
BioAj— AjoBj =Gy — ik + Ry,
with G, = Op(gj.), Hjx = Op(h;y), where

2m—i—k 2m—1—j—k
ik = ajbe — arbj = —g; € St k= WZ 07 (a;00br, — bdgar) € ST 7,
=1

and the remainder term R j, € \I/?r":_cf_] ~*_ We thus have

Lip(u) = —i(G . Diu, D,’gu)+ —(HjxDlu, ngu)+ + Rjp(u), |Rjx(uw)] < Cul?,

77177- :

=:Jj x(u)

We consider the term J; ;, for j < k. With an integration by parts, we obtain

Jjk(u) = —i(OP(Dngé,k)D%%Dﬁ*lU)Jr - i(G},kD%+1U7 Dﬁflu)Jr - (G;,kD%Um:oﬂ Dﬁflwzn:w)a-
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Therefore, by induction, we find

=—Ji,;j(u)
kg1 ) -
Tjg(u) = ZZO (Op(Dng) ) D u, Dy~ ~fu) . —i(GY Dy, Dju) |
MY e k—1—¢
— ; (G],kD,Jl+ u\xn:0+7Dn7 N u\xn:0+)a‘
=0
‘We thus obtain
m
> Jik(w) = 32 Jik(u) + X2 Jij(w)
5,k=0 j<k j<k
A ' 40 k—1—2¢
= Zk KZO (Op(Dngj ) D} u, Dy u)+
J< =
I j+-0 k—1—¢
- Zk: ZO (GG DR g, =0+, Dr” g, —0+ )
j<k f=

Using Lemma 3.12, we find

m k—j—1
kz ']J}k(u) = f@a,b(u) - Zk EZO (Op(@ngj k)DJJFZ Dk 1— Z )+'
= j<k f=

‘We then obtain

Qu) = Bap(u) + Hop(u) + R(u),  R(u) = > Rjr(u),
3,k=0

where

m ) k—j—1 )

Hop(u) == > (HjpDju, D), — 3> > (Op(dngp) Dy u, Dy u)
J,k=0 j<k =0 '
with symbol, in the sense of Definition 3.1, given by
m X 1 m ) .
hap(0) = = 32 hj(@)E™ = 5 30 (Ongiy) (&) (k — 9637~ = sub(a, ),
jk=0 2 jk=0

using Lemma 3.14.

4. PROOF OF THE CARLEMAN ESTIMATE
As is usual in the proof of Carleman estimates we consider the following conjugated operator
P,=¢e""Pe 7.
As €™?Dje" "% = D; + i1, we see that P, € U2,
ity (x)) € SZ

T,cl*
Similarly we set

T,cl*

BE =™ BRe ™ € Ot

T,cl’

with principal symbol b’;(g) = bk (z, & + ity (z)) € S°*

T,cl’

27

Its principal symbol is given by p,(0) = p(x, & +

We start the proof of the main theorem with a microlocal elliptic estimate that will be exploited below

through the strong Lopatinskii condition.
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4.1. Elliptic estimate. Here we consider a polynomial function with roots with negative imaginary parts in
a microlocal region. Then, we can obtain a perfect microlocal elliptic estimate.

Lemma 4.1. Let (0, &,) € ROy = (x,&,7), with k > 1, be polynomial in &, with homogeneous
coefficients in (§',7) and L = l(x, D, 7). When viewed as a polynomial in &, the leading coefficient is 1.
Let % be a conic open subset of Vi, x R"™1 x R,. We assume that all the roots of {(¢',&,) = 0 have
negative imaginary part for o' = (x,&',7) € U . Letting x(o') € S%T be such that supp(x) C %, and
N € N, there exist C > 0, Cn > 0, and 7. > 0 such that

10wl - + [V(OPO)W)I} 112 < CIILOPO)WI72 + Cn (Wl _nr + VW) R 1 _n ),
forw e (R )andT > Ty
Here we recall that V. is bounded (see Section 1.6).

Proof. Let ¥ be a conic open set of V| x R"~! x R, such that ¥ C % and supp(x) C 7.
We write /(o) = a(p) + ib(p), where a and b are both real and homogeneous, with a € S7’
be SEL Weset A = Op(a) and B = Op(b) and we introduce the following quadratic form of type

(k,0) Q(v) = [|Av||75 + || Bv||7» with symbol
2 2
4(0) = la(o)]* + |b(o)|* € ST
The Hermite theorem (Proposition 3.13) implies that a(¢’, &,,) and b(¢’, &n) have distinct real roots for all
o € % . Thus, on the compact set K = {0 = (z,&,7);0' = (z,&,7) € ¥, & € R, |E2 +72 = 1}, we
have ¢q # 0 yielding by homogeneity
go) > ClETI*, deV, &eR

Setting w = Op(x)w, the Garding inequality of Proposition 3.5 gives, for any N € N,
2 2 2
4.1 Q(w) > Cllwlly . — C" IV (W)li—11 /2, — On wllk —n - -

Next, by the generalized Green formula of Proposition 3.15 we obtain

2 Re (Aw, iBw) — Bap(w)| < |Hap(w)| + Cllwl}i ;. < C'llwlly 4/,

k,0 and

by Lemma 3.3 as here H, is an interior quadratic form of type (k, —1/2). Here %, ;(w) is a boundary
quadratic form of type (k — 1,1/2). Then we deduce

2Re (Aw,iBw), > B p(w) — Cwli 1/, -
By the Hermite theorem (Proposition 3.13) the bilinear Bézout form B’a,b is positive. With the homogeneity
we find

2(k—1— j+

Ba,b(gl7zaz) C Z )\ ‘ j’27 Ql S 77 z = (ZO7 .. ‘7zm—1) S CTn7 AT - ’(f/)T)"

Then the Garding 1nequahty of Lemma 3.9 gives, for any NV € N,

4.2) 2Re (Aw, iBM)+ >C |’Y(M)’i—1,1/2,7 - ”M”z,—l/Q,T - CX/ W(w)ﬁ—l,—N,r
Then from (4.1) and (4.2) we have
(4.3) [Lw[l72 = Q(w) + 2 Re (Aw,iBw) ,

2 2 2 2
>C ”MHIM ~-C' h’(ﬂ)‘k—m/z,r - CN( ||w”k,_N,T + |V(w)’k_1,_N,T)v

for 7 chosen sufficiently large.
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Note however that with (4.2) we also find, as Q(w) > 0,

4.4) ||LM”%2 >C |’7(M)|i_171/2¢ - ||MHZ,_1/2,T - Cy |’Y(w)’i_1,_N,T .

Combining (4.3) and (4.4) and taking 7 sufficiently large we obtain the sought result. g

4.2. Estimate with the strong Lopatinskii condition. Here, we consider a point in the cotangent bundle,
at the boundary, where the strong Lopatinskii condition holds. We then obtain an estimate of a boundary
norm.

Lemma 4.2. Assume that the strong Lopatinskii condition is satisfied at 0y = (w0, &), 70) € St (V) with

xzog € 0Q N V. Then there exists % a conic open neighborhood of g, in Vi x R*1 x Ry such that for
X € S%T with supp(x) C %, there exist C' > 0 and 7, > 0 such that

“w
2 2 2 2 2
C ”Y(OP<X)U)’m71,1/2,T < kzl |B<’;U‘m_1/2_5k77 + [ Povllze + HUHm,—l,T + |’Y(U)’m71,71/2,r7

fort > T, vE y(m)

Proof. We consider the factorization of p,,(¢, &,) in a conic open set % neighborhood of g in V; x R~ x
R introduced in Section 1.6 by means of Lemma A.2 in Appendix A.2:

po(0) = P (0)p, (0)p)(0), o= (d &) o € %, & €R,

and we set K, = p:gpg. The polynomials (in &,) p (¢',&n) and Ky (¢',€,) are of constant degree for

o' € %. We have m™ = d°p, (¢',&n) = d°p (00 &n)-
As in Section 1.6 we introduce the following polynomial functions in &,, (with ¢’ as a smooth parameter)

vE (o, &) k=1,...,u

ko 1 _ [} »Sn ) s [y

€p\0,8n) = -

o(&:en) {%(Q’,fn)flﬁ R N

Then by Proposition 1.8 we have m’ > m. The strong Lopatinskii condition at g{, remains valid in a
conic open set %1 neighborhood of gf, with 21 C %. Precisely, this means that the set of polynomials
(eé)lgkgm/ is complete in the class of polynomials in &, of degree less than or equal to m — 1 for o’ € %;.
Observe that K = %4 NS} (V) is compact, recalling that V is bounded.

By Lemma 3.10, for ¢ € K we have (using the notation of Section 3.2)

m/

Z ‘éi(gllvz)‘Q Z ‘Z%m y 4= (207 .. -;Zm—l) e C™.

By continuity this inequality remains true in a small neighborhood of ¢} in K. Using the compactness of
we thus find that there exists C' > 0 such that

woo m’ m’

kzo b (o )] + ) 3 1 ek (. 2)* = kzo 50, 2)* > Clalem, 2= (20,...,2m-1) €C™, ¢ € K.
= :/'L+ =

Introducing the map

Mo = (z,tn), o = (z,n) € Ki xR xRy, t>0,
As we have 7 = {M;¢'; t > 0, o' € K}. We have

7 mo 5 _
S pE(Md 2P+ S [eb (M 2P 2 |2 | 0 €,
k=0 k=p+1
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where t = A\7' = (¢, 7)| "t and 2’ = (2, ..., 2, ;) € C™ with 2}, = t~™T1/217 2} yielding
1/2— 2(m~ —1/2—k+p+1) =l om-1/2-5
ZA (=12 z>r2+kzlx<m PG AP 2 S TP,
ot i=

forallz = (20,...,2m-1) € C™and ¢ € 24, using the homogeneity of the symbols.

We now choose % a conic open subset, neighborhood of ¢f,, such that  C %,. We let x be as in the
statement of the lemma. We also choose x € SQ , with supp(Y) C %4 and ¥ = 1 in a neighborhood of % .
Then,

m—1 .
4.5) z NL=Y2BOE (of g 24 §5 p2m SRR (e (o 7)) 2 3 P PH
k=p+1 Jj=

forallz = (20,...,2m_1) € C™and o' € %,
k . . . . k . o . . .
As bg, is the principal symbol of the conjugated operator B, according to the Gérding inequality of
Lemma 3.9 for a boundary quadratic forms of type (m — 1,1/2), there exists 7, > 0 such that

46) 3 |Bhu|? S
(4.6) Z ‘ @Q‘m—l/Q—ﬁk,T + Z | Soy‘m*—l/Z—k;—&-u-i-l,T
k=1 k=p+1

>Ch’< )‘m 1,1/2,7 CN h’( )‘m 1,—N,7>

with v = Op(x)v and N € N, for 7 > 7, with Ek Op(xe ). The introduction of x is made so that )Zelfp
is defined on the whole tangential phase-space.

The function p;(g’ ,&n) is polynomial in &, with homogeneous coefficients in ¢’ € % and leading
coefficient equal to 1. Its degree is constant and equal to m~ for ¢’ € % . We smoothly extend p;(g’ &)
for ¢’ outside of % keeping the leading coefficient equal to 1 and we denote this extension by P, In fact
we have xpy, = XKD, = XXFpP,- We thus obtain Op(x) P, = Op(p,) Op(x) Op(Xt,) + R with R in
gt by the last point of Proposition 2.7. Observe that Y, is a well defined symbol.

Applying Lemma 4.1 to Op(p,, ) and w = Op(X*,)v we obtain

1OP(X) w3, + M(OPC)W) 51,12+
< 10p(5;) Op(x)w|[7, + w7, 7N7'+|’Y( o —1,-N,r
SIOPCOPvl7z + vl -1,
S IPoll7e + 0l -1 + YOt e

m, NT+|7( )|m 1,—N,7

yielding

|-l)‘7 Op )w\xn*0+’m —1/2—j, 1 ~ HP UHLQ + HUH ,—1,7 + h/( )|m 1,—N,7*
]_
Recalling that e, ™ = k€, 5 =0,...,m™ —1in % we have D}, Op(x) Op(xk,)v = EL v+ Rjv
with R; € W7~ *77! by the last point of Proposition 2.7. We then obtain

m
4.7) ) ‘Eﬁ’ﬁlv‘m 1o S S Ppoll7a + |loll2, —1,r T )2, —1,-1/2,7 "
J_
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Observing that
k k
‘Bwy}m—l/Q—,Bk,T S’ }va‘m—l/Z—ﬂk,T + ‘7(v)|ﬁk»m—1/2—5k—1ﬂ'
k
S }Bcpv‘m—1/2—6k¢ @)1, 100 -
we obtain the result of Lemma 4.2 by collecting estimates (4.6) and (4.7). ]

4.3. Estimate with a positive symbol on the characteristic set. Here we consider the case of two symbols
a, b such that the symbol h,; = sub(a,b) (see Section 3.4) is positive of the characterisitic set of the
conjugated operator. This allows us to derive an estimate with the control of a volume norm.

Lemma 4.3. Let U be an open set of V.. Let a € S O and b € ST be real symbols homogeneous of
degree m in (7,§), and set

Qap(v) = 2Re (Av,iBv),, A=a(z,D,7), B=0b(x,D,T).
We assume that
a(e) = b(e) =0 = hap(e) =sub(a,b) >0, o= (2,§,7),
forx € U, (&,7) # (0,0). Then there exist C > 0, C' > 0, and 7, > 0 such that
2 2 2 2
Cllvlly,, - < C"([AvlI72 + [ Bullzz + V(W) [h11 /2, ) + 7 Re (Qap(v) — Zap(v)),
for T > 1, and for v € € (R’,) with supp(v) C U.
Proof. Observe that hq (o) is homogeneous of degree 2m — 1 in (&, 7). On the compact S} (U) we have
Thap + 1/(|a|2 + |b|2) > Cy > 0,
for v > O sufficiently large. Then by homogeneity we obtain
Thas(0) + v(la* + ) (0) 2 Col(€, )™, 0= (2,6,7), 2 €T, £ € R, 720,

By the Garding inequality of Proposition 3.5 for interior quadratic forms of type (m,0) and Remark 3.6 we
have

2 2 2 2
7Re Hop(v) + v([|Av]|72 + 1Bo]72) + C" [y (0)5-1,1/2,- = C 10ll5 7 »

where H, , is a quadratic form of type (m,0) with symbol %, ;. Such a form is for instance given in the
proof of Proposition 3.15.
The generalized Green formula of Proposition 3.15 gives

Qup(v) = Bap(v) + Clolly, 1 ;> Hap(v),
yielding
7TRe (Qu,(0) = Bap(v)) +v([|Avll72 + 1Boll72) + O Jull5, 1 p + C' Y(0) 311/ = C” 10l

m,T "’

which gives the result by choosing 7 sufficiently large. O
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4.4. A microlocal Carleman estimate. With the previous results if the strong Lopatinskii condition holds
at one point of the cotangent bundle at the boundary we can then derive a Carleman estimate that holds
microlocally, that is, with a cut-off in phase-space applied through a tangential pseudo-differential operator.

Theorem 4.4. Let zop € OQNV. Assume that { P, p} satisfies the sub-ellipticity condition on a neighborhood
of xo in V.. Assume moreover that { P, Bt o k=1,..., w} satisfies the strong Lopatinskii condition at
00 = (w0,h,70) € S5 (V4). Then there exists % a conic open neighborhood of o in Vi x R"™1 x Ry
such that for x € S%T with supp(x) C %, there exist C > 0 and T, > 0 such that

2 = k, |2
(4.8) ||PADU”L2 + lg—:l ‘Bwv‘m—ﬁk—lﬂﬂ'

2 2 - 2 2
+ Hva,—l,T + |’7(”)’m—1,—1/2,7 > C(T ! HOP(X)”Hm,T + ”Y(OP(X)U)’m—Ll/zT)v
N
fort > 1, ve S (RY).
Note that there are remainder terms, viz.

2 2
Hva,fl,T + "')/(’U) |m71,71/2,7

that concern the unknown function v everywhere and not only in the microlocal region %/ we consider here.
The norms of these remainder terms are weaker that those in the r.h.s. of the estimates. When patching
microlocal estimates of the form of (4.8) together these remainder terms can be dealt with; see Section 4.5
below.

Proof. Let Uy be a open neighborhood of z in V. with the sub-ellipticity condition holding in Uy.
In the local coordinates we have chosen we have

m .
P:P(:UvD) = Z Pj(an/)D%a
5=1

with P, = 1 (see Section 1.6). We decompose the conjugated operator P, = ¢"¥Pe™ 7% as

. 1 * 1 *
Psé’ =b+iP, P,= i(Pw + Pcp)’ P = Z(P(p — P¢).

The operator P, and P; are thus formally self-adjoint. Their respective principal symbols a(z, &, 7) € ST 0
and b(z,&,7) € ST ~11 are both real and homogeneous. We set p, = a-+tb. We then consider the following
interior quadratic form of type (m, 0)

Qap(v) = 2Re(Av,iBv)4, A = Op(a), B=0p(b).
Note that we have
(4.9) P,=A+iB+R, Reum1
The sub-ellipticity condition of Definition 1.1 reads
po(,&,7) =0 = {a,b}(z,&,7) >0,

for x € Uy and (§,7) # (0,0). Note that the case 7 = 0 is achieved because of the ellipticity of P (see
Definition 1.1 and Remark 1.2). Considering the definition of sub(a, b) in (3.16) we also have

Pp =0 = hgp =sub(a,b) >0,
forx € Up and (£, 7) # (0,0).
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Let now % be as given by Lemma 4.2, possibly reduced so that 7 C Uy x R"™! x R, and let y be as
in the statement of the theorem. By Lemma 4.3 we then have, for v = Op(x)v,

4.10)  Re (Qap(v) = Bap(v)) = CT M [ull2, . = C'm (| Av] 72 + 1Bl 2 + (@[5 11707 )

with Z, (v) given by (3.15). As %, is of type (m — 1,1/2) we have

| Bap (@) S Y@ 1127 -

With Lemma 4.2, making use of the strong Lopatinskii condition, we obtain for M chosen sufficiently large

2

o
@11 ReZap(v) + M Y |Blol, 5
k=1 ’

2 2 2 2
>C |’Y(Q)|mf1,1/277- - Cl( ”va’fl’T + "7(”)|m—1,—1/2,7- + [ Ppoll7e )

Summing (4.10) and (4.11) we find, by taking 7 sufficiently large,

2

o
2 — 2 2
Re Quu(e) + [ Povlffs + 7 (IAule +1BulEa) + 2 (Bl

2 2 - 2 2
S0 01 S ) [ RSP il [ A %) R

Finally, noting that

2 2 , 2 2 2 2 2
[Av[z2 + ([ Bullz2 + Re Qap(v) < [[(A+iB)vllzz S 1Ppullze + (vl —1 7 S [1Ppvll72 + ]l

m,—1,7°

by (4.9) and pseudo-differential calculus (last point of Proposition 2.7), we obtain the sought microlocal
estimate. O

4.5. Proof of Theorem 1.6. We shall patch together estimates of the form given in Theorem 4.4.

With zg as in the statement of Theorem 1.6 the strong Lopatinskii condition holds for all boundary
quadruples w = (zo,Y,N,7) with Y € Ty (0Q), N € N; (09), 7 > 0. In the local coordinates that
we use here this means that this property is satisfied for IV equal to the unit conormal to {z;,, = 0} and all
o = (wo,&,7) with & € R and 7 > 0. (See Section 1.6.) It is fact sufficient to consider (¢/,7) €
ST ={(¢, ) R T >0, (¢, 7)| =1},

By Theorem 4.4 for all (£}, 79) € S':! there exists a conic open set Uy, of 05 = (w0,&),70) in Vi X
R"~! x R, such that the estimate (4.8) holds. In fact by reducing %96 we can choose %@6 =0y xTy
where 006 is an open setin V; and T’ o is a conic open set in R"~! x R . With the compactness of Si_l
we can thus find finitely many such open sets %; = O; x I';, j € J, such that S’}r_l C UjesI'j. We then set
O = N,e O, that is an open neighborhood of zo in V. and we set ¥; = O x T'; C %;. We also choose an
open neighborhood W of zp in R™ such that W+ =W NV, € O.

We then choose a partition of unity x; € S? ., j € J,on W, x R"~! x R, subordinated by the covering
by the open sets 7;:

Yxi(e) =1, for o = (z,&,7) € W, x R™ x R, and |(¢/,7)| > 79 > 0, supp(x;) C ¥;.
jeJ

The symbols x; are chosen homogeneous of degree 0 for |(£',7)| > 1o > 0. Weset y = 1 — Z]EJ X; and
have x € ﬁNeNS{]TV.
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As supp(x;) C %;, we can apply the microlocal estimate of Theorem 4.4:

2 NN k2
“12) [Pz + kzl ‘Bﬂf’v‘m—ﬁk—l/Q,T

2 2 - 2 2
vl + O 12 2 T HIOPOG)V [, + (OPOG)V 1 12
for 7 chosen sufficiently large and for v = e"?u with u = W with w € €°(W).
Observe then that, for any N € N,

V]l < 22 10P(x5)v
JjeJ

o T 10ROV, S ZJ 10p0x) vl 7+ 101l — 7 5
JjE

and

YO e11/2, < ZJ V(OPOG)V) 1,12 + [VOPCOV,,, 1o
jE

S ZJ |7(OP(XJ')U)’m_171/2; + |7(U)|m—1,—N,T :
JEe

Summing the estimates 4.12 for each x; we thus obtain

17
2 k. 12 2 2 - 2 2
[ Ppvllze + k; 1Bovl g 10 T 10— + Y0t 12 27 ol + @) 11 j0r -

Choosing now 7 sufficiently large we obtain

I
2 k, |2 - 2 2
HPSOUHLQ + kZ:l ‘B@v}m—ﬁk—l/Q,T Z T ! Hv”m,‘r + h/(v)’mfl,l/l‘r '
Setting v = e™¥u the conclusion of the proof of Theorem 1.6 is then classical. U

5. A PSEUDO-DIFFERENTIAL CALCULUS WITH TWO LARGE PARAMETERS

The weight function we shall consider below is of the form ¢(z) = exp(atp(x)). The function ¥ is
assumed to be € and to satisfy

Y| >0, %»>C>0 and [[¢)]/ 0 < 00.

We take a > 1. The goal of what follows is to achieve estimates as in Theorem 1.6 with the explicit
dependency upon the additional parameter .. This can be done by the introduction of an appropriate pseudo-
differential calculus. Assumption of the function ) will be made in Section 6.1, namely, the strong pseudo-
convexity conditions, to obtain a Carleman estimate.

Here, by ¢ and ¢’ we shall denote 9 = (z,¢,7,) € @1 x R" x Ry x Ry and ¢’ = (z,&,7,a) €
R} x R x Ry x Ry.

5.1. Metric, symbols and Sobolev norms. We set 7(z) = 7ap(x). We consider the metrics on phase-
space

d¢)? . . -
g=atldof + I with g = ) = (@), O = 7o) + I,
and on tangent phase space
— a2ldzl? |d¢'|? ith u-2 = u-2(0) = (7 N2 _ ~(o02 /12
gr = o’|dz|” + oz With et = (@) =(7(2), &))" = 7(x)" + [£'],

for 7 > 1 and a > 1. Below, the explicit dependencies of y and 1 upon ¢ and ¢ are dropped to ease
notation.
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The metric g (resp. gr) along with the order function p (resp. ) generates a (resp. tangential) Weyl-
Hormander pseudo-differential calculus as proven in [29, Proposition 2.2]. For a presentation of the Weyl-
Hormander calculus we refer to [35], [18, Sections 18.4—6] and [17].

Let a(z, &, 7,a) € €°(R"™ x R™), with 7, a as parameter in [Tyin, +00) and [Qyin, +00), Tmin > 0,
amin > 0, and m € R, be such that for all multi-indices ~, 5 € N we have

(5.1) a;afa(g)‘ < O™ Bl € RY 5 R X [Tinin; +00) X [tmin, +00).
With the notation of [ 8, Sections 18.4-18.6] we then have a(p) € S(u™, g). For simplicity we shall write
a € ST

Similarly, let a(z, &', 7,a) € € (R™ x R*!) and m € R, be such that for all multi-indices v, 3 € N"
we have

(5.2) 878561(9')

z e
We then have a(¢) € SY'= = S(ur™, gr).

With o = (2,&,7,a) € Ei x R" x Ry x Ry (resp. ¢ = (z,&,1,a) € ﬁz x R xRy x Ry) we
shall associate § = (z,&,7(z)) € R} x R" x Ry (resp. & = (z,&,7(z)) € R, x R" ' x Ry).

Note that if a(x, &, 7) € S, with the notation of Section 2.1, satisfying moreover, for all multi-indices
’Y; 6/’/6// c N'IL’ Wlth B — IB/ + ﬂ//’
(5.3) 0107 02" a(x,6,7)| < Caprpr |(€, D)™ P1, 2 €R™, € € R, 7 € [rimin, +00),

< C%BO[Y/,LTW—W‘, Q, c RZ_ X Rn_l X [Tmin, —|—OO) X [amim —|—oo).

i.e., differentiation w.r.t. 7 yields the same additional decay as a differentiation w.r.t. £, then
a(z,§, 7, ) = a(x, &, 7(x)) € 57,

which we shall write a(o) = a(@). Similarly if a(xz,{’, 7) € ST’; with the same additional property regard-
ing differentiation w.r.t. 7 we have a(¢') = a(g') € ST%.

In what follows we shall assume that symbol in 57" and ST have this additional regularity property.

We then say that a € ST (resp. ST';) is homogeneous of degree m with respect to (§, 7) (resp. (¢', 7)) if
we have a(¢) = a(g)) (resp. a(¢') = a(g') ) with a(z,§,7) € S7* (resp. a(x, &', 7) € Sy'.) homogeneous
of degree m in (&, 7) (resp. (&', 7)).

We shall also use the following classes of symbols S(7" ut™, gr) = 7" STz on @i x R" 1 forr,m € R.
The associated class of tangential pseudo-differential operators is denoted by 7" W (ut™, g) = T U We
have the following lemma whose proof is similar to that of Lemma 2.7 in [29].

Lemma 5.1. Letr,m € R and a € 7"57';. There exists C' > 0 such that for T sufficiently large
| (Op(a)u,v): <O Op(%TIMTm/)UHLzH Op(%w/MTmN)UHLm ue 7 (RY).
forr=1r"+r""m=m'+m".
Note also that we have
(54 1OP(" ur™ul| o = || Op (™) 70| 2,
for 7 chosen sufficiently large.

Next we say that a(z, &', 7, o) € 77 ST, if there exists a; € aj?rS?f;j, with @ 7a; homogeneous of
degree m +r — jin (¢, 7) for [(¢',7)| > 7o, with 79 > 0, such that

. N
(5.5) a~ S a¥, inthesensethat a— > aV) aNH%TS?f;N*l.
720 7=0
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A representative of the principal part, denoted by o (a), is then given by the first term in the expansion.
Then, we shall say that a(g) € 77575 if

<>=2 i(0)g,  witha; € 7 STI.

The principal part is given by >, o(a;)(0 el

With these symbol classes we ass001ate classes of pseudo-differential operators, 7"V - | and ol = Cl ,
as is done in Section 2.2.

We define the following semi-classical interior norm

2 n —iN i 112
ully,z = ZO | Op(ur™ ) Djul|;,, meN.
j:
We also set

2 n — P2
/0 = 1 Op(r®elly, - ~ X2 | ODss™ 24 ) Diul 7, m € N.o € B
j=
At the boundary {z;,, = 0"} we define the following norms:

Y (W)Z, s = 2 | Op(pr™ )y, (u) |22, mEN,o €R.

5.2. Differential forms.

5.2.1. Interior quadratic forms.

Definition 5.2. Letu € .7 (R, ). We say that
N
(5.6) Qu) = > (Aw,B°u),,  A”=d’(z,D,7,a), B =0(z,D,7,a),

isa quadmtic form of type (r,m, o) with € coefficients, if for each s = 1,...N, we have a®(p) €
7'M s (o) € F ST with ' 41" = 2r and o’ + 0" = 20.

7.l

The symbol of the quadratic form @) is defined by
N _
(5.7) ale) = 3 a*(e)b*(0) € e TS,
As in Section 3.1 an interior quadratic from can be written in the form
m m
Q(u) = Z Z (CjxDiu, DFEy )
=0 k=0

where C} , are tangential operators with symbol ¢;;(¢') € %QTS$(ZL To) =+,
Lemma 3.3 is then changed into the following lemma.
Lemma 5.3. We consider the interior quadratic form of type (r,m, o) as above. We have

’Q(U)’ SC(” uHmoT7 uey(ﬁi)

Lemma 3.4 is changed into the following lemma.
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Lemma 5.4. We consider the interior quadratic form of type (r,m, o) as above and we further assume that
the principal part of its symbol vanishes, that is,

2 k(@) =0 mod aFr ST e o, 2m} .
ShHRsSsm
jt+k=¢t

Then, for T sufficiently large, the following estimate holds
- 2 ~ 2
‘Q(u)‘ < C(a HTruHm,crfl/ZT + ‘TZT’Y(uHm_LU_,_l/Qﬂ-)v u < y(ﬁi)
Proof. We only point out differences from the proof of Lemma 3.4. Estimate (3.3) is modified. As here

~or a2(m+o)—L
Dan,ng c aT TST;;

, with Lemma 5.1 and (5.4) (and additional commutator arguments) we write
’ ( Op(Dan_hk)Dﬁ*k“*lu, fosu)J
< CaH Op(7~_rlu_l_m+0+k—é—s+%)Dﬁ—k-l—s—luHLQ H Op(%r/ﬁmw—kﬁts—%)DQ—SUHLQ
<Ca ||%r“||£fk+s71,m+a+kfefs+%,% ||7~—Tu||kfs,m+afk+sf%ﬁ—
< CallFully yes
for 7 sufficiently large,asm +k — ¢ — s > 0and m — 1 — k + s > 0. Using also that
B
> Cokr= > Crpre€ a%%‘ﬁ(inw)_f_l,

T
k=ay 1<j,k<m
' Jjt+k=t

estimate (3.4) then becomes

L+ T W)

o= 5.7 m—1,04+3 7 )’

~r 112
L] < C(a|7ul,
and the result follows. O

The Garding inequality for interior quadratic forms reads as follows.

Proposition 5.5 (Garding inequality). Let % be an open conic set in R, x R"~! x R, and let Q be an
interior quadratic form of type (r, m,0) with its symbol q(z,&, T, ) € %QTSEZ?I’O satisfying, for some C > 0
and Ry > 0,

Req(o) > C7* p*™",  ford = (2,€,7(z)) € %and 1 = |(&,7(x))| > R,

with 9 = (0',&n), 0 = (,€',7,a), and &, € R. Let then X € S be such that supp(x) C % and set
x(¢) = x(@) € S'(I)'i' For0 < Cy < Cand N € N there exist 7, C" > 0, and C%;, > 0 such that the
following inequality holds

ReQ(Op(x)u) = Co |7 Op(x)ully, = = €'y (7" Op(X)w) 311707 = CR lully, vz
forue S (RY) and T > ..
Remark 5.6. With the same proof as Remark 3.6 if %# = Uy x R™ X Ry then
12 ~r N2
Re Q(u) = Co |7 ully, z = C" V(7 u) 5 11/2.7 5

foru € €°(R’}) with supp(u) C Up.
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Proof. The proof follows that of Proposition 3.5. Here homogeneity of the symbols is to be understood with
respect to (7, &) or (7,&’) (as presented in Section 5.1).

We let xy € S%T have the same properties as x with moreover 0 < x <landx = 1on supp(y). We
then set X(¢') = x(&') € 595
We define g as the principal part of 7~="¢. It is homogeneous of degree 2m in (7, ). We have ¢o(0) =
do(0) with go(z, £, 7) homogeneous of degree 2m in (£, 7) with moreover
(jO(xaEa%) > Cl|(§a%)‘2mv for C’0 < Cl <C.

Similarly to (3.6), for Cy < C» < C1, we have
C(w, € 3) (0,6, 7) = Col (6, 1)) = P, & A 1P (@, 6,%), festy,

—2r

leading to
(0 (¢ (0) — Cap®™) = ()| 1P (0),

with f(o) = f (0) € ST ’%0, polynomial in £, and with smooth homogeneous coefficients.
With Lemma 5.4 estimate (3.7) becomes

| Re Q(Op()v) — Co [|7" Op(R)v|2, » — IOp(F" S )vl|72 | < Ca |70l 1oz + [F Y@ o1 1/07 )
forv e . (@1) and we conclude the proof by setting v = Op(x)u and by taking 7 sufficiently large. [

5.2.2. Boundary quadratic forms and generalized Green formula. Boundary quadratic forms can be intro-
duced as in Section 3.2

Definition 5.7. Let u € €°°(R"}). We say that

N
‘%(u) = Z (Asu|zn:0+7 Bsu\xn:0+) A% = as(xa D, T, a)a B® = bs(xv D, T, a)v
s=1

6 b
is a boundary quadratic form of type (r,m — 1, 0) with € coefficients, if for each s = 1, ... N, we have
a*(0) € 7' ST (R x R™), b°(0) € 77 ST, 7 (R x R™), with ' + 1" = 2r and o' + 0" = 0.

7,cl

The symbol of the boundary quadratic form A is defined by
- N _ -
B¢, 6n,6n) = 22 a’(2, )b (¢ n).-
s=1
As in Section 3.2 we associate to . a bilinear symbol B(¢/, z, z).
As above we let % be an open conic set in ﬁi x R"1 x R,.
Definition 5.8. Let % be a boundary quadratic form of type (0,m — 1,0) associated with the bilinear
symbol B(¢',z,2"). We say that B is positive definite in % if there exist C > 0 such that
- m—1 .
B(d,2,2) > C Y p2m=1=049) 12 F e U, z=(20,...,2m 1) € C™
j=0

Lemma 5.9. Let & be a boundary quadratic form of type (0, m — 1, ) with bilinear symbol B(¢', z,2'). If
B is positive definite in % , and X € S%T homogeneous of degree 0, with supp(x) C % . Let N € N. Then
there exist o > 1, a,. > 1, C' > 0, Cn > 0 such that

#(0p(x)u) = C Y (0PI 51,07 = On (W), 157
forue S RY), 7> 1, a> a, and x(0') = X(&) € 59 5.
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Proof. We highlight modifications from the arguments in the proof of Lemma 3.9. Here Op(ut®) is not
simply invertible (as it is not a Fourier multiplier). Yet, by Lemma 2.4 in [29], there exists v; € L? such that

Dy, —g+ = Op(pr~ ™71y,

Then the boundary quadratic form can be written as
m—1
‘@(Q) = .kz:o ( Op(gjk)vj> vk)[y
J’ g

with gjx € S$ -, and we have (gjz) > C > 0. The Garding inequality in the tangential directions then
yields the conclusion as in the proof of Lemma 3.9. U

The generalized Green formula, counterpart of that of Proposition 3.15, with a similar proof, reads as
follows.

m,0

Proposition 5.10 (Generalized Green’s formula). Consider two smooth and real symbols a € S- | and
be SZLCI L The following identity holds true

(5.8) 2Re (Au,iBu) = Hqp(u) + Bap(u) + R(u), A=a(z,D,7,a), B=0b(z,D,T,0),

for any u € y(@i) Here, %, is the boundary quadratic form of type (0,m — 1,1/2) given by
m—1 . k
Bop(u) = kZ (G kD, —o+» Dy, —o+) 5
J,k=0

where G, = Op(gj 1) with

min(j,k) a1 (k)
J— m—1—(7
95k = Z (bﬁaj+k—£+1 - j+k_£+1ag) S ‘S’T,i-,cl ,
/=0

and o~ H,, is an interior quadratic form of type (0, m, —1/2) with real symbol

O‘_lha,b(xyfaﬂ a) = ot sub(a, b)(z,&, 7, ) € G2m—10

7,cl

Finally, the remainder term R(u) is a quadratic form that satisfies

[R(uw)| < Ca® |Jull;,

ﬂ_lﬁT :

6. CARLEMAN ESTIMATE WITH TWO LARGE PARAMETERS

With a weight function of the form ¢ (z) = exp(at(z)), some condition on v can yield ¢ to fulfill the
sub-ellipticity condition of Definition 1.1. Those are the strong pseudo-convexity conditions introduced by
L. Hormander (see [15], [16, Section 8.6] and [19, Section 28.3]). We shall see that along with the strong
Lopatinskii condition they are sufficient to derive Carleman estimates with an explicit dependency upon the
additional parameter «v. In fact the strong pseudo-convexity condition is also necessary if one considers a
weight function of this form; for such question we refer to [29].
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6.1. Strong pseudo-convexity. Here we restrict ourselves to elliptic operators. The notion of strong pseudo-
convexity then reduces to the following (the reader can compare with Section 28.3 in [19]).

Definition 6.1 (strong pseudo-convexity). We say that 1 is strongly pseudo-convex at x € Q w.rt. p if
V' (x) # 0and if forall £ € R™ and 7 > 0,

(s-We) p(x, &+ it (x) = 0and {p,}(z, & +i7¢ (x)) =0
= %{ﬁ(ﬂzf — 7/ (x)), p(z, & + 7/ (x))} > 0.

Let U be an open subset of ). The function 1) is said to be strongly pseudo-convex w.r.t. U and p up to the
boundary if (s-Vc) is valid for all x € U.

Proposition 28.3.3 in [ 19] shows that this property imply the sub-ellipticity condition, which in turn yields
a Carleman estimate in an open set away from the boundary. In this section our goal is to derive a Carleman
estimate at the boundary that keeps track of the dependency of the two large parameters, 7 and «, as is done
in [29] away from the boundary.
Setting & = Re p(z, £ 4 i/ (x)) and b = Im p(x, £ + i74)' () we have
S Pl € — (@), pla € i (@) = (3.

In fact we recall that we have (see (3.16))

%snb (Blx, € — 79/ (), pla, & + 7' (x))) = sub(a, b) = | lz 05 (bog'a — aog'b)
al=1

= {a,b} + | |z_1 (Bagaga - aaga;gzs) .
Property (s-Wc) may thus be written

(6.1) p(x, &+ (z)) = 0and {p, ¢} (z,& + ity (x)) = 0
= sub (]3(:1:,5 — 7Y (x)), p(x, € + iﬁ//(:p))) >0,

forall¢ € R", 7 > 0,and z € U.
We set

E

+Im Y ((8,0)(x, Q) 9, P(x, Q) + p(x, O)(85,¢,P) (=, ),

where ( = £ + i7¢’. Observe that ©,, ,(x,, 7) is homogeneous of degree 2m — 1 in (§, 7) and that we
have

sub (p(z, € — it (2)), p(x, & + it/ (2))) = Opp(@, &, 7).

We set p, (2,6, 7, 0) = p(x,§ +ity) € S;n’o. We write P, = A+ iB + R, with A = Op(a) € \IJ?’O,
B = 0Op(b) € \Il;”_l’l, where a = Rep,, and b = Imp,,, and with R € a\IJ;"’_l. As in Section 4, part of
the analysis relies on the properties of the symbol sub (a, b). Here ¢ = exp(az)).
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We compute
(6.2) sub (a,b) = O, ,(x,£,7)
=7(z )Z 22, V(@) (0, p(@, ¢) g, (=, C) — Rep(z, ()0 ¢, B, C))

ﬂwmu@@owwmﬁﬂwmoz@ww%MM%amfn
+1m Y ((92,9) (@, €) e, B, €) + pla,1)(95 ¢, P)(,0)),

= 0,,(2,&,7(x)) + aF (2) (| (P (2, ), ' (2))
- Rep(m, C) Zk a$]¢(x)aka($)8§2]§kﬁ(m7Z))

where here 7(x) = Tap(x) and ¢ = +iT¢ (x) = £+i7(x)yY (x). Note that the first term is homogeneous
of degree 2m — 1 in (&, 7) and that the two other terms do not satisfy this homogeneity. In the present article,
our positivity arguments rely on the classical Garding inequality for homogeneous polynomial symbols. In
what follows some adjusting will be performed on the symbol level to obtain the desired homogeneity.

We start with the following symbol inequality.

Proposition 6.2. Let P be elliptic on € and let v satisfy the strong pseudo-convexity condition of Defini-
tion 6.1) for all x € U, U an open subset of Q. We set o = e™¥ and

¢=((@,810)=E+irg(x) = +if(x)d/(x),  F(z) = Tap(a).
There exist C > 0, 7. > 1, oy > 1, and v > 0 such that
CpP™ < vlp(x, QP + 7(2)Opu (2, &, 7(x)) + v7 ()| (pe(x, Q). ¥/ (@),
T> T, > ay, (1,6) €U xR™.
Note that symbol on the r.h.s. of (6.3) is homogeneous of degree 2m in (&, 7).
Proof. tulfills We shall in fact prove that there exist C' > 0, v > 0, and 7y > 0 such that
Cl(#, O™ < vip(x, € + it/ (2)]” + 7Oy (2,€, 7) + v72| (D (w, & + i7¢ (2)), /()%

for # > 7y and (z,€) € U x R™. Then, substituting 7(z) for 7 and letting « and 7 be sufficiently large
yields the result.
Because of homogeneity it suffices the prove

(6.3)  0<C <vlp(z,&+ it (@) + 70,2, §,7) + 2| (pe(x, & + 7 (), 9 (2)) |,

on the compact set K = {(z,¢,7);2 € U, £ € R*, 7 > 0, |(§,7)] = 1}. The ellipticity of P reads
Ip(z,&)| > C|¢|%, for some C' > 0. By continuity we see that (6.3) holds for 7 < |¢| and some vy > 0.
Moreover it remains true for v > .

We now treat the case || < 07, that is we consider the compact set

={(:c sz el, EER™, 720, |(§,7)] =1, [¢ <67}

We have O, (£, %) = 5 sub (B(z, £ — 7/ (2)), p(z, € + i74/(x))). Hence condition (6.1) that follows
from the strong pseudo-convexity condition reads, for 7 > 0,

(6.4) p(z, & +i7Y () = 0and {p, 9} (2,§ + 7Y/ (2)) =0 = Opy(2,£,7) >0

Then on the compact set /C5 the result follows from Lemma 6.3 below, by choosing v sufficiently large. [
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Lemma 6.3. Consider two continuous functions, f and g, defined in a compact set IC, and assume that
f>0and f(y) = 0= g(y) > 0. Setting h, = vf + g we have h,, > C > 0 for v > 0 chosen sufficiently
large.

The proof is left to the reader.

6.2. Conjugated operators and strong Lopatinskii condition. The principal symbol of P, = e Pe™ "% €
\Il;n(’fl) in the present calculus is

Pga(%fﬁ) :p($,€+iTg0/($)) :p(iU,f —|—Z7~'(.I)1/JI(J,‘)) :pw('xaé’%) € SZ,LC’[I)’

Similarly, the principal symbol of Bf, = ¢ Bke=0 € U0 | = 1,..., 1,18

7,cl?

b(w, €, 7) = V¥ (w, € + i/ () = V¥ (2, € + i7¢ (2)) = bl (2, &, 7) € 24

7.l *

Above the dependency upon « is hidden either in ¢ or in 7. By abuse of notation we shall write p,, (o) (resp.
Py (0)) and b5 (o) (resp. bl (0)) with 0 = (,&,7, @)

Recalling the notation of Section 1.3 for the boundary quadrupletw = (z,Y, N, 7) wesetw = (x,Y, N, 7),
where 7 = Tagp(x). Observe then that p,(w, A) = py (@, A).
Setting i, = PP} and fy, = ﬁ;ﬁ%, we then find

Fop(w, ) = g (@, N).

Similarly, for B = {Bk }k:l " the set of boundary operators and b*(x, £) their principal symbols, we
have o

bE(w, A) = Bl (@, N).

From these simple observations we thus conclude that { P, BF. v, k=1,..., u} satisfies the strong Lopatin-
skii condition at a boundary quadruple w = (z,Y, N, 7) if and only if {P, B+, k = 1,..., u} satisfies
the strong Lopatinskii condition at a boundary quadruple @ = (z,Y, N, 7).

6.3. Statement of the Carleman estimate with two large parameters. We shall prove the following theo-
rem, counterpart of Theorem 1.6 in the case of a weight function of the form ¢ = exp(«a1)), with an explicit
dependency with respect to the second large parameter .

Theorem 6.4. Let vg € O and let 1) € € (Q) have the strong pseudo-convexity property of Definition 6.1
with respect to P in a neighborhood of xq in Q). Moreover, assume that {P, v, B* k=1,..., u} satisfies
the strong Lopatinskii condition at xq. Then there exist a neighborhood W of xq in R™ and three constants
C, 1. > 0, and o, > 0 such that for p = exp(at)) and T = Tap:

~—1 T 2 T T - T
65 [F3eul 4l @) s < C(€7Pla. Dyullf, + 0 1B @ D)l ).

for all u = w)q with w € ECX(W), 7> 1w and o > .

6.4. Preliminary estimates. The following lemma is the counterpart of Lemma 4.1, that is, an elliptic
estimate. B

7nAs above with o' = (z,¢,1,a) € Ri x R"1 x R, x R, we shall associate §' = (z,¢,7(x)) €
R, x R x R;.
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Lemma 6.5. Ler {(p) € Sﬁ’o, with o = (z,&,7,a) and k > 1, be polynomial in &, with homogeneous
coefficients in (¢, 7) and L = £(z, D, 7, ). When viewed as a polynomial in &, the leading coefficient is 1.
Let % be a conic open subset of Vi, x R"~! x R,. We assume that all roots of (¢, &,) = 0 have negative
imaginary part for o' € U . Letting X(0') € S%T, o = (x,&,7), be such that supp(x) C %, and N € N,
there exist C > 0, Cny > 0, 7. > 0 and o, such that

HOP(X)U’Hi,; + |7(OP(X)w)|i—1,1/2,% < C||L Op(x)wll72 + Cn ( Hsz,—N,% + |7(w)\12g—1,—N,%),
forwe S RY) and T > 7, @ > . and x(0') = X(¢) € S%%.

Proof. The proof is very similar to that of Lemma 4.1. We highlight differences that mainly involve factors
a and norm indices. We write /(9) = a(p) + ib(p), where a and b are both real and homogeneous in (¢, 7),
witha € Sif’o and b € Slg_l’l. We set A = Op(a) and B = Op(b) and we introduce the following quadratic
form, of type (0, k,0), Q(w) = || Aw||3s + || Bw||32 with symbol
2 2 2k,0
q(0) = la(o)|” + [b(0)|" € S
Setting w = Op(x)w, the Hermite theorem and the Géarding inequality of Proposition 5.5 give
2 2 2
Qw) > C|wly 7 — C’ Y(W)l5—1,1/2.7 —Cy lwllz N7
and the generalized Green formula of Proposition 5.10 gives
[2Re (Aw, iBu), — Bap(w)| < [Hop(w)] +Ca® [wl? ;< Calwl? ;.

—1,7

for 7 > 1. Note that Lemma 5.3 is used as a1 H,; is an interior quadratic form of type (0, k, —1/2). Here
B p(w) is a boundary quadratic form of type (0, k — 1,1/2). Then we deduce

2Re (Aw, iBw), > Bop(w) — Ca|lwl} )., -
With the Garding inequality of Lemma 5.9 we obtain
. 2 2 2
2Re (Aw, iBw), > C|v(w)[;_11/07 — C'allwlly 107 = CR V(W) [5-1 vz -

Arguing as in the end of the proof of Lemma 4.1 the result follows by choosing 7 and « sufficiently large.
O

The following lemma is the counterpart of Lemma 4.2, that is an estimate exploiting the strong Lopatinskii
condition, yielding an estimate of a boundary norm.

Lemma 6.6. Assume that { P, Bk, k=1,..., u} satisfies the strong Lopatinskii condition at (o, &), o) €
S5 (V) with xg € OQNV. Then there exists % a conic open neighborhood of (o, &), 7o) in Vi x R" 1 x
R such that for x € SQ with supp(x) C %, there exist C > 0, 7. > 0 and o, > 0 such that

C |v(Op(x)v )‘m 11/2%S Z ‘Bkv‘ m—1/2— ﬁk%"'HP UHL2+062HUH 717"‘0‘ v (v )‘m 1,-1/2,7>

forve S(RY), 721, a > acand x(0) = X(8') € 89z, with o = (2,¢,7,a) and § = (,¢,7(x)).
Proof. The beginning of the proof is nearly identical to that of Lemma 4.2. With ¢’ = (z,£’, 7, a), inequal-
ity (4.5) becomes (using the notation of Section 3.2)

B 2(m—1/2-8k) ik / ~ T 2(m =12k 1) 2 A o g A ml om—1/2—j
SN )P+ A T @es (8, 2))P 2 AT g
k=0 k=p+1 3=0

forallz = (20,...,2m-1) € C™and ¢’ = (z,¢,7) € %, with \2 = [£|'? + 72 and

ew(g &) = kp(@, &)Y, k=pt 1, m/ =m 4
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Here, ¥ € S%T is such that y = 1 in a neighborhood of % .
We then obtain, taking ¢’ = ¢’ = (x,&',7(x)),

" ~ m’ m—1 .
Z /,LT2(m_1/2_ﬂk)|b{;(Ql, Z)|2 + Z Iu_l_2(m’—1/2—k+u+1)’X(Ql)é{;(gl’ Z)|2 Z Z ﬂT2(m_l/2_])|zj|2a
k=0 k=p+1 j=0
forallz = (20,...,2m-1) € C™and ¢’ = (z,&',7,a) such that § € 7. Here Y(¢') = x(&') € 5%
Then, according to Garding inequality of Lemma 5.9 for a boundary quadratic forms of type (0, m —
1,1/2), there exists 7 > 0 and «, such that

K 2
(6.6) k¥1|3<’;y‘m_1/2_5k;+ Z |Ekv‘m —1/2—ktpt17 ~ 2 [y(w )’3;%1,1/27 Cn (w)]7,_ 1,—N7

withv = Op(x)vand N € N, for 7 > 7, and o > ., with Bk Op(bk) and Ek’ Op(Xe ).

Arguing as in the proof of Lemma 4.2 we write Xpy, = XKD, = XXFeDy, Where P, denotes an extension
to the whole phase space of p, (¢', §,.). Then Op(x) P, = Op(p;) Op(x) Op(Xr,)+ R with R € a@?’_l
Applying Lemma 6.5 to Op(p,, ) and w = Op(#,)v we obtain

2 2 2 2 2
1IOP() Wl 7 + [V (OP()W) [~ 1,127 S I1PpolI72 + 2 0ll, 1 5 + Y(0) 5ot -z »

yielding

0 \Dj OPO)Wia=0+ |1 oz S IP0llT2 + 0 Joll2, y 2 + V() oy vz
]_

Recalling that e]+”+1 = mp{%,j =0,...,m" — 1 wehave D{, Op(x) Op(Xky)v = E?;”“le + R;v with

Rj € U™ ﬂ’ . We then obtain

m~—1 .
6.7) > o N ] PR [ A T [
j:
Collecting (6.6) and (6.7) we obtain the result of Lemma 4.2, for 7 and « chosen sufficiently large. ]

6.5. Proof of the Carleman estimate with two-large parameters. We prove a microlocal result, counter-
part of that of Theorem 4.4. Patching microlocal estimates of this type, arguing as in Section 4.5 we can
then obtain the local Carleman estimate of Theorem 6.4, which proof is left to the reader. Remainder terms
are absorbed using that, for N € N we have oV < 7(z) = a1 exp(a) for « large since ¢ > C > 0.

Theorem 6.7. Let zo € 02NV and let ¢ have the strong pseudo-convexity property of Definition 6.1 with
respect to P in a neighborhood of xo in V... Moreover, assume that {P,B¥ 4, k =1,...,u} satisfies the
strong Lopatinskii condition at (o, &), 70) € St . (V4.). Then there exists % a conic open neighborhood of

(w0, &), 70) in Vi x R x Ry such that for ¥ € SY . with supp(X) C %, there exist C' > 0, 7, > 0, and
o > 0 such that

k

+Of2||UH _1T+a2 Iv(v )|m 1,-1/2,7 >C(HT 2OP( Jv H ,.;‘*'IV(OP(X)U)|7271—1,1/2,%)3

fort > 1, 0> a,veSRY) and (o) = X(') € 5%~
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Proof. Let Uy be an open neighborhood of x¢ in V; where the result of Proposition 6.2 holds.
Similarly to Section 4.5, we write

P,=A+iB+R, Rea¥l" "

where A = Op(a) and B = Op(a), witha = Rep, € S;n’o and b =Imp, € S;n*l’l. We set

e(x,&,1,a) = a%T( )%<p£(x O), ' (x)) € a%%%Sm Lo,
f(@,&,7,a) =a 10, 4(x,&7(2)) + 7(2)|(p(x, ), ¥ ())|* € ng—1,07
g(x, &7 a) = Oﬁ(w)Z,%amj¢(w)afk¢(x)6§jgk p(z,C) € aFST20,

with ¢ = £ +iT¢/(x) = £ + iT(x)y'(x). We let F(v) be an interior quadratic form of type (0,m, —1))
with symbol f. With v as given by Proposition 6.2 and « and 7 large so that = 'v < 1 and 7(x ) g 1,
we have

v(|7 2407 + |72 Bo]|7.) + aRe F(v)
> u(||F 2 Av||%, + |72 Bo||5.) + aReF(v) + (vat = 1) ||Op(e)v]|2a .
Observe that the interior quadratic form in the r.h.s., of type (—3,m, 0), is of symbol

v ppl® + Opp (@, €, 7(2) + v7 (@) [ (pe (@, O, ¥/ (@) P > CF 1™

for x € Uy and (§,7,0) € R™ x Ry x Ry, with 7 and « sufficiently large by Proposition 6.2. This
symbol is polynomial in £ and homogeneous of degree 2m — 1 in (£, 7). We let % , possibly reduced so that
% C Uy x R"! x Ry, and y be as given by Lemma 6.6. The Gérding inequality of Proposition 5.5 and
Remark 5.6 then yields

69 v(|7 2 v + |72 Bull}) + aRe F() > OlfF 20|, -~ Ol 5@}y o

with v = Op(x)v. Recall that = H,, , is an interior quadratic form of type (0, m, —%) with symbol equal
to o~ sub(a, b). Since by (6.2) the interior quadratic form, of type (0, m, —3),

o Hyp(w) — F(w) + o™ Re (P,w, Op(g)w )4
has a vanishing symbol, by Lemma 5.4 we obtain
(6.10) Re (Ha,b(y) — aF(v) — Re (P, OP(Q)Q)Jr) > —C(a” lv]I2, 1 oy )| 0, .-
We also have,
(6.11) Re (P,v,0p(g)v), > —C||Py||7, — Ca?| 7o)

m—2,7"

The sum of (6.9), (6.10), and (6.11) yields, for 7 and « sufficiently large,

(6.12) C|[Peu|f + v (|72 Au|f + |72 Bul[}2) + Re Hup()
> C'||F 5l = C(F 2@y s + @1 05)-
Next, the generalized Green formula of Proposition 5.10 gives

(6.13) 2Re (Av,iBv), — Re Bap(v) + Co® |02, _y ; > Re Hqp(v).
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The sum of (6.12) and (6.13) yields the counterpart of Lemma 4.3, for 7 and « sufficiently large,

C|Poull72 + v (|72 Au|[7. + |72 Bu||7.) + 2Re (Av, iBv), — Re Bap(v)
> C,H%_%Qufm% - C"( %_%V(Qﬂzﬂ,m/w +a |7(Q)|72n—1,0,%)'
‘We have

v(||772 Av||%, + |72 Bu|%,) + 2Re (Av,iBu), < (A +iB)ull2: S |Psu) + o [Jv]?,

—1,7
which gives, for 7 and « chosen sufficiently large,

CllPouls = ReBup(w) = C'[|F20|[}, . = C"([F 29[}, 11 oz T @ h(@)i07)-

m—1,0,7
Since [P, Op(x)] € a¥?" " we have

6.14) C||Po%, — Re Bup(v) > C'||7 20|, .

1 2
2V(y)|m71,1/2,7~' +a h/(y)ﬁn—l,o,? ) :

=" olly, 1 7+ |7
As A is of type (0,m — 1,1/2) we have

| Bap (@) S Y@ 1127

With Lemma 6.6, making use of the strong Lopatinskii condition, we obtain for M chosen sufficiently large

p 9
(6.15) Re%Bap(v) + Mkzl ’Bév‘m,gk,l/g,; >C |7(Q)|72n_1,1/27%
2 2 2
— C'([|1Ppvll72 + o [0l 17 + o’ ’7(”)%71,71/2,%)-
Summing (6.14) and (6.15) we find the result, by taking 7 and « sufficiently large.

6.6. Estimate with the simple characterisitic property. A stronger estimate with two parameters can
be achieved if one assumes that the operator P and the weight function ¢ fulfills the so-called simple
characterisitic property. This is proven in [29] for estimates away from a boundary. Here we show that this
can be extended at the boundary if the strong Lopatinskii condition is also assumed.

6.6.1. The simple characterisitic property. We introduce the map
pre: RT —C,
7o pla, §+ ity (x),

(6.16)

where z € (2 and ¢ € R™.

Definition 6.8. Let U be an open subset of (). Given a weight function 1 and an operator P we say that the

simple-characteristic property is satisfied in U if, for all x € U, we have ¢ = 0 and 7 = 0 when the map
pz.¢ has a double root.

Note that the case £ = 0 is particular, as the root 7 = 0 has of course multiplicity m. Note also that we
have

(6.17) Poe(7) = i(pe(a, & + it (2)), 4 (2)) = i{p, ¥} (x, & + 079/ (x)).

‘We can thus formulate the condition of Definition 6.8 as

p(x, & + 17 (x) = {p, ¥} (z, & +i7¢ () =0 =

a0
Il
=
>
Il
o
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or equivalently

(6.18) p(z, £ +i7y(x)) = 0and (§,7) # (0,0) = {p,d}(z,{+i7¢(2)) #0.

Observe that the simple-characteristic property (6.18) implies that ¢ is strongly pseudo-convex with
respect to €2 and P.
We have the following lemma.

Lemma 6.9. Assume that P and ) satisfy the simple characteristic property in U. Then there exist C' > 0,
T« > 1, ax > 1, and v > 0 such that

O™ < v lp(w, O + 7@’ (pi(w, O W @), 727 @2 au, (0,6) € T x R™,

The proof follows from Lemma 6.3, the simple characteristic property and homogeneity.

6.6.2. Carleman estimate with the simple characteristic property.

Theorem 6.10. Let xy € 0N and let 1) € €°°(Q)) be such that P and 1) have the simple characteristic
property of Definition 6.8 in a neighborhood of x in Q. Moreover, assume that {P, v, BF k=1,... ,M}
satisfies the strong Lopatinskii condition at xy. Then there exist a neighborhood W of xq in R™ and three
constants C, 1, > 0, and o, > 0 such that for ¢ = exp(at)) and T = Tovp:

(6.19)

1 2 2 - k
afFreren] el 1ns < COKTPE Dl + X 17BN @ D)l 10, ),

sT
for all u = w)q with w € C(W), 7> Ty, and o > .

Observe that the first norm in the Lh.s. bears an additional factor a as compared to the estimate of The-
orem 6.4. Conversely, this additional factor implies that P and 1) have the simple characteristic property;
moreover one cannot expect to have an additional factor o7 with v > 1 unless the conjugated operator is
elliptic, i.e., py(z, &, 7) = p(x, & + 79’ (x)) # 0 for (&,7) # (0,0) [29, Section 5].

As above, we only prove a microlocal estimate and we leave to the reader the adaptation of Section 4.5
for the patching of those estimates to obtain estimate (6.19).

Theorem 6.11. Let zo € 0Q NV and let 1) be such that P and 1) have the simple characteristic property of
Definition 6.8 in a neighborhood of xo in V.. Moreover, assume that { P, By, ), k = 1,..., u} satisfies the
strong Lopatinskii condition at (o, §), 7o) € St (V). Then there exists % a conic open neighborhood of
(w0, &), 7o) in Vi x R"™1 x Ry such that for ¥ € S%T with supp(x) C %, there exist C > 0, 1. > 0, and
o > 0 such that

2
m—Br—1/2,7

2 - k
(6.20) HI@UHL2+QZ%LB¢v
L1 2
0 [[vll 17+ 07 ()1 127 = C ]| 772 Op() L, - + 1(OPOO)Y) 5 11/27)
fort > 1, 0> a,ve S RY) and (o) = (') € 5%~

Proof. Let Uy be an open neighborhood of ¢ in V. where the result of Lemma 6.9 holds.
Similarly to Section 4.5, we write

P,=A+iB+R, Rea¥l" "
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where A = Op(a) and B = Op(a), witha = Rep<p € an’o and b =Imp, € S;n*l’l. We set

,~(x)) c ng 1,07
Or 1 ()0, V(1) 6, P, C) € ST 0,

with ¢ = & +it¢'(z) = € +i7 () (z). We let %, possibly reduced so that ZZ C Uy x R* ! x Ry, and x
be as given by Lemma 6.6. With v as given by Proposition 6.9 and « and 7 large so that 7(z)~'v < 1, we
have by Propositon 5.5

(6.21)

Propositionu(”%_%AyHig + H%_%ByHig) + |Op(e)u]|72 > CHT_%QHi% - C/‘%_%V(ﬂ)ﬁn,l 1/2,77

with v = Op(x)v. In fact, the symbol of the interior quadratic form in the Lh.s., of type (—35,m, 0) satisfies
by Lemma 6.9

Vi e ? (0, &n) + FI(0k(x, Q). ¥ (@) P (¢, &n) > CF 1", ¢ = (0,8 ,7(2)) € %, & €R.

This symbol is polynomial in £ and homogeneous of degree 2m — 1 in (£, 7). Hence, the Garding inequality
of Proposition 5.5 applies.
Let F'(w) be an interior quadratic form of type (0,m, —3)) with symbol f. We have by Lemma 5.3

(6.22) Re F(v) > —C ||v|?

mfff

Recall that o« ~' H, , is an interior quadratic form of type (0, m, — 5) with symbol equal to o~ sub(a, b).
Since by (6.2) the interior quadratic form, of type (0, m, —%)

o Hyp(w) — a” ' F(w) = [Op(e)wl|72 +a~" Re (Pyw, Op(g)w)

has a vanishing symbol, by Lemma 5.4 we obtain

_l’_

(623) Re (Haplv) = Fv) — a|Op(e)ellf + Re (Pyv, Op(g)u), )

Z—C(OzQHQH s tal(v i Lo )-

We also have

2
(6.24) —Re (Ppv, Op(g)v), > —CHRPQHLQ Coz2HTvH
The sum a(6.21) + (6.22) 4 (6.23) + (6.24) gives, taking 7 and « sufficiently large,

m—2,7"

625 C||Pov||s +v(||(ro) "2 Av|[2s + ||(79) "2 Bul|%,) + Re Hyp(v)

> Call~ 2}, . — ol 2y();

m—1,1/2,7
Summing (6.13) and (6.25) gives, for 7 and « sufficiently large,

C|| P2 + v(||(re) "2 Av||%, + || (7o) "2 Bu||%,) + 2 Re (Av,iBu), — Re B (v)

> C'al|7 E H F _C”O“%_%V@)‘fn—l,l/zﬁ'
We have
v(||(re) "2 Av||3, +|(79) "2 Bu||7,) +2Re (Av,iBu), < [[(A+iB)u|22 S |[Pov]2z +a? [Ju]?

m,—1,7
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which gives, for 7 and « sufficiently large,

|, ~ Re #up(w) > Coll=h

vz~ Clali )|

m—1,1/2,7
Since [P,, Op(x)] € aql?’_l we have

2 1 2 1 2
(6.26)  C[[Pov|[. — Re Bup(v) > Ca? QQHm,‘F —C'(a? HUH?n,—L% +alf 2'7@)‘77171,1/2,%)'
Summing (6.26) and (6.15) we find the result, by taking 7 and « sufficiently large. ]

APPENDIX A. PROOFS OF SOME TECHNICAL RESULTS

A.1. Details on the examples of Section 1.7. We first consider p(z,£) = &2 + r(z, £’). We have

Pp(@,€,7) = (& +i1¢")* +r(2,€) = (€a +iT¢' +i0(2,)) (&0 +iT¢" — i0(2,E)),
with §(x, &) > C|¢'] and O(z,€")? = r(x,£). The roots of the operators are thus given by o = —iT¢’ —
i0(z,&') and ag = —iTy’ +i6(x, &').

If 9,0 = ¢’ < 0 we may have simultaneously Imc; > 0 and Im as > 0 yielding p, = 1 and
Ky = Py, a situation that forbids the strong Lopatinskii condition (see Remark 1.5 and Proposition 1.8).
This explains the assumption 9, ¢ = ¢’ > 0. (In fact having ¢’ vanishing prevents the Carleman estimate
to hold [16, 30, 29].) Then Im oy < 0 and we see that d°k, < 1. If d°k, = 0, i.e., both roots have negative
imaginary parts, then the strong Lopatinskii is trivially fulfilled independently of the boundary operators.
This includes the low frequency regime, |£'| < d7 for § sufficiently small.

If now d°k, = 1, then ky, = &, + iT¢’ — i0(z,¢’) and the strong Lopatinskii condition is satisfied if
(by, k) is a complete family in the space of polynomials of degree less than or equal to 1. In this second
case &’ # 0.

(1) In the case Bu = uy;,—o+, then b = b, = 1 and the result is clear.

(2) In the case Bu = (Dy,u + a(x)u)|y,—o+ We have b, = &, +i7¢'. Since {’ # 0 here, then b, and
k. have distinct roots and thus form a complete family.

(3) In the case Bu = (Dg,u + ia(z) Dy u)|y,—o+ then by, = &, + i7¢" + ialy. Assuming that b,
and £, have a common root this means af; = —0(z,¢’), implying a%¢} = r(z,¢'). Yet a?¢? <
a?€'|? < r(z, &), unless & = 0 which is excluded here. We thus see that b, and k,, do not have a
common root. They thus generate polynomials of degree less than or equal to 1.

Finally, observe that all the above remains valid if we let o also depend on z’ with a |0,/ | < |0z, ¢|-
We now consider p = £} + &5, with here n = 2,in V. = {z2 > 0}. At first we take p = ((x3). Then
pp = & + (& +iT’)? that we write
4 o
po = [ (& —aj), witha; = —ity — 62W(2J71)/4§1, ji=1,2,3,4.
j=1

Here also we assume ¢’ > 0 to forbid all the roots to be in the upper complex half plane. Then Im o; < 0
and Im ay < 0. We thus have d°k, < 2.

(1) If Blu = U|zy=05 B?u = Dy, u)z,—0 then bi; = 1and b?p =&+ ity As b}p and b?o generate the

polynomials of degree less than or equal to 1, the strong Lopatinskii condition is fulfilled.
() If Blu = Uy =05 B%u = Aujy,—o then b}p =1and

b) = (& +ite)? + & = (&L +itg +i&) (& + ity —i&y).

As the roots of b}(,, bi and r, are all distinct we see that they generate the polynomials of degree
less than or equal to 2. The strong Lopatinskii condition thus holds.
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1, _ 2, _ 1 _
(3) If Bru = Uy =05 B*u = DmAum:O then bso =1 and

b = (& + it ) (& +ite + i) (& +iTg —i&y).

e If d°k, = 0 then the strong Lopatinskii condition holds trivially.

e If d°x, = 1 then the strong Lopatinskii condition holds as b}a generates the constant polyno-
mials.

e If d°k, = 2 then the polynomials b}o, bg,, ke, and ok, are linearly independent. They thus
generates the polynomials of degree less than or equal to 3 meaning that the strong Lopatinskii
condition holds.

As above we observe that all the above remains valid if we let ¢ also depend on x; with a |0, ¢| < |0, |

A.2. Regularity of the decomposition p, = p_, p;ﬁpg. For concision, we denote by ¢’ the variable (x, &', 7) €
@1 x R"~! x R, as is sometimes done in the main text.

Homogeneity is always understood w.r.t. the variables n = (¢/, ) for |n| > ro for some 79 > 0, leading
to the introduction of the map

Myo' = (z, M), o = (z,n) R xR xRy.
A function ¢’ — f(¢') is thus said to be homogeneous of degree k if

foMy(d) =N f(o), o =(z,m), |n|>ro, A>1.

We start with a classical result stating the homogeneity of the roots of an homogeneous polynomial
function.

Lemma A.1. Let p(¢',¢) = 2772 a;(d )¢7 be a polynomial function with € coefficients a;. Assume that
the coefficients a;j(o') are homogeneous of degree m — j. Then the roots aj(¢') of the polynomial function
p(0, €) in ¢ are homogeneous functions of degree one.

Proof. Forany ¢’ = (z,1) € R}, x R"~! x R, we factorize the polynomial function p(¢’, ) w.r.t. ¢
m
p(e',¢) = Il (¢ —a;(d),
]:

where o (¢'), j = 1, ..., m, denote the roots repeated with multiplicity. Let A\ > 1 and letn € R", || > r.
For k = 1,...,m, the roots of p(M, ¢, ¢) are o, (Myo') . We consider B (A, 0') = A~ tax(My¢'). Then,
we have

m

p(e,¢) = A"p(My g, AC) = A [T (AC — aj (My)) = E{l (¢ B8\ 0)).

7=1

That is for any £k = 1,...,m and any A > 1, Bx(\, o) is a root of p(¢’, (). The roots of p(¢', () are
continuous w.r.t. ¢/, as it is a classical result that the roots depend continuously upon the coefficients (a
proof is in fact given in the beginning of the proof of Lemma A.2). Hence, A — A lag(M)o) is a
continuous function. Above we saw that it can only take a finite number of values. It follows that it is a
constant function. This concludes the proof. U

m ,
Lemma A.2. Let p(0',¢) = > am—;(¢){? be a polynomial function with €™ homogeneous coefficients
§=0

am—;(0') of degree m — j, the coefficient ag(o') not vanishing. For a fixed point g, = (xg,1n0) € ﬁi X
R x Ry, with |no| > ro, we denote the roots of p(af, ) by a1, ..., an, with respective multiplicities
M1y -, PN Satisfying pg + - -+ pun = m.
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There exist a small conic neighborhood % of o} in @Z_ x R*1 % Ry, and three polynomial functions
pT(0,¢), p~(,¢) and p°(d,¢) with €™ homogeneous coefficients and of constant degrees in U, =
% 0 {|n| = ro}, such that

p(d',¢) = ao(d)p* (¢, Op~ (¢, O°(@,C), & € Uy, CER,
where the roots of p* (o', C) (resp. p~(¢', ) are all positive (resp. negative) and we have

(A1) PO = TI (C—a)", e, O)= TI (¢—ay).
+Ima;>0 Im ;=0

Note that there is no constraint on the sign of the imaginary part of the roots of po(g’ ,C) for o' # o).
The idea of this lemma is the following. At ¢’ = g[, the roots can be split into three groups: those with
positive imaginary parts, those with negative imaginary part, and the real roots. This splitting is preserved if
¢’ remains in a small neighborhood of gf,, apart for the third group since real roots can become complex if
o' changes. Moreover the three groups of roots yield smooth polynomials even if the roots themselves may
not be smooth*. This last point is of great importance here as one needs to manipulate smooth symbols in
the present work. This cannot be done at the root level.

Proof. We denote by ag, J = 1,..., M, the real roots with m -multiplicity of the polynomial function
(0}, ¢) where o # a? for i # j. We shall consider ¢’ in a small neighborhood of ¢[, in @i x R xR,
We consider a small closed circular curve v, : [0,1] — C in C with center oz?, such that a? is the only root
of the polynomial equation p(of, ) = 0 in Dj, the interior disk of C; = ~;([0, 1]).

We set ¢; = %mingecj Ip(0h,¢)| > 0. Let z € C;. By continuity of p, there exists a neighborhood
Ul cCofzanda neighborhood Y? c @1 x R"~1 x R, of g} such that

Ip(d, Q) —ple,2)| <€,  CE€UL o €Y/

Since Cj C Useg; UZ, and C; is compact, we can extract a finite covering with such neighborhoods, viz.,
there exists z1, ..., 2, € Cj such that

Cj - Ui:l U. gk
Then Yj = ﬁizle{C C RZ x R"~! x R, defines also a neighborhood of gf, such that for all ¢ € C; and all
o ey
(¢, ¢) — pleh. Q)| < 2¢; < |p(ap, C)] -

By Rouché’s Theorem, for each ¢’ € Y7 the equation p(¢’,{) = 0 has m; roots (counted with their
multiplicity) in the disc Dj, that we denote by o (¢'), k = 1,...,m;. Since we can reduce the circle C; to
the point ), we get’ limy_, ; ;i (¢') = f for all k. Invoking Lemma A.1 we extend the function aj(¢')
as an homogeneous continuous function of degree one in a small conic neighborhood % of g}, for || > 7.
We set %, = % N {|n| > ro}. Let us consider the unitary polynomial

. mj
P9, ¢) = kﬂl (¢ — aji(0)),
whose coefficients are continuous since the roots are continuous w.r.t. ¢ as seen above. We have p(/) (00, €C) =
(¢ —ag)mﬂ' . In a similar way, we can define the polynomials p*(¢’, ¢) and p°(¢’, ¢) in a small conic neighbor-
hood of g, as polynomials with continuous coefficients, constant degrees, and they moreover satisfy (A.1).

Now we prove that the coefficients are €.

4Only continuity w.r.t. ¢’ is certain. Smoothness may fail if multiplicity varies.
n particular at this point this prove the continuity of the roots with respect to the parameter o’
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Recalling that the polynomial p(¢’, {) has exactly m; roots o (¢'), k = 1,...,m; (counted with multi-
plicities) in the disc D;, by the Residue theorem, we find
1 3]?(@/, C) 1 Y X VAN i1
— f Ctd¢ =Y o (o) = s)(0)), ¢=1,...,m,.
2ime,  0C  p(eQ) 1;1 (€)= 2(¢) ’
Since the Lh.s. is a ¢ function w.r.t. ¢/, then the functions s{(g’), ce sfnj (o) are also of class €. If we

write p) (o, ¢) = 317, bi(g’)(k, with b?nj = 1, then we have

b1 = T |

2binj—2 = —(sz+bmj_18jl) A
3bmj—3 = —(S%—i-bmj_lsé-i-bmj_gsjl)

miby = (s, U, 1S,y o+ bsY).

We deduce that the coefficients of pl7) (¢, ¢) are in €7 (%, ).

Consider now the polynomial function, of degree m — m,

PR CES R

(e, Q)
We have p(gf), ¢) = (¢ — o)™ H (¢, ¢) with H(gp, o) # 0. Write H(¢', () = 372" hi(¢)(C — o)™,
By the Cauchy formula, we obtain

N 1 p(Qlyo d¢ /
hk(g) - %Cj p(j)(Q,,C) (C — ag)k+17 0 € %m.

Since the coefficients of p(¢’, ¢) and p\9) (o', ¢) are of class € then, the coefficients hy,(¢') is of class €.
We may now repeat the previous arguments for the polynomial H (o', () yielding the ¢ regularity of the
coefficients of p* (¢, ¢) and p°(¢’, ¢) w.r.t. o’. The proof is complete. O

A.3. Proof of the Hermite Theorem (Proposition 3.13). All the roots of /i are assumed to be in the lower
complex half-plane {Im ¢ < 0}. In particular ~ cannot have real coefficients. We claim that we have

(A2) V¢eC, [h(Q]=1r(Q)] & (R

Let f be the holomorphic function in {Im ¢ > 0} given by f(¢) = h(¢)/h(¢). Clearly if ( € R then
|£(¢)| = 1. Observe that neither f nor | f| can be constant in {Im ¢ > 0} since h has roots in this set.

We let R > 0 and consider the domain Dp, inside the contour v formed by the interval [— R, R] on the
real axis and the following half circle in the upper complex half-plane {|(| = R; Im { > 0}.

Im()

TR
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Let (; € C be such that Im(y > 0. Letting ¢ > 0, we choose R > |(y| sufficiently large so that

max., |f| < 1+ ¢, observing that lim|¢|_,o [f(¢)| = 1. Then the maximum modulus principle yields
|f(Co)| < maxp  |f| = max,, [f] <1+ e. Since ¢ is arbitrary we obtain that [ f(¢o)| < 1. Hence |f| <1
in the upper complex half-plane. This now yields max,, | f| = 1 for any R > 0 since | f| = 1 on the real
axis. Considering again an arbitrary (o € C with Im{p > 0 and R > [(o| we find | f((o)| < 1 since the
maximum modulus cannot be reached in the interior of Dy since f is not constant. We have thus obtained
that

(A3) If| <1 in {Im¢ > 0}.

The same analysis can be carried out with the holomorphic function g(¢) = h(¢)/h(¢) in the lower complex
half-plane since the roots of h have positive imaginary parts:

(A4) lg| <1 in {Im¢ < 0}.

Together (A.3) and (A.4) yield the claim (A.2), as the case h(¢) = h(¢) = 0 is to be excluded since it yields
both Im ¢ < 0 and Im ¢ > 0.

Let now ¢ be a root of a. Then |h(¢)| = |h(¢)| implying that ¢ is real. The same applies for the roots of
b. Moreover, if ¢ is a root of a then b(¢) # 0, as otherwise h(() = h(¢) = 0, which is excluded (see above).
The roots of a and b are thus distinct and real.

We denote the roots of h by (;,7 =1,...,k, and we introduce
k k
m(O= (), HO=vIIM©, @@= T MO, a@)=1
Jj= i=j

where v € C, v # 0, is the leading-order coefficient of h. We observe that i3, 7.((, ) = 2B, (¢, ¢) and
by (3.12), we obtain

|V|_2Bhﬁ(<7 5) = Bhlqlﬁlql (Ca é:)
= QI(C)@(@Bhl,hl(

() + h1(Q)h1(¢)Bg g, (¢ €)
= 2iTm(c1)q1 ()71 (C) + M (¢

Oh1(¢) By, (6. C)

By induction we then find

V2B, 5(6,0) = 20 32 T(ay) Ry (O Ry ()

j=1

where R; is a polynomial of degree £ — 1 given by

i=1_
Ry =q; 11 ha:

Note that the roots of R; are @i, ...,a;—1 and @j41, ..., . Assuming the Z;’?:l AjR;(¢) = 0, by suc-
cessively estimating this sum for { = @y, @, ..., we find A\ = Ay = --- = Ay = 0. The family of
polynomials R;, j = 1,..., k is thus linearly independent.

We have

- k - ~
Boy(z,2) = —|v|? ;l Im(oj)Rj(z)R;(Z'),

with Im a;; < 0. Lemma 3.10 yields the conclusion of Proposition 3.13. U
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A.4. Proof of Lemma 3.14. We write
sub(a,b) = > 8§(b6§‘a — aag‘b) = > 8:‘;‘,(b8?/a — af)?/b) + Oz, (b0, a — adk, b),

lor|=1 |a|=1

and we have on the one hand

|\Z 0% (bOga — adgb) = kz HZ 0% (b0 ar — a;0gbe) EF,
al=1 7,k=0 |a|=1

==hjk

and on the other hand

m . .
Oz, (b0,a — adg,b) = >3 Ou, (kbjargh ™™™t — jarb;&l 1)
k=0
< N ejrk—1
= 4’;0(/? — )& O, (bjak)
]7 =
1 , k-1
=3 };O(k = J) Ox,, (bjar — bra;) &7,
J7 =
—0On ;‘,k
which gives the result. U
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