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Abstract

In this paper, we establish concavity properties of two extensions

of the classical notion of the outer parallel volume. On the one hand,

we replace the Lebesgue measure by more general measures. On the

other hand, we consider a functional version of the outer parallel sets.
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1 Introduction

As an analogue of the famous concavity of entropy power in Information
theory (see e.g. [13], [29]), Costa and Cover in [14] conjectured that the
1
n
-power of the parallel volume |A + tBn

2 | is a concave function, where Bn
2

denotes the Euclidean closed unit ball.

Conjecture 1.1 (Costa-Cover [14]). Let A be a bounded measurable set in

R
n then the function t 7→ |A+ tBn

2 |
1

n is concave on R+.

This conjecture has been studied in [19], where it was shown that it is
true in dimension 1 for any sets and in dimension 2 for any connected sets,
but it is false for arbitrary sets in dimension 2 and for arbitrary connected
sets in dimension greater than or equal to 3.

The notion of parallel volume can be extended by considering more gen-
eral measures than the Lebesgue measure. An extension, provided by Borell
in [7], follows from the Brunn-Minkowski inequality, which states that for
every λ ∈ [0, 1] and for every compact subsets A,B of Rn,

|(1− λ)A+ λB| 1n ≥ (1− λ)|A| 1n + λ|B| 1n . (1)
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In [7], Borell defined for s ∈ [−∞,+∞] the s-concave measures, satisfying a
similar inequality as (1):

µ((1− λ)A+ λB) ≥ ((1− λ)µ(A)s + λµ(B)s)
1

s

for every λ ∈ [0, 1] and for every compact subsets A,B of R
n such that

µ(A)µ(B) > 0. From the Brunn-Minkowski inequality (1), the Lebesgue
measure is a 1

n
-concave measure. Details on s-concave measures are given in

the next section. The case s = 0 corresponds to log-concave measures. The
most famous example of a log-concave measure is the standard multivariate
Gaussian measure

dγn(x) =
1

(2π)
n
2

e−
|x|2

2 dx,

where | · | stands for the Euclidean norm. These measures have particular
interests. For example, isoperimetric inequalities have been established for
the Gaussian measure dγn by Borell in [9] and independently by Sudakov
and Cirel’son in [28], which states that among sets of given Gauss measure,
half-spaces minimize the Gauss surface area. Thereafter, Kannan-Lovász-
Simonovits in [23] formulated their famous conjecture: for the uniform mea-
sure on a convex body (which can be extended to arbitrary log-concave
measures) half-spaces are nearly minimizers. In dimension 1, Bobkov (see
[3] and reference therein) proved that among sets of given measure, half-
lines minimize the surface area. More recently, a refined statement has been
established by Cianchi et al. in [11]: in dimension n, a set of given Gauss
measure and almost minimal Gauss surface area is necessarily close to be
a half-space. This result has been extended by De Castro in [15] for all
log-concave probability measures in dimension 1.

In this paper, we pursue the study of these measures by considering the
following problem, which extends Conjecture 1.1:

Problem A. Let s ∈ [−∞,+∞]. Let µ be a s-concave measure in R
n and A

be a compact subset of Rn. Is the function t 7→ µ(A+tBn
2 ) s-concave on R+?

Another extensions of geometric inequalities can be set up by considering
functional versions. The most famous extension of this type in the Brunn-
Minkowski theory is certainly the Prékopa-Leindler inequality (see [25], [27],
[8]). Functional versions provide new proofs of geometric inequalities and
provide new applications. Another examples of such extensions is a func-
tional version of the Blaschke-Santalò inequality and a functional version of
the Mahler conjecture (see e.g. [2], [1], [20], [21], [24]).

To do so, we consider a functional version of parallel sets A + tBn
2 . We

set up the following problem (the notion of γ-concave functions is defined in
the next section):
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Problem B. Let γ ≥ − 1
n
. Let f : Rn → R+ be a bounded non-negative

function and g : Rn → R+ be a γ-concave function. Let

h
(γ)
t (z) = sup

z=x+ty

f(x)>0; g(y)>0

(f(x)γ + tg(y)γ)
1

γ and s =
γ

1 + γn
.

Is the function t 7→
∫

Rn h
(γ)
t (z) dz s-concave on R+?

For γ = 0, the function h
(0)
t is interpreted by continuity, i.e. for every

z ∈ R
n,

h
(0)
t (z) = sup

z=x+ty
f(x)g(y)t.

The Costa-Cover conjecture is a particular case of Problem B by taking
f = 1A, g = 1Bn

2
and γ = 0. For γ < 0, which extends to γ = 0, the function

V = gγ is convex by assumption and one can naturally connect the function

h
(γ)
t with the Hopf-Lax solution of the Hamilton-Jacobi equation:

h
(γ)
t (z) = sup

x∈Rn

(

f(x)γ + tV

(

z − x

t

))
1

γ

=
(

Q
(V )
t fγ(z)

)
1

γ
,

where for arbitrary convex function V and for arbitrary function u,

Q
(V )
t u(z) = inf

x∈Rn

(

u(x) + tV

(

z − x

t

))

.

The Hopf-Lax solution have a particular interest. For example, it can be
used to show that hypercontractivity of this solution is equivalent to get log-
Sobolev inequalities (see e.g. [6], [22]). Through Problem B, we pursue the
study of this solution by asking for concavity properties in time of the Hopf-
Lax solution of the Hamilton-Jacobi equation.

We will prove that both Problem A and Problem B have positive an-
swers in dimension 1. However, since the Costa-Cover conjecture is false in
dimension n ≥ 2 in such a generality, we won’t expect other positive an-
swers of these stronger problems. Using the geometric localization theorem
of Kannan-Lovász-Simonovits in [23] in the form established by Fradelizi-
Guédon in [18], we prove:

Theorem A. Let s ∈ [−∞, 12 ] ∪ [1,+∞]. Let A be an arbitrary compact
subset of R and µ be a s-concave measure in R. Then, t 7→ µ(A + tB1

2) is
s-concave on R+. Moreover, for s ∈ (12 ; 1) there exists a compact subset A
of R such that t 7→ µ(A+ tB1

2) is not s-concave on R+.

Using a precise analysis of the Hopf-Lax solution, we prove in dimen-
sion 1 a better concavity as asked in Problem B:
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Theorem B. Let γ ∈ (−1; 0]. Let f : R → R+ be a Lipschitz continuous

non-negative function. Define, for every y ∈ R, V (y) = |y|p

p
, with p ≥ 1.

Then the function t 7→
∫

R
h
(γ)
t (z) dz is concave on R+, where

h
(γ)
t (z) = sup

z=x+ty

f(x)>0; V (y)>0

(f(x)γ + tV (y))
1

γ and h
(0)
t (z) = sup

z=x+ty
f(x)e−tV (y).

In the next section, we explain some notations and we present some re-
sults about s-concave measures. In the third part, we extend the classical
notion of the parallel volume by considering a general s-concave measure in-
stead of the Lebesgue measure and we give a complete answer to Problem A.
In the fourth part, we extend the classical notion of parallel sets by consider-
ing a functional version and we partially answer to Problem B. To conclude
this paper, we derive a weighted Brascamp-Lieb-type inequality from our
functional version.

2 Preliminaries

We work in the Euclidean space R
n, n ≥ 1, equipped with the usual scalar

product < ., . > and the ℓn2 norm | · |, whose closed unit ball is denoted by
Bn

2 and the canonical basis by (e1, . . . , en). We also denote | · | the Lebesgue
measure in R

n. For non-empty sets A,B in R
n we define their Minkowski

sum
A+B = {a+ b; a ∈ A, b ∈ B}.

We denote by int(A) the interior of the set A, by A the closure of A and by
∂A = A \ int(A) the boundary of A.

In this paper, we only consider non-negative measures. For an arbitrary
measure µ, we call (outer) parallel µ-volume of a set A the function defined
on R+ by t 7→ V µ

A (t) = µ(A + tBn
2 ). We simply call (outer) parallel volume

if µ is the Lebesgue measure.
Let us recall some terminologies and results about s-concave measures

introduced by Borell in [7], [8]. One says that a measure µ in R
n is s-concave,

s ∈ [−∞,+∞], if the inequality

µ((1− λ)A+ λB) ≥ ((1− λ)µ(A)s + λµ(B)s)
1

s

holds for all compact subsets A,B ⊂ R
n such that µ(A)µ(B) > 0 and

for all λ ∈ [0, 1]. The limit cases are interpreted by continuity, i.e. the
right-hand side of this inequality is equal to µ(A)1−λµ(B)λ for s = 0, which
corresponds to log-concave measures, to min(µ(A), µ(B)) for s = −∞ and to
max(µ(A), µ(B)) for s = +∞. Notice that a s-concave measure is r-concave
for all r ≤ s.
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For s ≤ 1
n
, Borell shows that any s-concave measure µ absolutely con-

tinuous with respect to the Lebesgue measure admits a γ-concave density
function, with

γ =
s

1− sn
∈ [− 1

n
,+∞],

where a function f is said to be γ-concave, with γ ∈ [−∞,+∞], if the
inequality

f((1− λ)x+ λy) ≥ ((1− λ)f(x)γ + λf(y)γ)
1

γ

holds for every x, y ∈ R
n such that f(x)f(y) > 0 and for every λ ∈ [0, 1].

As for the s-concave measures, the limit cases are interpreted by continuity.
Notice that a 1-concave function is concave on its support, that a −∞-
concave function has its level sets {x; f(x) ≥ t} convex, and that a +∞-
concave function is constant on its support. For s > 1

n
, Borell shows that

any s-concave measure µ absolutely continuous with respect to the Lebesgue
measure on R

n is the Null measure.

3 The s-concavity of the parallel µ-volume

In this section, we generalize the Costa-Cover conjecture in the more general
context of s-concave measures instead of the Lebesgue measure. Let us recall
the new problem:

Problem A. Let s ∈ [−∞,+∞]. Let µ be a s-concave measure in R
n and A

be a compact subset of Rn. Is the function t 7→ µ(A+tBn
2 ) s-concave on R+?

By the Brunn-Minkowski inequality, the n-dimensional Lebesgue measure
is 1

n
-concave. Thus the problem A generalizes the conjecture 1.1.
Let a ∈ R

n. The Dirac measure δ{a} is +∞-concave and we notice that
the function t 7→ δ{a}(A+ tBn

2 ) is constant on its support and thus is +∞-
concave on R+, which solves Problem A for s = +∞.

Since the function t 7→ µ(A+ tBn
2 ) is non-decreasing, it follows that the

answer to Problem A is positive for s = −∞.
Notice that Problem A is solved for convex sets. Indeed, let A be a

compact convex subset of Rn, then for every λ ∈ [0, 1] and every t1, t2 ∈ R+,
we get

µ(A+ ((1− λ)t1 + λt2)B
n
2 ) = µ((1− λ)(A+ t1B

n
2 ) + λ(A+ t2B

n
2 ))

≥ ((1− λ)µ(A+ t1B
n
2 )

s + λµ(A+ t2B
n
2 )

s)
1

s .

In the sequel, µ will denote a s-concave measure which admits a density
with respect to the n-dimensional Lebesgue measure. For µ 6= 0, one has
s ≤ 1

n
.

We first establish a preliminary lemma in dimension 1.
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Lemma 3.1. Let s ≤ 1. Let A be an arbitrary compact subset of R and µ be
a s-concave measure in R. Then (V µ

A )s admits left and right derivatives on
R
∗
+. We denote ((V µ

A )s)′− (resp. ((V µ
A )s)′+) the left (resp. right) derivative

of (V µ
A )s. If s ≥ 0, then

((V µ
A )s)′− ≥ ((V µ

A )s)′+

and if s < 0, then
((V µ

A )s)′− ≤ ((V µ
A )s)′+.

Proof. We denote ψ the density of µ. Notice that for every t0 > 0, the set
A+t0B

1
2 is a disjoint finite union of intervals. Then, setting A+t0B

1
2 instead

of A, we can assume that A = ∪N
i=1[ai, bi], with a1 < b1 < · · · < aN < bN . If

N = 1, we get for every t ∈ R+,

V µ
A (t) =

∫ b1+t

a1−t

ψ(x) dx.

Hence, V µ
A is differentiable on R+. It follows that ((V µ

A )s)′− = ((V µ
A )s)′+. If

N ≥ 2, we denote ti =
bi+ai+1

2 , for i ∈ {1, . . . , N − 1}. We notice that V µ
A is

differentiable on R+ \ {t1, . . . , tN−1} and for every t ∈ R+ \ {t1, . . . , tN−1},
we get

(V µ
A )′+(t) =

∑

a∈∂(A+tB1
2
)

ψ(a)

(V µ
A )′−(t) =

∑

a∈∂(A+t int(B1
2
))

ψ(a).

Notice that A+ tB1
2 = A+ t int(B1

2) thus ∂(A + tB1
2) ⊂ ∂(A + t int(B1

2)).
Hence for every i ∈ {1, . . . , N − 1}, we get

(V µ
A )′−(ti) ≥ (V µ

A )′+(ti).

For every t 6= ti and s 6= 0, one has

((V µ
A )s)′(t) = s(V µ

A )′(t)(V µ
A )s−1(t),

thus we conclude that if s > 0 then ((V µ
A )s)′− ≥ ((V µ

A )s)′+, and if s < 0 then
((V µ

A )s)′− ≤ ((V µ
A )s)′+. For every t 6= ti and s = 0, one has

(log(V µ
A ))′(t) =

(V µ
A )′(t)

V µ
A (t)

,

thus (log(V µ
A ))′− ≥ (log(V µ

A ))′+.

Let us solve the problem A in dimension 1 for s ≤ 1
2 .
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Theorem 3.2. Let s ≤ 1
2 . Let A be an arbitrary compact subset of R and µ

be a s-concave measure in R. Then, the function t 7→ V µ
A (t) = µ(A + tB1

2)
is s-concave on R+.

Proof. Let s ≤ 1
2 . For s = −∞, we noticed above that the result holds true.

We assume −∞ < s ≤ 1
2 . We also assume s 6= 0, the case s = 0 follows

by continuity. Let µ0 be a s-concave measure on R and A be a compact
subset of R. Notice that for every t > 0, A + tB1

2 is a disjoint finite union
of intervals. Thus, by setting A + tB1

2 for arbitrary t > 0 instead of A, we
can assume that A = ∪N

i=1[ai, bi], with ai < bi and N ∈ N
∗. We also assume

N ≥ 2, otherwise A is convex and we immediately conclude. Notice that for

t0 =
1

2
sup

i=1,...,N−1
|ai+1 − bi|,

then A+ t0B
1
2 is convex and for every t < t0, the set A+ tB1

2 is not convex.
Thus, t 7→ µ0(A+ tB1

2) is s-concave on [t0,+∞).
Now, let us show that t 7→ µ0(A + tB1

2) is s-concave on (0; t0). We
use a geometric localization theorem due to Kannan-Lovász-Simonovits [23]
in the more precise form established by Fradelizi-Guédon [18]. We denote
K = A + t0B

1
2 , then K is a convex body. We consider the restriction of µ0

over K, then it is a finite measure that we can assume to be a probability
measure without loss of generality. For convenience, we always denote this
measure µ0. We call P(K) the set of all probabilities whose support is in-
cluded in K. We have µ0 ∈ P(K).

Step 1: Reduction to extremal measures
Let t1, t2 ∈ (0, t0) such that µ0(A + t1B

1
2)µ0(A + t2B

1
2) > 0. We want to

show that

µ0

(

A+
t1 + t2

2
B1

2

)

≥
(

µ0(A+ t1B
1
2)

s

2
+
µ0(A+ t2B

1
2)

s

2

)

1

s

(2)

which is sufficient because of the continuity property of t 7→ µ(A+ tB1
2). We

assume t1 < t2. We set

α =

(

1

2

(

µ0(A+ t2B
1
2)

s

µ0(A+ t1B1
2)

s
+ 1

))

1

s

and

β =
µ0(A+ t2B

1
2)

µ0(A+ t1B1
2)
.

Notice that β ≥ 1. If β = 1, then t 7→ µ(A+ tB1
2) is constant on [t1, t2] and

thus s-concave. We assume thereafter that β > 1. We set

f = 1A+t2B
1
2
− β1A+t1B

1
2
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and

Pf =

{

µ ∈ P(K);µ s-concave such that

∫

f dµ ≥ 0

}

.

Notice that µ0 ∈ Pf . At last, we set

Φ(µ) = αµ(A+ t1B
1
2)− µ

(

A+
t1 + t2

2
B1

2

)

.

Inequality (2) is equivalent to

Φ(µ0) ≤ 0.

We shall prove that for every µ ∈ Pf , Φ(µ) ≤ 0. By the geometric localization
theorem [18], we get

sup
µ∈Pf

Φ(µ) = Φ(ν)

where ν is either a Dirac measure at a point x such that f(x) ≥ 0, or either a
probability measure which admits a s-affine density supported on a segment
[a, b], such that

∫

f dν = 0 and ∀x ∈ (a, b),
∫

[x,b] f dν < 0.

Step 2: s-concavity for extremal measures
- We assume that ν = δx with x such that f(x) ≥ 0. The condition f(x) ≥ 0
says that

1A+t2B
1
2
(x) ≥ β1A+t1B

1
2
(x).

Since β > 1, it follows that x /∈ A+ t1B
1
2 . Hence,

Φ(δx) = −δx
(

A+
t1 + t2

2
B1

2

)

≤ 0.

- We assume that ν admits a density ψ γ-affine with

γ =
s

1− s
,

supported in a segment [a, b], i.e. for every x in R, ψ(x) = (mx+p)
1

γ 1[a,b](x),
with m and p such that for every x ∈ [a, b], mx + p ≥ 0. Without loss of
generality, we can assume that m = 1. We also assume that ν satisfies
∫

f dν = 0 and
∫

[x,b] f dν < 0 on (a, b). We will show that

ν

(

A+
t1 + t2

2
B1

2

)

≥
(

ν(A+ t1B
1
2)

s

2
+
ν(A+ t2B

1
2)

s

2

)

1

s

.

It will follow that
Φ(ν) ≤ 0.
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In fact, we will prove the s-concavity of t 7→ ν(A+ tB1
2) on [t1, t2] by differ-

entiation. The proof will be local on [t1, t2]. The condition
∫

[x,b] f dν < 0 on

(a, b) says that for every x ∈ (a, b)

ν((A+ t2B
1
2) ∩ [x, b]) < βν((A+ t1B

1
2) ∩ [x, b]). (3)

If b /∈ A+ t1B
1
2 , then there exists x ∈ (a, b) such that (A+ t1B

1
2)∩ [x, b] = ∅.

This contradicts (3). It follows that b ∈ A + t1B
1
2 . For convenience, we

denote A for A+ t1B
1
2 . Notice that 1− γ ≥ 0 and 1 + γ ≥ 0.

Case 1: The case γ > 0.
Sub-case 1: The case a /∈ A.
Recall that b ∈ A. The set A is a disjoint finite union of intervals, then we
can assume that A = ∪N−1

i=1 [ai, bi]∪ [aN , b], with a < a1 < b1 < · · · < aN < b.
We denote V ν

A (t) = ν(A+ tB1
2). For t small enough, we get

V ν
A(t) =

N−1
∑

i=1

∫ bi+t

ai−t

(x+ p)
1

γ dx+

∫ b

aN−t

(x+ p)
1

γ dx

(V ν
A)

′(t) =
N−1
∑

i=1

(

(bi + t+ p)
1

γ + (ai − t+ p)
1

γ

)

+ (aN − t+ p)
1

γ

(V ν
A )

′′(t) =
1

γ

(

N−1
∑

i=1

(

(bi + t+ p)
1−γ
γ − (ai − t+ p)

1−γ
γ

)

−(aN − t+ p)
1−γ
γ

)

=
1

γ

(

−(a1 − t+ p)
1−γ
γ +

N
∑

i=2

(

(bi−1 + t+ p)
1−γ
γ

−(ai − t+ p)
1−γ
γ

))

≤ 0.

Hence, V ν
A is concave, which is an improvement of the result expected.

Sub-case 2: The case a ∈ A.
We can assume that A = [a, b1] ∪ · · · ∪ [aN , b], with a < b1 < · · · < aN < b.
For t small enough, we get

V ν
A(t) =

∫ b1+t

a

(x+ p)
1

γ dx+

N−1
∑

i=2

∫ bi+t

ai−t

(x+ p)
1

γ dx+

∫ b

aN−t

(x+ p)
1

γ dx

(V ν
A )

′(t) = (b1 + t+ p)
1

γ + · · ·+ (aN − t+ p)
1

γ

(V ν
A)

′′(t) =
1

γ

(

N
∑

i=2

(

(bi−1 + t+ p)
1−γ
γ − (ai − t+ p)

1−γ
γ

)

)

≤ 0.
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Hence, V ν
A is concave.

Case 2: The case γ < 0.
In the following, we use the notations

ai(t) = (ai − t+ p)
1

γ , bi(t) = (bi + t+ p)
1

γ , b = (b+ p)
1

γ .

Notice that
0 ≤ b ≤ aN (t) ≤ · · · ≤ b1(t) ≤ a1(t).

Sub-case 1: The case a /∈ A.
For t small enough, we get

V ν
A(t) =

N−1
∑

i=1

∫ bi+t

ai−t

(x+ p)
1

γ dx+

∫ b

aN−t

(x+ p)
1

γ dx

=
γ

γ + 1

(

N−1
∑

i=1

(

bi(t)
γ+1 − ai(t)

γ+1
)

+ bγ+1 − aN (t)γ+1

)

(V ν
A )

′(t) =
N−1
∑

i=1

(bi(t) + ai(t)) + aN (t)

(V ν
A )

′′(t) =
1

γ

(

N−1
∑

i=1

(

bi(t)
1−γ − ai(t)

1−γ
)

− aN (t)1−γ

)

.

We have V ν
A s-concave if and only if V ν

A (t)(V
ν
A)

′′(t) ≤ (1− s)(V ν
A )

′(t)2 if and
only if

(

N−1
∑

i=1

(

bi(t)
γ+1 − ai(t)

γ+1
)

+ bγ+1 − aN (t)γ+1

)

×
(

N−1
∑

i=1

(

bi(t)
1−γ − ai(t)

1−γ
)

− aN (t)1−γ

)

≤
(

N−1
∑

i=1

(bi(t) + ai(t)) + aN (t)

)2

.

For convenience, we write bi for bi(t) and ai for ai(t). In fact, we prove a
stronger inequality:

(

N−1
∑

i=1

(

bγ+1
i − aγ+1

i

)

+ bγ+1 − aγ+1
N

)(

N−1
∑

i=1

(

b1−γ
i − a1−γ

i

)

− a1−γ
N

)

≤
N−1
∑

i=1

(

b2i + a2i
)

+ a2N .

10



We prove this inequality by induction on N ≥ 2. For N = 2, we have to
prove

(

bγ+1
1 − aγ+1

1 + bγ+1 − aγ+1
2

)(

b1−γ
1 − a1−γ

1 − a1−γ
2

)

≤ b21 + a21 + a22. (4)

We get

(4) ⇐⇒ b1+γ
1 (−a1−γ

1 − a1−γ
2 )− a1+γ

1 (b1−γ
1 − a1−γ

2 )

+b(b1−γ
1 − a1−γ

1 − a1−γ
2 )− a1+γ

2 (b1−γ
1 − a1−γ

1 ) ≤ 0

⇐⇒ −a1−γ
2 b1+γ

1 − a1+γ
1 (b1−γ

1 − a1−γ
2 ) + b(b1−γ

1 − a1−γ
1 − a1−γ

2 )

−a1+γ
2 b1−γ

1 + a1−γ
1 (a1+γ

2 − b1+γ
1 ) ≤ 0,

and each term is non-positive.
Let N ≥ 2. We assume that

(

N−1
∑

i=1

(

bγ+1
i − aγ+1

i

)

+ bγ+1 − aγ+1
N

)(

N−1
∑

i=1

(

b1−γ
i − a1−γ

i

)

− a1−γ
N

)

≤
N−1
∑

i=1

(

b2i + a2i
)

+ a2N .

and we want to show that
(

N
∑

i=1

(

bγ+1
i − aγ+1

i

)

+ bγ+1 − aγ+1
N+1

)(

N
∑

i=1

(

b1−γ
i − a1−γ

i

)

− a1−γ
N+1

)

≤
N
∑

i=1

(

b2i + a2i
)

+ a2N+1.

Using the induction hypothesis, it is sufficient to show that

(

N−1
∑

i=1

(

bγ+1
i − aγ+1

i

)

+ bγ+1 − aγ+1
N

)

(

b1−γ
N − a1−γ

N+1

)

+
(

b1+γ
N − a1+γ

N+1

)

×
(

N−1
∑

i=1

(

b1−γ
i − a1−γ

i

)

− a1−γ
N + b1−γ

N − a1−γ
N+1

)

≤ b2N + a2N+1.

This is equivalent to

(

N−1
∑

i=1

(

bγ+1
i − aγ+1

i

)

+ bγ+1 − aγ+1
N

)

(

b1−γ
N − a1−γ

N+1

)

+
(

b1+γ
N − a1+γ

N+1

)

×
(

N−1
∑

i=1

(

b1−γ
i − a1−γ

i

)

− a1−γ
N

)

− b1+γ
N a1−γ

N+1 − a1+γ
N+1b

1−γ
N ≤ 0,

11



and each term is non-positive.

Sub-case 2: The case a ∈ A.
We have seen in case 1, sub-case 2, that for t small enough

(V ν
A)

′′(t) =
1

γ

(

N
∑

i=2

(

bi−1(t)
1−γ − ai(t)

1−γ
)

)

.

This quantity is non-positive. Hence V ν
A is concave.

It follows that V ν
A is piecewise s-concave on [t1, t2]. From Lemma 3.1, we

deduce that V ν
A is s-concave on [t1, t2]. Hence,

Φ(ν) ≤ 0.

We conclude that V µ0

A is s-concave on (0, t0).
We have already seen the s-concavity of V µ0

A on [t0,+∞). Once again
we use Lemma 3.1 to conclude that V µ0

A is s-concave on R
∗
+. Finally, by the

non-decreasing property of V µ0

A , it follows that V µ0

A is s-concave on R+.

Remark. The result obviously holds true if we replace the Euclidean ball by
any symmetric convex body of R. But it is not necessarily true for arbitrary
convex body B. For example, let 0 < s ≤ 1

2 , and consider B = [0, 1],

A = [0, 1] ∪ [2, 3] and dµ(x) = x
1

γ 1[0,3](x) dx, with γ = s
1−s

. Then, µ is a

s-concave measure. For t ∈ [0, 12) we get

V µ
A (t) = µ(A+ tB) =

γ

γ + 1

(

(1 + t)
γ+1

γ + 3
γ+1

γ − 2
γ+1

γ

)

.

Thus

V µ
A (0)(V µ

A )′′(0)− (1− s)(V µ
A )′(0)2 =

1

γ + 1

(

3
γ+1

γ − 2
γ+1

γ

)

> 0.

Hence V µ
A is not s-concave on R+. For s = 0, the same example works. For

s < 0, one can take B = [−1, 0], A = [0, 1]∪[2, 3] and dµ(x) = x
1

γ 1[a,3](x) dx,
with γ = s

1−s
and a sufficiently small.

We can’t use the geometric localization theorem for s ∈ (12 , 1), see [18].
In fact, for s ∈ (12 , 1), the answer to Problem A is negative in general but
under particular conditions, we can show a positive answer which improve
the concavity. First, let us show that the answer to Problem A is negative
in dimension 1 for s ∈ (12 , 1).

Proposition 3.3. Let s ∈ (12 , 1), thus γ = s
1−s

> 1. Let b = 10(1− 2
1−γ
γ )−1

and µ be a measure such that dµ(x) = x
1

γ 1[0,b](x)dx. We set A = [0, 1]∪[2, b].
Then, t 7→ V µ

A (t) = µ(A+ tB1
2) is not s-concave on R+.

12



Proof. For every t ∈ [0, 12),

V µ
A (t) =

γ

γ + 1

(

(1 + t)
1+γ
γ + b

1+γ
γ − (2− t)

1+γ
γ

)

,

(V µ
A )′(t) = (1 + t)

1

γ + (2− t)
1

γ ,

(V µ
A )′′(t) =

1

γ

(

(1 + t)
1−γ
γ − (2− t)

1−γ
γ

)

.

Hence,

V µ
A (0)(V µ

A )′′(0)− (1− s)(V µ
A )′(0)2=

1

γ + 1

(

b
1+γ
γ (1− 2

1−γ
γ )− 2

1−γ
γ − 2

1+2γ
γ

)

.

But γ > 1, thus 1− 2
1−γ
γ > 0 and since

b >

(

2
1+2γ

γ + 2
1−γ
γ

1− 2
1−γ
γ

)

γ
γ+1

it follows that

V µ
A (0)(V µ

A )′′(0)− (1− s)(V µ
A )′(0)2 > 0.

We conclude that V µ
A is not s-concave on R+.

We denote by supp(µ) the support of µ and by dist(A, supp(µ)c) the
distance between A and the complement of the support of µ which equal to
+∞ if the support of µ is R.

Proposition 3.4. Let s ≥ 1
2 . Let µ be a s-concave measure in R. Let A be

a compact subset of R such that dist(A, supp(µ)c)) > 0. Then the function
t 7→ V µ

A (t) = µ(A+ tB1
2) is concave on [0, dist(A, supp(µ)c)].

Proof. First, we assume that s = 1
2 . Hence µ admits a 1-concave density ψ.

Then, for t ∈ [0, dist(A, supp(µ)c)) we get

V µ
A (t) =

N
∑

i=1

∫ bi+t

ai−t

ψ(x) dx,

(V µ
A )′(t) =

N
∑

i=1

(ψ(bi + t) + ψ(ai − t)) .

Since ψ is concave, it follows that for every i ∈ {1, . . . , N}, the function
t 7→ ψ(bi+ t)+ψ(ai− t) is non-increasing. Thus (V µ

A )′ is non-increasing. We
conclude that V µ

A is concave on [0, dist(A, supp(µ)c)].
Finally, if µ is s-concave with s ≥ 1

2 , then µ is 1
2 -concave and we conclude

from the first part of the proof that V µ
A is concave on [0, dist(A, supp(µ)c)].
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We finish the study in dimension 1 with the 1-concave measures. We
assume that µ is 1-concave. Hence,

∀x ∈ R, dµ(x) = C1[a,b](x)dx

with C > 0 is a constant and [a, b] an interval of R, with a < b. Then it
follows by a direct computation that t 7→ µ(A+ tB1

2) is 1-concave on R+.

Now we study the problem A in dimension n ≥ 2. It was shown in [19]
that the Costa-Cover conjecture 1.1 is false in dimension n ≥ 2, and thus the
answer to Problem A is negative in general. Let us recall the counterexample
in the following remark:

Remark. Let n ≥ 2. We set A = Bn
2 ∪ {2e1}. Then, the function VA(t) =

|A+ tBn
2 | is not 1

n
-concave on R+.

Proof. For every t ∈ [0, 12), we get

|A+ tBn
2 | = |Bn

2 ∪ {2e1}+ tBn
2 | = |Bn

2 + tBn
2 |+ |tBn

2 | = |Bn
2 |((1 + t)n + tn).

Since the 1
n
-power of this function is not concave (it is strictly convex), VA

is not 1
n
-concave on R+ for n ≥ 2.

This could appear surprising since we get positive results in dimension 1
with the geometric localization theorem. In general, this localization theo-
rem is used to reduce a n-dimensional problem to dimension 1 (see e.g. [17]
and references therein). Let us explain why we can’t exit from dimension 1
here. The reduction done in dimension 1 with localization works the same
way in dimension n and we get the following equivalence for every compact
set A of Rn:
i) V µ

A is s-concave for every µ s-concave.
ii) V ν

A is s-concave for every ν s-affine on a segment [a, b].
However, ii) is not true in dimension n ≥ 2 since we can construct an explicit
counterexample to show that in fact the function t 7→ |(A + tBn

2 ) ∩ [a, b]|1
is not continuous and hence not s-concave. For example, consider A =
{(0, 0)} ∪ {(3, 0)} ∪ {(x, 1);x ∈ [1, 2]} and [a, b] = {(x, 0);x ∈ [0, 3]}.

In [19], it was shown that in dimension 2, t 7→ |A+ tB2
2 | is 1

2 -concave on
R+, if A is a connected subset of R2. However, the next proposition shows
that this is false in the general case of s-concave measures.

Proposition 3.5. In dimension 2, there exists a connected set A and a
1
2 -concave measure µ such that t 7→ µ(A+ tB2

2) is not 1
2 -concave on R+.

Proof. We set dµ(x) = 1B2
1
(x)dx, where B2

1 denotes the unit ball for the

ℓ21 norm. Hence, µ is 1
2 -concave. We construct the points B = (−1, 0),
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C = (−0.5,−0.5), D = (0.5, 0.5), E = (0, 1), F = (−2, 0), G = (0,−2),
H = (0,−1), I = (2, 0), J = (1, 0). We set

A = conv(BCDE) ∪ [FB] ∪ [FG] ∪ [GH] ∪ [GI] ∪ [IJ ].

Then A is connected and for every t ∈ [0, 18 ], we get

V µ
A (t) = µ(A+ tB2

2) =

√
2

2
+
√
2t+

π

2
t2.

It follows that
(

√

V µ
A

)′′

(0) > 0.

We conclude that t 7→ µ(A+ tB2
2) is not 1

2 -concave on R+.

Remark. Notice that we can adapt the counterexample of Proposition 3.5
to show that there exists, in dimension n ≥ 2, a s-concave measure µ such
that for every r ∈ (−∞; s) there exists a compact connected subset A of Rn

such that t 7→ µ(A+ tBn
2 ) is not r-concave on R+.

Question. Let µ be a s-concave measure in R
2 and A be a compact set

in R
2. Is the function µ(A + tB2

2) s-concave for the t’s such that the set
supp(µ) ∩ (A+ tB2

2) is connected ?

4 Functional version

In this section, we set the Costa-Cover conjecture into a functional version.
Let us recall the problem:

Problem B. Let γ ≥ − 1
n
. Let f : Rn → R+ be a bounded non-negative

function and g : Rn → R+ be a γ-concave function. Let

h
(γ)
t (z) = sup

z=x+ty

f(x)>0; g(y)>0

(f(x)γ + tg(y)γ)
1

γ and s =
γ

1 + γn
.

Is the function t 7→
∫

Rn h
(γ)
t (z) dz s-concave on R+?

For γ = 0, the function h
(0)
t is interpreted by continuity, i.e. for every

z ∈ R
n,

h
(0)
t (z) = sup

z=x+ty
f(x)g(y)t.

Let us notice that the problem B is a functional version of the Costa-
Cover conjecture 1.1. Indeed, let A be a non-empty compact subset of Rn.
By considering f = 1A and g = 1Bn

2
, we get

1A(x)1Bn
2
(y) =

{

1 if x ∈ A and y ∈ Bn
2

0 otherwise

15



so for every z ∈ R
n, h

(0)
t (z) = 1A+tBn

2
(z). Then,

∫

Rn

h
(0)
t (z) dz = |A+ tBn

2 |.

As in section 3 where Problem A was solved for convex sets, the next
proposition shows that Problem B is solved for γ-concave functions, as it is
natural to expect.

Proposition 4.1. Let γ ≥ − 1
n
. Let f, g : R

n → R+ be two γ-concave

functions. Then the function t 7→
∫

Rn h
(γ)
t (z) dz is s-concave on R+, where

h
(γ)
t (z) = sup

z=x+ty

f(x)>0; g(y)>0

(f(x)γ + tg(y)γ)
1

γ and s =
γ

1 + γn
.

Proof. For convenience, we denote ht = h
(γ)
t . Let λ ∈ [0, 1] and t1, t2 ∈ R+.

We want to show that

∫

Rn

h(1−λ)t1+λt2 ≥
(

(1− λ)

(
∫

Rn

ht1

)s

+ λ

(
∫

Rn

ht2

)s) 1

s

.

From the Borell-Brascamp-Lieb inequality [8],[10] (dimensional Prékopa’s
inequality), it is sufficient to show that

∀ y1, y2 ∈ R
n, h(1−λ)t1+λt2((1−λ)y1+λy2) ≥ ((1− λ)ht1(y1)

γ + λht2(y2)
γ)

1

γ .

Let y1, y2 ∈ R
n and λ ∈ [0, 1]. We write for i ∈ {1, 2},

hti(yi) = sup
yi=x+tiy

(f(x)γ + tig(y)
γ)

1

γ = sup
x∈Rn

(

f(x)γ + tig

(

yi − x

ti

)γ) 1

γ

.

Let x1, x2 ∈ R
n such that

∀i ∈ {1, 2}, hti(yi) =
(

f(xi)
γ + tig

(

yi − xi
ti

)γ) 1

γ

.

We denote

h = h(1−λ)t1+λt2((1− λ)y1 + λy2) and t = (1− λ)t1 + λt2.
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We get

h = sup
x∈Rn

(

f(x)γ + tg

(

(1− λ)y1 + λy2 − x

t

)γ) 1

γ

≥
(

f((1− λ)x1 + λx2)
γ + tg

(

(1− λ)y1 + λy2 − ((1− λ)x1 + λx2)

t

)γ) 1

γ

=

(

f((1− λ)x1 + λx2)
γ + tg

(

(1− λ)t1
t

y1 − x1
t1

+
λt2
t

y2 − x2
t2

)γ) 1

γ

≥
(

(1− λ)f(x1)
γ +λf(x2)

γ + (1− λ)t1g

(

y1 − x1
t1

)γ

+λt2g

(

y2 − x2
t2

)γ)1

γ

= ((1− λ)ht1(y1)
γ + λht2(y2)

γ)
1

γ .

Borell showed in [8] that if f : Rn → R+ is β-concave and g : Rn → R+

is γ-concave, then fg is α-concave for every α, β, γ ∈ R ∪ {+∞} such that
β + γ ≥ 0 and 1

β
+ 1

γ
= 1

α
. A generalized form of Proposition 4.1 follows:

Proposition 4.2. Let γ ≥ − 1
n
. If a measure µ has a β-concave density,

with β ≥ −γ, and if f, g : R
n → R+ are two γ-concave functions, then

t 7→
∫

Rn h
(γ)
t (z) dµ(z) is s-concave on R+, with s = α

1+αn
, where 1

β
+ 1

γ
= 1

α
.

Before starting the study of Problem B for general function f , let us rely

h
(γ)
t with the Hopf-Lax solution of the Hamilton-Jacobi equation. Since by

assumption g is γ-concave, hence for γ ∈ (− 1
n
; 0), gγ = V , with V a convex

function, which extends to γ = 0. It follows that

h
(γ)
t (z) = sup

x∈Rn

(

f(x)γ + tV

(

z − x

t

))
1

γ

=
(

Q
(V )
t fγ(z)

)
1

γ
,

where for arbitrary convex function V and arbitrary function u,

Q
(V )
t u(z) = inf

x∈Rn

(

u(x) + tV

(

z − x

t

))

.

We assume that

lim
|z|→+∞

V (z)

|z| = +∞.

For Lipschitz continuous function u, it is known (see e.g. [16]) that Q
(V )
t u

is the solution, called Hopf-Lax solution, of the following partial differential
equation, called Hamilton-Jacobi equation:

{

∂
∂t
h(t, z) + V ∗(∇h(t, z)) = 0 on (0,+∞)× R

n

h(t, z) = u(z) on {t = 0} × R
n ,
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where V ∗ is the Legendre transform of V defined on R
n by

V ∗(y) = sup
x∈Rn

(< x, y > −V (x)).

It is shown in [16] that if u is Lipschitz continuous on R
n then Q

(V )
t u is

Lipschitz continuous on [0,+∞)×R
n. However, for arbitrary convex function

V , t 7→ Q
(V )
t u is not necessarily continuous on 0.

Let us show partial positive answer to Problem B in dimension 1. In
fact, in dimension 1, we can improve the concavity:

Theorem 4.3. Let γ ∈ (−1; 0]. Let f : R → R+ be a Lipschitz continuous

non-negative function. Define, for every y ∈ R, V (y) = |y|p

p
, with p ≥ 1.

Then the function t 7→
∫

R
h
(γ)
t (z) dz is concave on R+, where

h
(γ)
t (z) = sup

z=x+ty

f(x)>0; V (y)>0

(f(x)γ + tV (y))
1

γ and h
(0)
t (z) = sup

z=x+ty
f(x)e−tV (y).

Proof. We denote for t ∈ R+,

F (t) =

∫

R

h
(γ)
t (z) dz.

We assume γ 6= 0, the case γ = 0 follows by continuity. For p = 1, the
function F is constant. We then consider p > 1. We have seen above that

h
(γ)
t (z) =

(

Q
(V )
t fγ(z)

)
1

γ
.

For convenience, we set h(t, z) = Q
(V )
t fγ(z) and h′ = ∂

∂z
g. Under regularity

assumption, we get by a direct computation that

F ′(t) = −1

γ

∫

R

V ∗
(

h′
)

h
1−γ
γ ,

F ′′(t) =
1

γ

∫

R

h′′
(

(V ∗)′(h′)
)2
h

1−γ
γ +

1− γ

γ2

∫

R

(V ∗(h′))2h
1−2γ

γ .

We assumed that V (u) = |u|p

p
. Hence V ∗(u) = |u|q

q
, with 1

p
+ 1

q
= 1. It

follows that

F ′′(t) =
1

γ

∫

R

h′′(h′)2q−2h
1−γ
γ +

1− γ

γ2

∫

R

(h′)2

q2
h

1−2γ
γ .

Integration by parts gives

1

γ

∫

R

h′′(h′)2q−2h
1−γ
γ = −2q − 2

γ

∫

R

h′′(h′)2q−2h
1−γ
γ − 1− γ

γ2

∫

R

(h′)2qh
1−2γ

γ .

18



Then
2q − 1

γ

∫

R

h′′(h′)2q−2h
1−γ
γ = −1− γ

γ2

∫

R

(h′)2qh
1−2γ

γ .

Finally,

F ′′(t) = −1− γ

γ2
(q − 1)2

∫

R

(h′)2qh
1−2γ

γ ≤ 0.

We conclude that t 7→
∫

R
h
(γ)
t (z) dz is concave on R+.

Question. Problem B is open in dimension 1 for arbitrary γ-concave func-
tion g.

5 Links with weighted Brascamp-Lieb-type inequal-

ities

Recall that for γ < 0, h
(γ)
t (z) =

(

Q
(gγ)
t fγ(z)

)
1

γ
, where for arbitrary convex

function V and arbitrary function u,

Q
(V )
t u(z) = inf

x∈Rn

(

u(x) + tV

(

z − x

t

))

.

Proposition 5.1. Let γ ∈ (− 1
n
, 0) and s = γ

1+γn
. Denote V = gγ. The

function F : t 7→
∫

Rn h
(γ)
t (z) dz is s-concave if and only if

V arµ (G) ≤ − γ

1− γ

∫

< (HessQ
(V )
t fγ)(∇V ∗)(∇Q(V )

t fγ), (∇V ∗)(∇Q(V )
t fγ) >

Q
(V )
t fγ

dµ

+
γ − s

1− γ

(
∫

G dµ

)2

,

where

dµ(z) =
(Q

(V )
t fγ(z))

1

γ

∫

(Q
(V )
t fγ)

1

γ

dz and G =
V ∗(∇Q(V )

t fγ)

Q
(V )
t fγ

.

Proof. To prove the s-concavity of the function F : t 7→
∫

Rn h
(γ)
t (z) dz, it is

a natural idea to proceed by differentiation. We have seen above that

h
(γ)
t (z) =

(

Q
(V )
t fγ(z)

)
1

γ
,

where for arbitrary convex function V and arbitrary function u,

Q
(V )
t u(z) = inf

x∈Rn

(

u(x) + tV

(

z − x

t

))

.
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For convenience, we set φ = fγ andQt = Q
(V )
t . Under regularity assumption,

we get by a direct computation

∂

∂t
h
(γ)
t = −1

γ
V ∗(∇Qtφ)(Qtφ)

1−γ
γ ,

∂2

∂t2
h
(γ)
t =

1

γ
< (HessQtφ)(∇V ∗)(∇Qtφ), (∇V ∗)(∇Qtφ) > (Qtφ)

1−γ
γ

+
1− γ

γ2
(V ∗(∇Qtφ))

2(Qtφ)
1−2γ

γ .

Thus the function F is s-concave if and only if F (t)F ′′(t) ≤ (1− s)F ′(t)2 if
and only if

V arµ (G) ≤ − γ

1− γ

∫

< (HessQtφ)(∇V ∗)(∇Qtφ), (∇V ∗)(∇Qtφ) >

Qtφ
dµ

+
γ − s

1− γ

(
∫

G dµ

)2

,

where

dµ(z) =
(Qtφ(z))

1

γ

∫

(Qtφ)
1

γ

dz and G =
V ∗(∇Qtφ)

Qtφ
.

Remark. For γ = 0 and V (u) = |u|2

2 , we get that t 7→
∫

Rn h
(0)
t (z) dz is

log-concave if and only if

V arµ(|∇Qtφ|2) ≤ 4

∫

< (HessQtφ)∇Qtφ,∇Qtφ > dµ,

where φ = − log f and

dµ(z) =
e−Qtφ(z)

∫

e−Qtφ
dz.

Question. For which functions u the following inequality holds?

V arµ(|∇u|2) ≤ 4

∫

< (Hess u)∇u,∇u > dµ

where

dµ(z) =
e−u(z)

∫

e−u
dz.

From Proposition 4.1, if f is γ-concave then the inequality of Propo-
sition 5.1 is true and we get the following weighted Brascamp-Lieb-type
inequality by tending t to 0:
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Corollary 5.2. Let γ ∈ (− 1
n
, 0) and s = γ

1+γn
. For every V, φ : Rn → R+

convex such that lim|z|→+∞ V (z)/z = +∞, we get

V arµ(G) ≤ − γ

1− γ

∫

< (Hessφ)−1∇Gφ,∇Gφ >
φ

dµ+
γ − s

1− γ

(
∫

G dµ

)2

, (5)

where dµ(z) = φ
1
γ (z)

∫
φ

1
γ
dz and G = V (∇φ)

φ
.

We reproved a result of Bobkov and Ledoux in [5] (for a smaller class of
function G) who used the same idea since the inequality (5) is derived from
the Borell-Brascamp-Lieb inequality (dimensional Prékopa inequality) but
using a more suitable function instead of the Hopf-Lax solution we used. In
fact, Bobkov and Ledoux already noticed in [4] that one can deduce the clas-
sical Brascamp-Lieb inequality from the classical Prékopa inequality (corre-
sponding to the log-concave case). This idea has been explored by Cordero-
Erausquin and Klartag in [12] where they showed that in fact the converse
is true, i.e. we can derive the Prékopa inequality from the Brascamp-Lieb
inequality. More recently, Nguyen in [26] generalized the work of Cordero-
Erausquin and Klartag in the case of γ-concave measure (even for γ ≥ 0)
and improved the Brascamp-Lieb-Type inequality of Bobkov-Ledoux (in-
equality (5)).
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