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and the term structure of interest rates∗
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Abstract

We analyse the term structure of interest rates in a general equilibrium model with incom-

plete markets, borrowing constraint, and positive net supply of government bonds. Uninsured

idiosyncratic shocks generate bond trades, while aggregate shocks cause fluctuations in the

trading price of bonds. Long bonds command a “liquidation risk premium”over short bonds,

because they may have to be liquidated before maturity —following a bad idiosyncratic shock—

precisely when their resale value is low —due to the simultaneous occurrence of a bad aggre-

gate shock. Our framework endogenously generates limited cross-sectional wealth heterogeneity

among the agents (despite the presence of uninsured idiosyncratic shocks), which allows us to

characterise analytically the shape of the entire yield curve, including the yields on bonds of

arbitrarily long maturities. Agents’desire to hedge the idiosyncratic risk together with their

fear of having to liquidate long bonds at unfavourable terms imply that a greater bond supply

raises the level of the yield curve, while an increase in the relative supply of long bonds raises

its slope.
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1 Introduction

This paper analyses the term structure of real interest rates in an infinite-horizon, general equilib-

rium framework in which agents are hit by aggregate shocks, as well as idiosyncratic shocks that

cannot be fully insured due to incomplete markets and borrowing constraint. On the one hand,

uninsured idiosyncratic shocks generate bond trades —as traders willing to buy bonds for precau-

tionary purposes purchase them from traders willing to sell to buffer the shocks. On the other

hand, aggregate shocks cause fluctuations in bond prices, and hence induce some volatility in the

terms at which bond trades take place.

The key novelty of our approach is the construction of a tractable equilibrium allowing for

an analytical characterisation of the entire yield curve (from one-period to arbitrarily long bonds),

while accomodating active trades of positive net bond supplies at all maturities. Tractability follows

from two main underlying assumptions, which jointly ensure that the model generates a finite-

dimensional cross-sectional distribution of wealth as an equilibrium outcome.1 The first assumption

is that agents’instant utility is separable in consumption and labour and linear in labour (as in,

e.g., Scheinkmann and Weiss (1986)). As we show, endogenous labour supply with quasi-linear

preferences implies that agents entering the good idiosyncratic state (“employment”) are willing

to work as much as necessary to instantaneously replete their bond portfolio; in consequence,

bond holdings are homogeneous across agents in that state —and independent of their history of

idiosyncratic states. The second assumption is that equilibrium bond holdings are suffi ciently small

for agents entering the bad idiosyncratic state (“unemployment”) to be willing to liquidate their

asset wealth in a small number of periods. The reason is that, under transitory idiosyncratic shocks,

agents in the bad idiosyncratic state may be willing to borrow against future income, in which case

they hit the borrowing constraint. Agents in this situation simply liquidate their bond portfolio

and, by way of consequence, no longer affect bond prices. We focus on the equilibria with “full

asset liquidation”, where small equilibrium bond holdings in the first place ensures that agents

immediately face a binding borrowing constraint when hit by a bad idiosyncratic shock.2

The theoretical investigation of the model shows that, in this framework i) a higher net supply

of government bonds of any maturity —financed by lump-sum taxes—raises the level of the entire

yield curve; ii) a higher net supply of long bonds raises the slope of the yield curve —where we

define the “slope” as the yield difference between the two ends of the curve.3 The first effect

(on the level of the curve) can be seen as a generalisation to the full set of bond maturities of a

1This is in contrast with most incomplete market economies, where any agent’s wealth depends on his entire own
history of idiosyncratic shocks, so that infinitely many agent types ultimately coexist in the economy. Such models
must be solved numerically and can accomodate only a small number of assets, typically one or two (e.g., Den Haan
(1996), Heaton and Lucas (1996), Krusell and Smith (1997), Heathcote (2005)).

2 In the separate technical appendix to the paper, we study numerically a relaxed model wherein asset liquidation
is gradual rather than immediate, and confirm all the results obtained in the case of instantaneous asset liquidation.

3Empirically, Laubach (2009) reports that higher levels of public debt or larger fiscal deficits significantly raise real
interest rates. Relatedly, Krishnamurthy and Vissing-Jorgensen (2012) show that the size of public debt negatively
affects the spread between corporate and Treasury bond yields, a reflection of the presence of a “Treasury demand
function”. The work of Engen and Hubbard (2005), Gale and Orszag (2003) and Longstaff (2004) point toward a
similar relationship.
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common implication of non-Ricardian economies, according to which an increase in the supply of

assets available for self-insurance lowers the price of such assets and raises their expected return.4

The identification of the second effect (on the slope of the yield curve) is our central substantive

result and can be explained as follows. Under aggregate and uninsured idiosyncratic shocks, holders

of long bonds are exposed to a specific source of risk, namely, that of having to sell bonds —due to

the occurrence of a bad idiosyncratic shocks—precisely at a time when the resale value of bonds

is low —because the aggregate state is itself unfavourable. Decreasing marginal utility implies that

the utility loss incurred when selling at a low price is not compensated by the potential benefit

from selling bonds at high prices. More formally, the source of risk that we identify results from

the covariance between the resale price of long bonds and bondholders’wealth. Under incomplete

insurance and active trading, bondholders’wealth explicitly enters future marginal utility, because

it determines what consumption can be achieved, should part or all of their bond wealth be liqui-

dated (after a bad idiosyncratic shock). In this case, the combination of aggregate and uninsured

idiosyncratic shocks generates negative co-movements between bondholders’pricing kernel and the

trading price of long bonds, which consequently depresses their average prices —i.e., it raises their

average yields. These co-movements being driven by the trading price of bonds, they are present

even if the bonds’own income is riskless, as we assume it to be (by considering zero-coupon bonds

paying a certain terminal payoff). In contrast to long bonds, one-period bonds are never resold,

implying no such co-movements and no such risk. We refer to the risk of having to liquidate long

bonds at uncertain future resale prices as liquidation risk, and to the associated yield premium as

the liquidation risk premium. By linking the yield premium on long bonds to the degree of certainty

at which bonds of different maturities can be converted into consumption, our model provides a

possible foundation for the notion that investors prefer short to long bonds because the former are

more “liquid”than the latter.

Under which conditions do long yields incorporate a liquidation risk premium, and how does the

latter vary with the net supply of bonds? Trivially, there is no liquidation risk without aggregate

shocks, since in this case all bond prices are constant —and hence do not covary with bondholders’

wealth. Similarly, there is no such risk under complete markets, because full risk sharing implies

that agents never have to sell bonds after a bad idiosyncratic shock. More subtly, when markets are

incomplete but the equilibrium features no trade —a popular specification—5, bond prices and yields

typically differ from their complete-market counterparts, but again agents never actually rebalance

their portfolio (by the no-trade property) and hence no liquidation risk is present. It follows that

aggregate risk, uninsured idiosyncratic risk and positive net supplies of long bonds are all needed

for the liquidation risk premium to kick in. Under these conditions, the greater the supply of long

bonds, the greater the (negative) covariance between bondholders’pricing kernel and the resale

price of long bonds, and the greater the liquidation risk premium that these bonds command.

4For example, the level effect on interest rates is a standard property of overlapping-models, which we discuss
further in the literature review below.

5Constantinides and Duffi e (1996), and more recently Krusell et al. (2011) analyse equilibrium asset prices in the
no-trade equilibria of incomplete-market economies. We return to these contributions in the literature review below.
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In order to best disentangle the respective roles of aggregate risk, idiosyncratic risk and bond

supplies in affecting the shape of the yield curve, we proceed gradually as follows. We first char-

acterise the yield curve in a complete-market version of our model, where the demand for bonds

is only driven by the representative agent’s desire to hedge the aggregate risk. We notably verify

that the yield curve is “well behaved”in this scenario and, in particular, that it is consistent with

Ricardian equivalence in that the yield curve is independent of the net supply of bonds. Starting

from this benchmark, we study how the shape of the yield curve changes when insurance markets

against the idiosyncratic risk are shut down, while bonds of all maturities are kept in zero net

supply. Because private agents cannot themselves have negative asset wealth (by assumption), the

outcome is a no-trade equilibrium wherein agents’demands for bonds are driven by their desire

to hedge the aggregate risk and the idiosyncratic risk (with bond prices adjusting up to the point

where net demands are all equal to zero). This environment shows that the two hedging motives

for holding bonds interact in a nontrivial way, and typically affect the two ends of the yield curve

differently.6 Finally, starting from this incomplete-market, zero-net-supply case, we analyse how

a gradual increase in bond supplies alters the shape of the yield curve, leading to the level and

slope effects discussed above. For each of these environments (complete markets, incomplete mar-

kets/zero net supply, incomplete markets/positive net supply), we show how changes in the deep

parameters of the model affect the level and the volatility of the pricing kernel that determines

all bond prices. In particular, for the two cases where markets are incomplete, we structure our

discussion around a factorisation of the pricing kernel in the spirit of Constantinides and Duffi e

(1996) and Krueger and Lustig (2010), which allows us to disentangle how the two hedging motives

interact and ultimately affect the shape of the curve. In all three specifications, we also derive

explicit formulas for the long and the average short yield in the case of small, i.i.d. aggregate

shocks, where the various effects at work on those yields are perfectly transparent.

In what follows, we first discuss the related literature (Section 2), then introduce our model

(Section 3), and finally analyse the shape of the yield curve under the three configurations just

discussed (Section 4). We conclude the paper with a brief summary of our results (Section 5).

2 Related literature

Because of their inherently non-Ricardian nature, overlapping generations (OLG) models have

frequently been used to study the effect of fiscal policy on the real yield curve. For example,

even simple OLG models with two or three-period lived agents typically have the property that

increasing the stock of government bonds can raise the equilibrium interest rate when agents are

constrained by the supply of stores of value in the economy (Barro (1974)). Our framework and

results differ from such simple OLG models in the following respects. First, these models are

useful for analysing the long-run, demographic determinants of the yield curve (see, e.g., Guibaud,

6 In particular, we show that time-variations in idiosyncratic risk can in itself raise the term premium (even under
zero net bond supply), in the same vein as Mankiw (1986) showed that it could raise the equity premium.
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Nosbusch and Vayanos (2013)); however, they are arguably ill-suited for capturing the bond price

risk that occurs at the much shorter business cycle frequency, and on which our analysis focuses.

Second, there is no continuity between such simple OLG models and the frictionless, Ricardian

benchmark, so that the degree of departure from the latter environnement cannot be perfectly

controlled; in contrast, our framework nests both the Ricardian model and a version of the simple

OLG model as special cases.7 On the other hand,“perpetual youth”model of the kind studied

by Blanchard (1985), Weil (1989) and more recently Gârleanu and Panageas (2012), retain the

tractability of simple OLG models and do nest the Ricardian benchmark (when the birth and

death rates are both set to zero). However, there is no liquidiation risk in these models, because

agents never have to liquidate their portolio to provide for current consumption (instead wealth is

either kept for ever as in Weil, or seized at death and redistributed to the living according to an

actuarially fair life insurance scheme as in Blanchard). Finally, while finite-life, multi-period OLG

models have realistic time scales and can in principle allow for random liquidation before death,

they typically cannot be solved in closed form and thus the number of assets under scrutiny must

remain small (e.g., Storesletten, Telmer, and Yaron (2007), Gomes and Michaelides (2008)).

The idea that uninsured idiosyncratic risk can help explain asset-pricing puzzles was first ex-

plored in finite-horizon economies. Following the lead of Mankiw (1986) and Weil (1992), who

focused on stock returns, Heaton and Lucas (1992), and more recently Holmström and Tirole

(2001), have used three-period models to analyse the effects of the interactions between idiosyn-

cratic and aggregate risks on the yield curve. These models provide important insights into these

interactions, and usually allow for positive asset supplies and active trades among heterogenous

agents; however, they leave open the question of how they affect the yield curve over a long horizon.

There is a key class of infinite-horizon, incomplete-market models where analytical expressions

for the price of long assets can be obtained: those where the no-trade equilibrium prevails. Such

is the case in Constantinides and Duffi e’s (1996) model of the equity premium, where the no-trade

property follows from the fact that idiosyncratic shocks are permanent. A more recent contribution

is Krusell, Mukoyama, and Smith (2011), who study asset prices in the autarkic equilibrium of an

incomplete-market model with transitory idiosyncratic shocks. In their model agents value assets

(including bonds of different maturities) for their ability to transfer wealth across periods and

smooth out idiosyncratic income shocks, but do not trade in equilibrium. In contrast, since our

focus is on how the quantity of assets available in the market allows this intertemporal smoothing

to take place, and thereby affects the desirability and equilibrium price of bonds, our results require

active trading of positive net bond quantities following idiosyncratic shocks.

As discussed by Kehoe and Levine (2001), there are two main classes of infinite-horizon economies

with limited risk-sharing: “liquidity-constrained” economies which, like ours, feature incomplete

markets and, typically, an exogenous debt limit; and “debt-constrained” economies, which have

7To be more specific: our model becomes a frictionless, representative-agent economy when the probability to be
hit by a bad idiosyncratic shock is set to zero, and is observationally equivalent to a version of the OLG model with
two period lived agents when this probability is set to one.
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complete markets but an endogenous debt limit in that agents can only borrow up to the point

where they will be willing to repay (rather than revert to autarky). Following Kehoe and Levine

(1993) and Alvarez and Jermann (2000), Seppälä (2004) studies the yield curve in a debt-constrained

economy where the debt limit varies endogenously over time, and shows numerically that this frame-

work generates time-varying term premia.8 There are at least two important differences between

his approach and ours. First, he does not analyse the impact of the volume and maturity struc-

ture of public debt on the shape of the yield curve, which is the main focus of our paper. And

second, we combine borrowing constraint and incomplete insurance against idiosyncratic shocks,

which leads us to emphasise the liquidity role played by government bonds (a notion that is absent

from debt-constrained economies) and the way it generates supply effects on the shape of the yield

curve.

In a recent line of research, Vayanos and Vila (2009), and Greenwood and Vayanos (2010)

formalise the notion of “preferred habitat” in an environment with limited arbitrage. They use

a partial equilibrium model wherein some investors have a preference for specific maturities, and

analyse how exogenous variations in the short rate are transmitted to long rates by arbitrageurs.

There are at least two important differences between their approach and ours. First, their frame-

work does not allow studying the impact of public debt on the level of the yield curve (as opposed

to its slope), since short rates are exogenous; in contrast, we are interested in how public debt

affects the whole curve, including its short end. Second, all agents are utility-maximising in our

framework, so that investors’preference for some maturities and the sensitivity of the yield curve

to the maturity structure of the debt are both endogenously determined by agents’pricing kernel.

In order to organise their empirical findings, Krishnamurthy and Vissing-Jorgensen (2012) de-

velop a theoretical model of liquidity demand that generates a downward-sloping demand for gov-

ernment bonds, as does our model. The key difference between their approach and ours is that

their aggregate demand for liquidity is based on the assumption that government bonds directly

enter agents’utility, while our model provides a foundation for the liquidity motive for holding

bonds based on financial frictions.

Finally, a popular approach in interest rate modelling is to assume the absence of arbitrage and

directly considers an exogenous pricing kernel to price bonds of various maturities (see Dai and

Singleton (2006) for an overview). Some recent papers following this tradition introduce macro-

economic factors as determinants of the pricing kernel (see Ang and Piazzesi (2003) on monetary

policy, and Dai and Philippon (2006) on fiscal policy). In contrast, we build a general equilib-

rium model with utility-maximizing agents where the pricing kernel is endogenously determined by

agents’utility function together with the financial frictions they face.

8 In the separate technical appendix to this paper, we show that our framework also generates time-varying risk
premia, so that the Expectations Hypothesis does not hold. Krueger and Perri (2011) study fiscal policy in a debt-
constrained economy, but do not introduce public debt nor study the shape of the yield curve.
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3 The model

We consider a discrete-time economy with a single consumption good and populated by a con-

tinuum I = [0, 1] of infinitely-lived agents who face two sources of risk: an aggregate shock that

affects the productivity of employed agents as well as the probability to be employed (Section 3.1);

and an uninsurable individual shock that causes households to switch idiosyncratically between

employment and unemployment (Section 3.2). The government issues and rolls over positive stocks

of zero-coupon bonds of different maturities, and adjust taxes so as to maintain a given maturity

structure of the debt (Section 3.3). Agents optimally hold and trade these bonds, in part to self-

insure against the income variability induced by changes in their employment status (Section 3.4).

In equilibrium, the supply of bonds of each maturity must be equal to the economywide demands

for each maturity by heterogeneous agents (Section 3.5).

3.1 Aggregate states

The economy is characterized at every date t = 0, 1, . . . by an aggregate state st, where st = h if

this state is “high”and st = l if it is “low”. Let st = {s0, . . . , st} denote the history of aggregate
states from date 0 to date t and St the set of all possible histories. The aggregate state evolves

according to a first-order Markov chain with transition matrix

T =

[
πh 1− πh

1− πl πl

]
. (1)

We denote by ηh ≡
(
1− πl

)
/
(
2− πl − πh

)
and ηl ≡ 1− ηh the unconditional fractions of time

spent in state h and l, respectively. We also make the following assumption:9

Assumption A (Persistence of aggregate state). πh + πl ≥ 1.

While not necessary for most of our results, Assumption A allows us to focus our analysis on the

empirically relevant case where conditional yield curves are monotonic in both states of the world

(see Section 4 below). Without this assumption the yield curve may be oscillating in either state

or both, a feature that is not observed in the data.10 We assume that the probability distribution

across aggregate states at date 0 is
[
ηl, ηh

]
, and we denote by νt : St → [0, 1] (t = 0, 1, . . .) the

probability measure over aggregate histories up to date t, consistent with the transition matrix T

and the initial distribution.
9 In what follows, the assumptions we make start holding as soon as they are stated.
10This assumption is also supported by direct evidence from estimated empirical Markov-switching business cycle

models. For example, Hamilton ((1994), chap. 22) finds πh+πl = 1.65 at a quarterly frequency for the US economy.
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3.2 Individual states

In every period, each agent can be in either of two states, “employed” or “ unemployed”. Let

eit denote the employment status of agent i at date t, where e
i
t = 1 if the agent is employed and

eit = 0 if the agent is unemployed. Denote by αt
(
st
)

: St → [0, 1], t = 0, 1, . . . the probability

for an agent to be employed at date t when he or she was employed at date t− 1 and the history

of the aggregate shock is st ∈ St, i.e., αt
(
st
)
≡ Pr(eit = 1

∣∣ eit−1 = 1, st). Similarly, denote by

ρt : St → [0, 1], t = 0, 1, . . . the probability for an agent who was unemployed at date t− 1 to stay

unemployed at date t, i.e., ρt
(
st
)
≡ Pr(eit = 0

∣∣ eit−1 = 0, st). The implied transition matrix across

employment statuses is

Πt

(
st
)

=

[
αt
(
st
)

1− αt
(
st
)

1− ρt
(
st
)

ρt
(
st
) ]

.

All idiosyncratic changes in employment statuses are independent across agents and the law of

large number holds on the continuum of agents. The history of individual shocks up to date t is

denoted by ei,t, where ei,t = {ei0, . . . , eit} ∈ {0, 1}t = Et. Et is the set of all possible individual

histories up to date t, and µit : Et → [0, 1] denotes the probability measure of individual histories,

consistent with the transition matrix Πt and an initial probability distribution ω0. For example,

µit
(
ei,t
)
is the probability that agent i has experienced the individual history ei,t up to date t.

The individual and aggregate states affect the economy as follows. Employed agents (for whom

eit = 1) freely choose their labour supply and produce zst units of the (single) consumption good

per unit of labour supplied in state st = h, l, with zh ≥ zl > 0.1112 Unemployed agents (for whom

eit = 0) get a fixed “home production”income δ > 0. We now make the following assumptions:

Assumption B (Productivity and idiosyncratic risk). (i) 1/zl < u′ (δ) ; (ii) αh ≥ αl and ρh ≤ ρl.

Point (i), combined with the fact that zh ≥ zl, will imply that in equilibrium the employed will

effectively consume more (and hence enjoy lower marginal utility) than the unemployed in both

aggregate states —that is, the equilibrium will feature imperfect consumption insurance. Point (ii)

states that aggregate state h, which is associated with a relatively high labour productivity for the

employed, is not associated with a greater probability of facing a bad idiosyncratic shock (i.e., the

probability of falling into unemployment, 1− αs, or to stay unemployed, ρs).13

11Hence, employed agents are self-employed here. This specification is formally similar to one in which employed
agents supply labour in a competitive labour market and interact with firms endowed with the constant-return-to-
scale production function yst = zst l. Then, in equilibrium firms make no profit and employed agents’earn a wage
equal to the marginal product of labour, zst .
12Many authors, ranging from Mehra and Prescott (1985) to Alvarez and Jermann (2000), have analysed endowment

economies that are stationary in growth rates, rather than in levels as we do. We adopt the level specification because
our economy is a production one with endogenous labour supply and a period utility functional that is separable
in consumption and leisure. In this context, stationarity in the growth rate of labour productivity is inconsistent
with balanced growth, except for the somewhat specific case where the utility of consumption is logarithmic. In the
separate technical appendix to the paper we analyse a growth-stationary variant of the model with log consumption
utility that retains the main properties of our baseline level-stationary model.
13 In short, this assumes that unemployment risk does not rise in a boom. Note that even in the case where
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The date 0 distribution of agents over employment statuses is represented by a row vector

ω0 = [ωe0 ω
u
0 ], where ωe0 (ω

u
0) is the share of employed (unemployed) agents and ω

e
0 + ωu0 = 1. The

laws of motion for the shares of employed and unemployed agents are given by, respectively,

ωet (s
t) = αt(s

t)ωet−1(st−1) +
(
1− ρt(st)

)
ωut−1(st−1), (2)

ωut (st) =
(
1− αt(st)

)
ωet−1(st−1) + ρt(s

t)ωut−1(st−1). (3)

3.3 Government

The government issues and rolls over riskless, zero-coupon bonds of various maturities that pay off

one unit of the good at maturity. Bond maturities vary from 1 to n ≥ 1, where n may be arbitrarily

large. A bond of maturity k > 1 at date t becomes a bond of maturity k − 1 at date t + 1, and

eventually yields one unit of the consumption good at date t+ k. The date t price of this bond in

terms of the consumption good is pt,k(st), and we define the price of a bond of maturity 0 by its

payoff, i.e., pt,0(st) = 1. The yield-to-maturity of a bond with maturity k = 1, . . . , n in history st

is defined by the usual logarithmic expression, i.e., rt,k(st) = −k−1 ln pt,k(s
t).

There is no public consumption, so government outlays exactly equal the total payoff owed to

the holders of bonds that are reaching maturity. At any date t, bonds issued at dates t−1, t−2,. . . ,

t− n with respective maturities 1, 2,. . . , n reach maturity. Bond payoffs are financed by both new

bond issues and taxes. More specifically, at every date t, a quantity At,k
(
st
)
of bonds paying 1

at date t + k is issued at price pt,k(st), while a lump-sum tax on all employed agents, τ t
(
st
)
, is

collected. Hence, the government budget constraint is:

n∑
k=1

pt,k
(
st
)
At,k

(
st
)

+ ωet
(
st
)
τ t
(
st
)

=
n∑
k=1

At−k,k
(
st−1

)
. (4)

We restrict our attention to the case where the government issues the same quantity of k-period

bonds in every period (i.e. At,k
(
st
)

= Ak, ∀t ≥ 0), which implies that the overall quantity of bonds

Bk of a given maturity k is also constant (i.e. Bk =
∑n−k

j=0 Ak+j , for any k ≥ 1). The quantity Bk

is composed of newly issued bonds of maturity k and of bonds issued earlier and coming closer to

maturity. The lump sum tax paid by employed agents adjusts endogenously to satisfy (4) and is

given by

τ t(s
t) =

1

ωet (st)

n∑
k=1

(
pt,k−1(st)− pt,k(st)

)
Bk, (5)

As will become clear below, positing that only the employed are taxed in our baseline speci-

fication allows us to better isolate the liquidation risk premium on long bonds in the theoretical

part of the paper. As we establish formally in the separate technical appendix, the effect of bond

volumes on the yield curve are similar when the unemployed are also taxed.

transition rates are constant (i.e., αs = α and ρs = ρ for s = l, h) there will be some (procyclical) variations in
idiosyncratic risk, because the labour income of the unemployed (δ) will be less cyclical than that of the employed.
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3.4 Agents’behaviour

Each agent i ∈ I has preferences over consumption and labour that are described by the subjective
discount factor β ∈ (0, 1) and the instant utility function u (c)− l, where c is consumption, l labour
supply and u is a C2 function satisfying u′ (.) > 0, and u′′ (.) < 0 (this follows Scheinkmann and

Weiss (1986)). Asset markets are incomplete, in that zero-coupon government bonds are the only

assets that agents can trade. This implies that, first, there is no asset providing a payoff contingent

on agents’idiosyncratic employment status (i.e., unemployment risk is uninsurable); and second,

no agent can have negative asset wealth at any point in time.14 We denote the quantity of k-period

bonds held by agent i at the end of period t by bit,k, and the corresponding bond holdings at the

beginning of period 0 by bi−1,k (specific assumptions about initial bond holdings will be made later

on to avoid uninteresting transitory dynamics). Agent i’s problem consists of choosing the sequences

of consumption cit(s
t, ei,t), labour supply lit(s

t, ei,t), and bond holdings (bit,k(s
t, ei,t))1≤k≤n, defined

over St × Et to maximize expected intertemporal utility. From now on, we simplify notations by

omitting the references to st and ei,t when no ambiguity arises. Agent i solves:

max
{ci,li,bi}

Ei0

∞∑
t=0

βt
(
u
(
cit
)
− lit

)
(6)

s.t. cit + τ te
i
t +

n∑
k=1

pt,k b
i
t,k =

n∑
k=1

pt,k−1 b
i
t−1,k + eitztl

i
t +
(
1− eit

)
δ, (7)

bit,k ≥ 0, k = 1, . . . , n, (8)

cit, l
i
t ≥ 0, (9)

lim
t→∞

βtu′
(
cit
)
bit,k = 0, for k = 1, . . . , n, (10)

bi−1,k ≥ 0, k = 1, . . . , n given. (11)

Equation (7) is agent i’s budget constraint at date t: total wealth is made of the value of the

bond portfolio inherited from last period’s bond purchases, as well as wage income if the agent is

employed (i.e., eit = 1) or home production income if the agent is unemployed (i.e., eit = 0); this

wealth is used to purchase consumption goods, buy (or hold on to) bonds of various maturity, and

pay taxes (if eit = 1). The inequalities in (8) reflect the fact that private agents cannot issue bonds.

Alternatively, one could consider a relaxed form of the borrowing constraint whereby nonnegativity

would apply to total individual wealth
∑n

k=1 pt,k b
i
t,k, rather than to every single bond as in (8).

This would not alter our results, as we discuss further in Section 4.3 below.

Conditions (9) and (10) are the non-negativity and transversality conditions —which are always

satisfied in the equilibrium we consider—, and (11) is the agent’s initial bond holdings.

Let (ϕit,k)k=1,...,n be the Lagrange multipliers associated with the borrowing constraints in (8).

These multipliers are positive functions defined over St×Et. The first-order conditions associated
14These properties are central in the literature on liquidity-constrained economies since the seminal work of Bewley

(1980). See also Kehoe and Levine (2001), and the references therein.
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with the agent’s program (6)—(10) are, for k = 1, ...n:{
u′
(
cit
)

= 1/zt if eit = 1,

lit = 0 if eit = 0,
(12)

u′
(
cit
)
pt,k = βEt

[
u′
(
cit+1

)
pt+1,k−1

]
+ ϕit,k. (13)

Equation (12) describes the agent’s optimal labour supply. On the one hand, unemployed

agents (i.e., for whom eit = 0) do not supply labour. On the other hand, by the quasi-linearity of

preferences, employed agents (i.e., for whom eit = 1) work up to the point where their marginal

utility of consumption (also equal to the marginal utility of wealth) is equal to 1/zt. As will

become clear in Section 4.3 below, this will in turn imply that consumption and bond holdings are

identical across employed agents —and hence independent of their history of idiosyncratic states.

The Euler equation (13) sets the marginal cost of acquiring one unit of k-period bonds at date t

equal to the marginal gain associated with its payoff at the next date. When the shadow cost of the

borrowing constraint is positive, meaning that the constraint is binding (ϕit,k > 0), agent i would

like to increase current consumption by issuing k-period bonds (but is prevented from doing so by

assumption).

3.5 Market clearing and equilibrium

We denote by Λt : (R+)
n×E → [0, 1] the probability measure describing the distribution of agents

across individual wealth (made of bonds of various maturities) and employment status in period

t. For example, Λt (b1, . . . , bn, 1) denotes the measure of agents who are employed (eit = 1) and

hold a bond portfolio b1, . . . , bn. This measure depends on the history of shocks and the initial

distribution of agents, denoted Λ0. The market-clearing conditions set the aggregate demand for

bonds of each maturity equal to their exogenous supply, i.e.,∫
(b1,...,bk,...,bn,e)∈(R+)n×E

bk,t dΛt (b1, . . . , bk, . . . , bn, e) = Bk, ∀k = 1, . . . , n. (14)

By Walras Law, the goods market clears when all bond markets clear.

Definition 1 (Equilibrium). For an initial distribution of bond holdings (bi−1,k)k=1,...,n and em-

ployment status Λ0, an equilibrium consists of individual choices {cit, (bit,k)k=1,...,n, l
i
t}t=0,...,∞ and

bond prices {pt,k}k=1,...,n,t=0,...,∞ such that:

1. Given prices, individual choices solve the agents’program (i.e., equations (6) to (10) hold);

2. Λt evolves consistently with individual choices and the transition matrices for individual and

aggregate states;

3. All bond markets clear at all dates (i.e., equation (14) holds).

11



4 Uninsured idiosyncratic risk, relative bond supplies, and the

shape of the yield curve

This section investigates theoretically the impact of the supply of government bonds on the yield

curve in our incomplete-market environment. In order to properly disentangle all the relevant

effects at work, we proceed gradually by analysing three specifications of our framework. First, we

characterise the yield curve with complete markets (Section 4.1). Second, we shut down insurance

markets and study how the idiosyncratic risk affects the shape of the yield curve when bonds are in

zero net supply —and hence no bond trades take place in equilibrium (Section 4.2). Finally, we show

how the yield curve is affected under incomplete markets when agents trade positive net supplies

of bonds (Section 4.3).

In all three economies, we focus on the equilibrium where bond prices only depend on the

realisation of the current aggregate shock. From the literature on asset pricing with finite state-

space (e.g., Mehra and Prescott (1985)), we conjecture (and verify) that bond prices at any date t

only depend on the current aggregate state st, and not on the entire history st, i.e., pt,k(st) = pt,k,

and we simply note psk the price of a k−maturity bond in state s ∈ {h, l}. This price structure
entails a form of stationarity, since bond prices depend only on their maturity and the current

aggregate state.15 In consequence, there are two conditional yield curves (one for each value of

the aggregate state). To simplify the exposition, we keep the notation pt,k instead of psk, when

no ambiguity arises. The average (or ‘unconditional’) yield curve (r̄k)k=1,...,n is the weighted sum

of conditional yields, where the weights are the unconditional frequencies of each aggregate state:

r̄k ≡ ηhrhk + ηlrlk.

4.1 Complete markets

This section characterises the yield curve when insurance markets are complete for the idiosyncratic

risk. In this situation, equation (12) implies that all agents have the same marginal utility of

consumption at date t, i.e., u′
(
cit
)

= 1/zt for all i. Then, from (13), bond prices satisfy for all

k = 1, . . . , n:

pt,k = Et
[
mCM
t+1 pt+1,k−1

]
= Et

 k∏
j=1

mCM
t+j

 , where mCM
t+1 = β

zt
zt+1

(15)

is the agents’pricing kernel at date t+ 1. Iterating (15) forward, we find that pt,k = βkEt [zt/zt+k],

so the yield-to-maturity at date t of a bond with maturity k is:

rCMt,k = − ln(β)− 1

k

(
ln
(
Et
[
z−1
t+k

])
− ln(z−1

t )
)
. (16)

15This stationarity is straightforward in both the complete-market and the incomplete market/zero net supply
specifications. As we discuss further in Section 4.3 and Appendix D, in the incomplete market/positive net supply
case it is tied to the limited cross-sectional heterogeneity that makes our analysis tractable.
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The first term − lnβ is simply the level of the interest rate without aggregate risk. The term

− ln
(
Et
[
z−1
t+k

])
− ln(z−1

t ) is the difference, expressed in terms of log-marginal utility, between the

cost of purchasing the bond in the current period (ln(z−1
t ) and its payoff at maturity, ln

(
Et
[
z−1
t+k

])
.

This difference reflects the key motive for holding a k-period bond in the representative-agent frame-

work, namely, that of smoothing consumption between date t and date t+ k. The terminal payoff

(=1) occurs once in the bond lifetime, no matter the maturity of the bond. The yield premium

−k−1
(
ln
(
Et
[
z−1
t+k

])
− ln(z−1

t )
)
is therefore spread over the maturity of the bond and decreases (in

absolute value) as the maturity of the bond rises —to eventually vanish at very long maturities.

The property that aggregate risk affects short yields more than long yields will also be true in the

incomplete-market environment studied below, for the same reason (although bondholders’pricing

kernel and hence bond yields will of course differ from that in the complete-market case). The

next proposition summarises the key properties of the yield curve under complete markets, and a

discussion follows (all proofs are in the Appendix).16

Proposition 1 (Complete-market yield curves). With complete markets,

1. Yields in both aggregate states converge towards a common limit rCM∞ = − lnβ > 0 as k →
+∞.

2. The yield curve in aggregate state h (l) lies below (above) rCM∞ and is strictly increasing

(decreasing) in k.

3. The average yield curve lies below rCM∞ and is strictly increasing in k

Part 1 of the proposition states that in the limit the long-run (i.e., infinite-maturity) yield on

zero-coupon bonds with aggregate risk, rCM∞ , is the same as the interest rate on all bonds in the

absence of aggregate risk, i.e., the reward of time − lnβ. Part 2 applies to conditional yields at

shorter maturities. Aggregate risk generates either a yield premium (in the bad state) or a yield

discount (in the good state), whose value decreases with the maturity of the bond (and eventually

reaches zero as k → +∞.) This reflects the demand for government bonds for hedging purposes
against the aggregate risk. In the good state, the expected state at maturity is less favorable

than the current state, and hence expected future marginal utility is greater than current marginal

utility; this drives up the demand for bonds and produces a yield discount relative to the long-run

rate. In the bad state, the opposite occurs: the expected state is more favorable than the current

one and the demand for hedging is low, leading to yield premium and hence a reversion of the yield

curve. This property, which will be valid for all model variants studied below, is a fairly general

result coming from the bounded support of the aggregate shocks. Part 2 also states that the two

conditional yield curves are monotonic, a property that follows from the assumed persistence of

16Most of our results in Sections 4.1 (complete markets) and 4.2 (incomplete markets and zero net asset supplies)
would hold under much more general preferences that those posited in Section 3.4. Both for consistency and clarity,
we maintain our assumed preferences throughout.
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aggregate shocks (as stated in Assumption A).17 Finally, Part 3 pertains to the unconditional

yield curve, i.e., the arithmetic average of the conditional curves weighted by their frequency of

occurrence. For every yield, the yield discount in the good state is on average greater than the yield

premium in the bad state, as hedging is cheaper in the good state (where marginal utility is low)

than in the bad state (where marginal utility is high). Hence, the two do not cancel out, resulting

in a positive average discount on short bonds. Given the assumed persistence of aggregate shocks

and the fact that the terminal payoff is spread over the life of the bond, the average yield curve is

itself monotonic.

I.i.d. example. For the complete-market economy as well as the following next two economies

with incomplete markets, we provide a specific example of yield curve under i.i.d. aggregate

shocks, in which case explicit expressions for yields at the two ends of the curve can be ob-

tained throughout. Namely, we assume that zl = 1 − ε and zh = 1 + ε, with πh = πl =

1/2 and ε small. From (16), the yield on one-period bonds in state s = l, h is then rCM,s
1 =

− ln(β) −
(
ln
(
0.5
[
1/zh + 1/zl

])
− ln(1/zs)

)
, and a second-order approximation to the average

yield, r̄CM1 = (rCM,l
1 + rCM,h

1 )/2 around ε = 0 gives:

r̄CM1 = − lnβ − 1

2
ε2. (17)

Given rCM∞ , the slope of the yield curve under complete markets, ∆CM = rCM∞ − r̄CM1 , is

∆CM =
1

2
ε2. (18)

4.2 Incomplete markets and zero net bond supply

Our second benchmark economy features incomplete markets against the idiosyncratic risk and

government bonds in zero net supply for all maturities (i.e., for all k = 1, . . . , n, Ak = 0, so that

Bk = 0). Consequently, the taxes in (5) are also equal to zero at all dates. Since no agent is allowed

to have a short position in bonds (by (8)), bond prices must adjust at all dates up to the point

where the agents with the highest marginal valuation of the bonds have net demands equal to zero,

and no trade ever takes place between the agents. The following assumption allows us to focus on

the interesting case, where uninsured idiosyncratic income risk results in endogenously incomplete

participation in bond markets.

17To see intuitively why persistence of aggregate states is required for monotonicity, consider the extreme opposite
case where the aggregate state oscillates in a deterministic fashion, i.e., πh = πl = 0, and suppose that the state at
date t is h (a similar reasoning applies in state l). It straightforward, using (15), to show that the resulting yield
curve converges to − lnβ in an oscillatory manner (i.e., rCM,h

2 > rCM,h
1 , rCM,h

3 < rCM,h
2 , rCM,h

4 > rCM,h
3 etc.). The

reason is as follows. The date t demand for one-period bonds is high (because the state at date t + 1 is l for sure),
leading to a low value of rh1 . The demand for two-period bonds is low (because the state at t+2 is h for sure), leading
to a high value of rh2 . However, the demand for three-period bonds is high (because the state at t + 3 is l for sure),
causing the value of rh3 to fall below rh2 , and so forth. Under assumption A, such oscillations never occur, whatever
the values of zl and zh.

14



Assumption C (Participation condition).

αl/zh +
(
1− αh

)
u′ (δ)

1/zl
>

(
1− ρh

)
/zl + ρlu′ (δ)

u′ (δ)
. (19)

The left hand side of (19) is a lower bound on the pricing kernel of employed (i.e., high-income)

agents, while the right hand side is an upper bound on the pricing kernel of unemployed (i.e.,

low-income) agents. Hence, this assumption will ensure that the pricing kernel of the employed

is always greater than that of the unemployed, implying that only the former buy bonds and are

making prices. A suffi cient condition for (19) to hold is that δ be suffi ciently small, i.e., that the

unemployed be suffi ciently worse-off than the employed.18

The following proposition characterizes the bond price structure in the zero-volume economy,

where bond prices are derived from the Euler equations (13).

Proposition 2 (Pricing kernel decomposition under zero net supply). There exists a unique equi-

librium such that:

1. Bond prices are given by pt,k = Et
[
mZV
t+1pt+1,k−1

]
= Et

[∏k
j=1m

ZV
t+j

]
, where the pricing kernel

mZV
t+1 can be written as

mZV
t+1 = mCM

t+1 I
ZV
t+1, with IZVt+1 =

αt+1/zt+1 + (1− αt+1) u′(δ)

1/zt+1
(≥ 1); (20)

2. The yield curves in states h and l converge towards a common, constant limit rZV∞ ;

3. If αh − αl is suffi ciently small, the yield curve in state h (state l) lies strictly below (above)
rZV∞ and is monotonically increasing (decreasing) in the maturity k.

Part 1 of the proposition states that the pricing kernel in the incomplete-market case with

zero net supply, mZV
t+1 (where “ZV” stands for “zero volume”), is given by the pricing kernel in

the complete-market case, mCM
t+1 in (15), times an upward proportional bias IZVt+1 reflecting the

possibility of being hit by an uninsurable unemployment shock in the next period —in which case

future marginal utility is u′(δ) rather than 1/zt+1.19 While mCM
t+1 is determined by agents’will-

ingness to hedge the aggregate risk, IZVt+1 reflects their willingness to hedge the idiosyncratic risk.

Parts 2 and 3 follow from the general properties of mZV
t+1 and parallel some similar results obtained

18The pricing kernel of the employed is β (αt+1/zt+1 + (1− αt+1)u′ (δ)) / (1/zt) which is never less than the
left hand side of (19) for all (zt, zt+1) ∈

{
zl, zh

}2
. Symmetrically, the pricing kernel of the unemployed is

β
((
1− ρt+1

)
/zt+1 + ρt+1u

′ (δ)
)
/u′ (δ) , which is never greater than the right hand side of (19) for all (zt, zt+1) ∈{

zl, zh
}2
. Condition (19) is not strong and will be satisfied under any plausible parameterisation of the extent of

unemployment risk (as given by αs and ρs, s = l, h) and direct unemployment insurance (as determined by δ).
19Constantinides and Duffi e (1996) exhibit a similar factorisation of the pricing kernel under incomplete markets

in the case where agents face permanent rather than transitory idiosyncratic shocks. Krueger and Lustig (2010) also
use a pricing kernel factorisation and exhibit a set of conditions under which incomplete markets do not to affect the
equity premium in their endowment economy. Note that none of their conditions hold in our production economy,
and that our focus is on the pricing of non-contingent bonds (rather than a Lucas tree).
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in the complete-market case studied above. In particular, the long-run yield (i.e., on infinite-

maturity bonds) rZV∞ is not conditional on the aggregate state —but generally differs from that in

the complete-market case, rCM∞ (see Appendix B for details).

Before we further characterise the yield curve in the incomplete-market, zero-volume case, let us

briefly discuss some implications of Proposition 2. First, incomplete insurance against unemploy-

ment risk, as summarized by a lower value of αt+1, tends to raise IZVt+1 and thus to exert a downward

pressure on both conditional yield curves —and, by implication, on the average curve. This is a

mere reflection of the demand for bonds for self-insurance purposes, which rises as idiosyncratic

income risk rises, all else equal. Second, holding αt+1 constant, the conditional covariance between

the two components of the pricing kernel is negative. On the one hand, given zt, a higher value

of zt+1 lowers agents’willingness to hedge the aggregate risk, so that mCM
t+1 falls (since expected

future marginal utility, 1/zt+1, falls relative to current marginal utility, 1/zt.) On the other hand,

a higher value of zt+1 raises the difference in marginal utility between being employed (1/zt+1)

and being employed (u′(δ)). This raises agents’willingness to hedge the idiosyncratic risk, so that

IZVt+1 rises.
20 This negative correlation reduces the expected value of the pricing kernel mCM

t+1 I
ZV
t+1,

thereby contributing to reducing prices and increasing yields.

Proposition 3 below summarises how idiosyncratic volatility and bond supplies affect the shape

of the yield curve.

Proposition 3 (Incomplete-market, zero-net supply yield curves). Assuming that zh− zl is small,
then the yield curve has the following properties:

1. Without aggregate shocks (i.e. zs = z = 1 and αs = α < 1, s = l, h), the yield curve is flat

and its level is rCM∞ − ln (α+ (1− α) zu′ (δ)) < rCM∞ , which increases with α.

2. When the aggregate state affects productivity (i.e., zh > zl) but not the probability of a bad

idiosyncratic shock (i.e., αh = αl = α), an increase in that probability (that is, a fall in α) i)

lowers the level of the yield curve in both states l and h, and ii) lowers the level and the slope

of the average yield curve.

3. Time-variations in the probability of a bad idiosyncratic shock (i.e., αh > αl) may either raise

or lower the slope of the average yield curve, relative to both the complete-market case and

the incomplete-market case with constant transition probabilities. Given a pair of aggregate

productivity levels (zh, zl), there always exists a pair of individual transition rates (αh, αl)

such that the slope of the average yield curve is larger under incomplete markets than under

complete markets.

Part 1 of the proposition states that in an economy with idiosyncratic risk but no aggregate

shocks, the yield curve is flat and its level goes down as unemployment risk becomes more severe

20This negative co-movement between mCM
t+1 and I

ZV
t+1 will prevail in any economy in which the income earned when

unemployed is less sensitive to the aggregate state than that earned when employed (e.g., because unemployment
benefits are less cyclical than wages.)
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(i.e., α decreases). Intuitively, a higher level of idiosyncratic risk raises the willingness to hedge

that risk (formally IZVt+1 = IZV = α + (1− α) zu′(δ) is constant and decreasing in α); hence, the

demand for bonds for self-insurance purpose rises, which lowers the equilibrium real interest rate

(since rZV∞ = rCM∞ − ln IZV ). This effect of idiosyncratic risk on the steady-state interest rate is

similar to that at work in Huggett (1993) or Aiyagari (1994), among many others.

Part 2 analyses the case where the aggregate state affects labour productivity but not the extent

of unemployment risk.21 First, the levels of the conditional yield curves fall as α does, in either

aggregate state (for the same reason as in Part 1). Second, an increase in idiosyncratic risk (i.e.,

a fall in α) lowers the slope of the yield curve, i.e., it lowers long yields more than short yields.

The reason for this is that, as explained above, the demands for hedging the aggregate and the

idiosyncratic risk go in opposite direction, i.e., the conditional covariance between mZV
t+1 and I

ZV
t+1

is negative. This covariance increases in absolute value as α falls, which drives down the demand

for bonds and hence reduces bond prices and raises bond yields. This effect is higher for short

bonds than for long bonds because aggregate risk affects short yields more than longer yields, for

the reason discussed in Section 4.1. The i.i.d. example below provides a simple expression for the

interaction term due to the correlation of the two components of the pricing kernels.

Part 3 of the proposition examines how time-variations in the probability of a bad idiosyncratic

shock may alter the shape of the yield curve, relative to the complete-market case. To see why the

effect is ambiguous in general, consider (with no loss of generality) the impact of a mean-preserving

spread in
(
αh, αl

)
relative to the case where α is constant. On the one hand, the higher value of

αh lowers the demand for self-insurance in the good state; conversely, the lower value of αl raises

the demand for self-insurance in the bad state. The overall impact on the average yield curve is

ambiguous in general and depends on the persistence of the aggregate states. In particular, one

may easily construct example in which a time-varying probability of a bad idiosyncratic shock leads

to a high average term premium on long bonds —in the same way as Mankiw (1986) reported that

it may generate a high risk premium. It is notably the case under i.i.d. aggregate shocks, as we

now show.

I.i.d. example. Again, we use the i.i.d. example to illustrate how the presence of uninsured

idiosyncratic risk alters the shape of the yield curve relative to the complete-market case analysed

above. Expressions (40)—(41) in Appendix C provide the second-order approximations to the short

and long yields for a general transition matrix across aggregate states, T . The following formulas

are obtained by imposing the i.i.d. shock structure (πh = πl = 1/2, zh = 1 + ε and zl = 1− ε) to
those expressions. When aggregate risk only affects z but not α, the yield on long (infinite-maturity)

bonds is given by:

rZV∞ = rCM∞ − ln
(
α+ (1− α)u′(δ)

)︸ ︷︷ ︸
Demand for self-insurance

. (21)

21The assumption that zh − zl is small allows us to use second-order Taylor expansions of the relevant pricing
kernels around the steady state and thereby to characterise analytically the impact of those variables on the slope of
the yield curve.
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As in the complete-market case, aggregate volatility leaves the yield of long bonds independent

of the aggregate state. The additional implication of i.i.d. shocks is that the extent of aggregate

volatility —as measured by ε— has no impact on the level of this common long yield; only the

(constant) probability of a bad idiosyncratic shock (given by 1 − α) does, a reflection of agents’
higher demand for bonds for self-insurance purpose. The average yield on one-period bonds, r̄ZV1 =∑

s=l,h r
ZV,s
1 /2, can be decomposed as follows:

r̄ZV1 = r̄CM1 − ln
(
α+ (1− α)u′(δ)

)︸ ︷︷ ︸
Demand for self-insurance

+
(1− α)u′(δ)

α+ (1− α)u′(δ)
ε2︸ ︷︷ ︸

Interaction term

. (22)

The short yield is the sum of three terms. The first, r̄CM1 , is the short yield under complete

markets, which is recovered in the incomplete-market case when there is no idiosyncratic shocks

(i.e., α = 1). The second term is the equilibrium yield discount coming from the demand for

hedging the idiosyncratic risk, or “demand for self-insurance”, which affects the short yield and the

long yield equally. The last term in (22) reflects the interaction between the demands for hedging

the aggregate and the idiosyncratic risks.22 As discussed above, when α is not time-varying the

conditional covariance at date t between mCM
t+1 and I

ZV
t+1 induced by stochastic changes in zt+1 is

negative. This implies that idiosyncratic risk tends to mitigate agents’demand for hedging the

aggregate risk, which translates into lower equilibrium prices (that is, higher equilibrium yields).

From (21)—(22), the slope of the yield curve in the incomplete-market, zero-volume case, ∆ZV =

rZV∞ − r̄ZV1 , is

∆ZV = ∆CM − (1− α)u′(δ)

α+ (1− α)u′(δ)
ε2︸ ︷︷ ︸

Interaction term

(23)

The first term in the right hand side of (23) is the slope of the yield curve under complete

markets. The second term comes from the interaction of aggregate and idiosyncratic risks. Since,

as discussed above, the interaction term raises the short yield without affecting the long yield, an

increase in idiosyncratic risk (that is, a fall in α holding ε constant) lowers the slope of the yield

curve. It follows that the slope of the yield curve in the incomplete-market, zero-volume case cannot

be higher than the slope under complete markets —as long as the probability of a bad idiosyncratic

shock is not itself time-varying and bonds are in zero net supply.

Time-varying probability of a bad idiosyncratic shock. Let us now illustrate the last point of Propo-

sition 3 in the context of our i.i.d. example. To this purpose, we introduce (without loss of

generality) a mean preserving spread in α, i.e., αh = α+ a and αl = α− a, where a is positive but
small. From equations (21)—(22) above and (40)—(41) in Appendix C, the yields at the two ends of

22As mentioned above, the size of interaction term is scaled by the inverse of the maturity (k−1). This is why it
shows up in the expression for the one-period yield in (22), but not in that for the very long yield in (21).
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the curve become:

r̃ZV1 = r̄ZV1 +
1

α+ (1− α)u′(δ)
aε, r̃ZV∞ = rZV∞ +

u′(δ)

α+ (1− α)u′(δ)
aε.

In the i.i.d. case, times variations in α (a > 0) shift the entire yield curve upwards, provided

that labour productivity is also affected (ε > 0). Moreover, since u′(δ) > 1 (by Assumption B),

such variations shift the long yield more than the short yield. It follows that the slope for the yield

curve under time-varying idiosyncratic risk is given by:

∆̃ZV = ∆ZV +
u′(δ)− 1

α+ (1− α)u′(δ)
aε.

Using this expression and that for ∆ZV above, we infer that ∆̃ZV > ∆CM —i.e., the slope of the

yield curve is larger under incomplete markets than under complete markets—provided that

a >
(1− α)u′(δ)

u′(δ)− 1
ε > 0,

that is, the impact of the aggregate state on the probability of a bad idiosyncratic shock must be

suffi ciently large compared to its effect on labour productivity.

While the analysis is more involved away from the i.i.d. case, the combined effects of aggregate

and idiosyncratic uncertainty on the yield curve are similar. In particular, i) the demand for

hedging the idiosyncratic shocks affects all yields, while the demand for hedging the aggregate

risk only affects short yields; ii) with constant probability of a bad idiosyncratic shock 1 − α, an
increase in this probability lowers long yields more than short yields; and iii) there always exist

a = (αh − αl)/2 such that the slope of the yield curve is larger under incomplete markets than
under complete markets.

4.3 Incomplete markets and positive net bond supply

We now move away from the zero-net-supply assumption and investigate the impact of the volume

of bonds on the shape yield curve. As discussed above, the incompleteness of insurance markets

implies that some agents (the employed) express a specific demand for bonds in order to hedge the

idiosyncratic risk they face (in addition to attempting to hedge the aggregate risk). When bonds are

in positive net supply, these agents are effectively able to use bonds as a buffer against idiosyncratic

shocks, thereby partially alleviating the lack of fully functioning credit and insurance markets. This

has two key implications. First, the entire yield curve is affected by the net supply of bonds, since

the latter affect agents’ability to hedge the idiosyncratic risk. Second, bonds are effectively traded

in equilibrium: on the one hand, the agents who are hit by a bad idiosyncratic income shock wish

to sell some bonds in order to partly insulate their consumption from the shock; on the other hand,

the agents who are not yet hit by the shock (but anticipate that they might be in the future) are

willing to buy those bonds for self-insurance. That is, the repeated occurrence of idiosyncratic
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shocks together with agents’desire to hedge them the best they can generate cross-agents trade.

In particular, agents may find themselves in a situation where they have to liquidate long-maturity

bonds —due to the occurrence of a bad idiosyncratic shock, which causes the borrowing constraint

to start binding—precisely at a time when their trading price is low —because the aggregate state

is itself unfavourable. As we show, this generates a specific “liquidation risk premium” on long

bonds, the value of which depends on the quantity of such bonds in agents’equilibrium portfolios.

As discussed in the introduction, a major issue with incomplete-market models with positive

net asset supplies is their lack of tractability. In particular, these models typically generate a

large-dimensional cross-sectional distribution of wealth, which must be approximated numerically

and solved jointly with the agents’optimal asset holding decisions. This in turn drastically limits

the number of assets that these models can handle. To circumvent this issue —and thereby price

the entire yield curve, including the price of bonds with very long maturity—, our approach in this

paper is to impose some restrictions on the structure and deep parameters of the model so that

the model endogenously generates a cross-sectional distribution with a small number of wealth

states. To be more specific, the tractability of our framework is the outcome of two underlying

assumptions. First, quasi-linear preferences imply that all employed agents are willing to work as

much as necessary to bring their marginal utility of consumption (equal to their marginal utility

of wealth) to 1/z (see (12)). Consequently, all employed agents share the same consumption level,

regardless of their history of idiosyncratic shocks. Second, the transitory nature of idiosyncratic

shocks and the assumption that bonds are in positive but small supplies implies that agents in the

bad idiosyncratic state would be willing to issue bonds against future income —but are prevented

from doing so by the borrowing constraint. As we show in Appendix D, taken together these two

properties imply that i) all employed agents share the same pricing kernel and hold the same (end-

of-period) asset wealth, regardless of their employment history; and ii) all unemployed agents face a

binding borrowing constraint (and hence hold no asset at the end of the period), regardless of their

employment history. Consequently, our model generates a two-state cross-sectional distribution of

wealth as an equilibrium outcome, which allows us to study bond pricing and trading analytically

for an arbitrarily large number of maturities.

For simplicity, we focus on the case where transition probabilities across employment statuses

are constant —in addition to assuming that bond supplies are small.

Assumption D (Small bond volume and constant probability of a bad idiosyncratic shock). (i)

Ak, k = 1, . . . , n is small; (ii) αl = αh = α < 1.

The following proposition generalises our pricing-kernel decomposition for the case where mar-

kets are incomplete and bonds are in positive net supply.

Proposition 4 (Pricing kernel decomposition under positive net supply). There exists a unique

equilibrium such that:

1. All employed agents buy the same amount of bonds of each maturity, while all unemployed
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agents face a binding borrowing constraint (and consequently hold no bonds);

2. The date t price of a bond of maturity k is pt,k = Et
[
mPV
t+1pt+1,k−1

]
= Et

k∏
j=1

mPV
t+j, where

mPV
t+1 = mCM

t+1 I
PV
t+1 and (24)

IPVt+1 ≡
α/zt+1 + (1− α)u′

(
δ +

∑n
j=1 pt+1,j−1 (Bj/ω

e)
)

1/zt+1
. (25)

The first point of the proposition states the homogeneity properties that make our analysis

tractable. First, the equilibrium features “full asset liquidation”, in the sense that agents hit

by an unemployment shock liquidate their entire portfolio instantaneously (formally, bit,k = 0 for

all k = 1, . . . , n if eit = 0). Second, bond holdings are identical across employed agents (i.e.,

bit,k = bt,k > 0 for all k if eit = 1). Under our specification for the borrowing constraint (see

(8)), only public debt enters the portfolio liquidation value. It would not necessarily be the case

if the borrowing constraint were on the total value of the portfolio (i.e.,
∑n

k=1 pt,k b
i
t,k ≥ 0). In

this case, agents could in principle use long positions in some maturities to back short positions in

other maturities. However, in our economy all employed agents would choose portfolios with the

same expected total liquidation value, and agents would be indifferent between those alternative

portfolios. Consequently, equilibrium bond prices and yields would be unaffected.23

Under assumption D, employed agents are in constant number ωe = (1− α) / (2− α− ρ), so

the relevant market clearing conditions imply that bj = Bj/ω
e, for j = 1, . . . , n: all agents hold

positive bond quantities and there is no short position at any maturity.

The second point of the proposition generalises the pricing kernel decomposition of the previous

section to account for the fact that employed agents now do hold bonds in equilibrium. Like in the

zero-net-supply case, the equilibrium pricing kernel is the product of the complete-market kernel,

mCM
t+1 , and a correction reflecting the demand for hedging the idiosyncratic risk, I

PV
t+1 (where “PV”

stands for “positive volume”). The key difference with the zero-net-supply case is that bond volumes

now enter the correction term IPVt+1 (symmetrically across bondholders, by point 1.) Indeed, in an

economy with positive net bond supplies, the portfolio held by the agents may be liquidated when

a bad idiosyncratic shock hits, thereby limiting the associated drop in individual consumption. The

term IPVt+1 reflects these better self-insurance possibilities via a lower marginal utility in case a bad

idiosyncratic shock hits (the u′ (.) term in (25)).

We are now in a position to state our main comparative-static results regarding the way relative

bond supplies affect the shape (i.e., the level and the slope) of the yield curve.

Proposition 5 (Incomplete-market, positive-net supply yield curves). Assume that zh−zl is small.
Then,

23This result is established formally in the separate technical appendix to the paper.
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1. An increase in the supply of bonds of any maturity i) raises the level of the yield curve in

both states l and h, and ii) raises the level and the slope of the average yield curve;

2. An increase in the supply of long bonds with maturity k ≥ 2 raises more the slope of the

average yield curve than an increase in the supply of one-period bonds.

The intution for the latter two results follow from equations (24)—(25) which, despite the fact

that they do not as such explicitly solve for equilibrium bond prices and yields —since the bond

prices pt,j enter both sides of the asset-pricing formula—, nevertheless provide useful insights about

their determinants (see the proof in Appendix D for an explicit solution for bond prices and yields).

The impact of bond supplies on the level of the curve results from two effects. First, by raising

the supply of aggregate liquidity that agents may hold in equilibrium, a greater supply of bonds of

any maturity facilitates self-insurance and reduces the (marginal utility) cost associated with a bad

idiosyncratic shock. The demand for hedging the idiosyncratic risk becomes more satiated (due

to decreasing marginal utility), which depresses all prices and raises all yields in both aggregate

states. Second, higher bond holdings of any maturity except one-period bonds raise the volatility of

the liquidation value of the portfolio,
∑n

j=1 pt+1,j−1 (Bj/ω
e) , and hence that of the pricing-kernel

correction IPVt+1 (one-period bonds do not affect this volatility since they pay out 1 for sure in the

next period). This “portfolio volatility”effect raises the consumption risk associated with holding

bonds, which feeds back to the entire yield curve and raises yields at all maturities.

The impact of bond supply and their maturity on the slope of the yield curve also results

from two effects. First, the size of the portfolio
∑n

j=1 pt+1,j−1 (Bj/ω
e) modifies the correlation

between the two components of the pricing kernel, mCM
t+1 and IPVt+1, and hence the value of the

interaction term discussed in Section 4.2. Formally, for any given value of α, a greater value of∑n
j=1 pt+1,j−1 (Bj/ω

e) lowers the marginal utility term u′ (.) in (25). Following an increase in zt+1

—which moves mCM
t+1 downwards—, the rise in I

PV
t+1 is smaller than when

∑n
j=1 pt+1,j−1 (Bj/ω

e) = 0.

Hence, the negative correlation between mCM
t+1 and I

PV
t+1 is smaller, which mitigates the impact of

the interaction term on yields. This effect is at work after an increase in the quantity of bonds of

any maturity, including one-period bonds (as stated in Point 1 of the proposition).

Second, the slope of the yield curve is affected by the relative supply of bonds, a direct impli-

cation of the liquidation risk associated with holding bonds with maturity greater than one. This

risk refers to the risk that the bonds must be liquidated —if the holder is hit by a bad idiosyncratic

shock—precisely at a time when the resale price of the bond is low —because the aggregate state is

itself unfavourable. Of course, long bonds may also have to be liquidated in good times but, because

marginal utility is decreasing, these potential gains do not offset the cost of having to sell in bad

times, so on average the premium on long bonds must be positive. Formally, the liquidation risk

results from the covariance between the liquidation value of the portfolio,
∑n

j=1 pt+1,j−1 (Bj/ω
e),

and bond prices, pt+1,k, both of which fluctuate with the aggregate shock. This covariance is zero

for one-period bonds —as the latter pay pt+1,0 = 1 for sure in the next period—, so such bonds

do not command a liquidation risk premium in equilibrium. For longer bonds, and provided that
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α < 1 (so that agents effectively face idiosyncratic income variations), the co-movements between

the portfolio’s liquidation value and bond prices generates a negative covariance term between the

pricing kernel mPV
t+1 —via the marginal utility term in (25)—and the bonds’future resale price. This

negative covariance depresses the current price of such bonds, i.e., it raises their yield. In short,

by holding long rather than short bonds, agents run the risk of finding themselves poor precisely

when they most need cash —and thus require a compensation for bearing this risk.

I.i.d example. Again, we provide further intuition for our results by means of a second-order

approximation to the yield curve under small, i.i.d. aggregate shocks. Let pk denote the price of a k-

period bond in the steady state (without aggregate shocks) and W =
∑∞

k=1 pkbk the corresponding

value of bond holders’portfolio, where bk = Bk/ω
e is the equilibrium quantity of k-period bonds in

any bondholder’s portfolio. By assumption, W is small because volumes are small, and an increase

in the volume of bonds of any maturity raises W . In this case, the approximate expressions for the

long and the short yields, are given by (see equations (58)—(59) in Appendix F):

rPV∞ = rZV∞ +
(1− α)(−u′′(δ))
α+ (1− α)u′(δ)

W︸ ︷︷ ︸
Impact of volumes on demand for self-insurance

+
α(1− α)(−u′′(δ))

(α+ (1− α)u′(δ))2

(
W − b1

)
ε2︸ ︷︷ ︸

Portfolio volatility

+
(1− α)(−u′′(δ))
α+ (1− α)u′(δ)

(
W − b1

)
ε2︸ ︷︷ ︸

Liquidation risk

(26)

r̄PV1 = r̄ZV1 +
(1− α)(−u′′(δ))
α+ (1− α)u′(δ)

W︸ ︷︷ ︸
Impact of volumes on demand for self-insurance

+
α(1− α)(−u′′(δ))

(α+ (1− α)u′(δ))2

(
W − b1

)
ε2︸ ︷︷ ︸

Portfolio volatility

− α(1− α)(−u′′(δ))
(α+ (1− α)u′(δ))2

Wε2︸ ︷︷ ︸
Impact of volumes on interaction term

(27)

The latter two equations summarise how bond volumes affect bond yields at the two ends of

the curve, relative to the zero-net-supply, incomplete-market yield curve. As discussed above, the

two yields under consideration incorporate two additional level effects —i.e., affecting both yields

equally—, relative to their zero-net-supply counterparts. First, an increase in the supply of any

bond facilitates self-insurance, which lowers the demand for bonds and hence raises all yields (the

“Impact of volumes on demand for self-insurance” term in (26)—(27)).24 Second, an increase in

24To see most clearly how positive bond volumes impact the demand for self-insurance, consider how the term
− ln (α+ (1− α)u′(δ)) in equations (21)—(22) is modified when the value of the liquidated portfolio, W , is added to
the consumption of agents hit by a bad idiosyncratic shock —so that the marginal utility term is u′(δ +W ) instead
of u′(δ). Then, for W small we have

− ln
(
α+ (1− α)u′(δ +W )

)
' − ln

(
α+ (1− α)u′(δ)

)︸ ︷︷ ︸
Demand for self-insurance (zero net supply)

+
(1− α)(−u′′(δ))
α+ (1− α)u′(δ)W︸ ︷︷ ︸

Impact of volum es on demand for self-insurance
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bond holdings with maturity greater than one raises the volatility of bondholders’portfolio (and

hence that of the pricing kernel), which deters additional bond purchases and again raises all yields

(hence the “Portfolio volatility”term in (26)—(27)). Again, this second level effect does not apply

to holdings of one-period bonds, since those generate no portfolio volatility; hence, a pure increase

in the supply of short bonds (such that dW =db1) only shifts the level of the yield curve via the

demand for self-insurance channel.

From (26)—(27), the slope of the yield curve is given by:

∆PV = ∆ZV +
α(1− α)(−u′′(δ))

(α+ (1− α)u′(δ))2
Wε2︸ ︷︷ ︸

Impact of volumes on interaction term

+
(1− α)(−u′′(δ))
α+ (1− α)u′(δ)

(
W − b1

)
ε2︸ ︷︷ ︸

Liquidation risk premium

. (28)

Positive bond volumes affect the slope (relative to the zero-net-supply case) by i) lowering the

short yield (see the “Impact of volumes on interaction term”in (27)), and ii) raising the long yield

—provided that the supply of bonds with maturity greater than one is raised (see the “Liquidation

risk premium”term in (26)). As discussed above, the impact on the slope coming from a lower short

yield relative to the zero-volume case comes from the fact that the interaction term is now affected

by the supply of bonds.25 The last term in (28), isolates the liquidation risk premium commanded

by long bonds over short bonds. This liquidation risk only applies to the part of agents’wealth

made of bonds with maturity greater than one, since the liquidation value of one-period bonds is

independent of the aggregate state. To summarize, equation (28) implies that an increase in the

supply of bonds of any maturity raises the slope of the yield curve, and an increase in the supply

of bonds with maturity greater than one raises more the slope than an increase in the supply of

one-period bonds (due to the liquidation risk premium). Hence, both the size and the maturity

structure of the debt affect the slope of the yield curve.

Numerical application. Let us illustrate the effect of bond volumes on the shape of the yield

curve by means of a simple numerical example. The period is a year. We assume that u (c) =

Ac1−σ/ (1− σ), with A = .4 and σ = 2.5, β = .967. Productivity levels are given by zh = .55591,

zl = .4, with transition probabilities πh = .8, πl = .5. Individual labour market transition rates are

constant and given by α = .995 and ρ = .5. Finally, home production is δ = .2.We start with a zero

net supply benchmark, and from then raise the supply of bonds. The second and third columns

of Table 1 show the implied 1- and 10- year interest rates, respectively, while the fourth column

shows the slope ∆ = r10− r1. The calibration has been chosen so that the shape of the yield curve

25Recall from our analysis in Section 4.2 that the interaction term affects the short yield but not the yield on
long (infinite-maturity) bonds, and consider how the interaction term in (22) is modified when agents hit by an
idiosyncratic shock consume δ +W instead of δ. For W small, we have:

(1− α)u′(δ +W )

α+ (1− α)u′(δ +W )
ε2 ' (1− α)u′(δ)

α+ (1− α)u′(δ)ε
2

︸ ︷︷ ︸
Interaction term (zero volum e)

+
α(1− α)(−u′′(δ))
(α+ (1− α)u′(δ))2Wε2︸ ︷︷ ︸

Impact of volum es on interaction term
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benchmark economy matches that of the real yield curve U.S. economy over the period 1997-2009

for which data are available.26 The third line of the Table shows how the shape of the yield curve

changes as we raise the supply of bonds from 1 year to 10 years by 6.10−4, which increases of the

ratio of debt to output by 1 percentage point. The fourth line reports the implied changes in the

level and slope of the curve, expressed as basis points.27

Interest rates r1 r10 ∆

Benchmark economy (%) 1.800 2.720 0.920

Economy with higher debt (%) 1.836 2.757 0.921

Change in interest rates (bp) 3.6 3.7 0.1

Table 1: Effect of a debt increase on the yield curve

5 Concluding remarks

It is often claimed that the reason why long bonds command a premium over short bonds is that

they are less “liquid”, in the sense of being convertible into cash at more uncertain terms. In

this paper, we have constructed a dynamic general-equilibrium model of the term structure under

incomplete markets that is consistent with this view: holders of long bonds must be compensated

for bearing the liquidation risk associated to these bonds, i.e., the risk that their price be low —due

to unfavourable macroeconomic conditions—precisely when the holder needs to liquidate them —in

order to buffer an adverse idiosyncratic income shock. Put differently, long, noncontingent bonds are

a poor hedge against idiosyncratic shocks, because aggregate shocks cause the liquidation value of

the bond portfolio —which explicitly enters bondholders’pricing kernel under incomplete markets

and positive net bond supply— to covary with bond prices. In contrast, one-period bonds are a

much better hedge, since they are not resold and, consequently, have a payoff that is completely

independent of bondholders’wealth (of course, neither long nor short bonds ar perfect hedges since

both fails to be contingent on bondholders’individual state).

It seems natural, when considering the impact of liquidation risk on asset prices, to start by

focusing on real, zero-coupon bonds, which by construction bear no income risk and only differ

by their maturity. This strategy allowed us to isolate this specific source of risk and to distin-

guish it most clearly from the other sources of risk that potentially affect more complex financial

instruments. However, all long assets that are not indexed on agents’ idiosyncratic state (most

prominently: the stock market) potentially bear this risk, and for this reason should command a

26Real zero-coupon yield curves are constructed by J. Huston McCulloch using US Treasury Inflation-Protected
Securities (TIPS), and made available at www.econ.ohio-state.edu/jhm/ts/ts.html#arch
27The figures are consistent with the recent estimates of Laubach (2009) who finds that an increase of the volume of

public debt by 1% of GDP increases interest rates between 3bp and 4bp. In a separate technical appendix, we study
a quantitative version of our model that relaxes some of its structural assumptions. More specifically, we consider an
economy in which i) the aggregate state has continuous rather than discrete support, ii) agents do not instantaneously
liquidate their asset wealth, iii) agents may trade a positive-supply asset whose payoff is contingent on the aggregate
state, iv) the tax structure is more general than in the baseline model, and v) the supply of bonds is time-varying
and indexed on the aggregate state. The relaxed model confirms the theoretical results obtained under our baseline
assumptions.
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premium over short assets. Similarly, liquidation risk would be present in a monetary version of

our framework that would generate a nominal yield curve —about which a wealth of evidence is

available. We leave both of these lines of investigation for future research.

Appendix

A. Proof of proposition 1

1. Yield of infinite-maturity bonds. From (16) and the fact that zt is bounded, we have

limk→∞ rt,k = − lnβ ≡ rCM∞ (which is independent of the aggregate state).

2. Monotonicity of conditional yield curves. Let us denote T k = (T kij)i,j=l,h, where T
k
ij is the

ij’s element of T k (T to the k, with T given by (1)), that is, the probability of being in aggregate

state j k periods ahead when the current state is i. Assumption A implies that the sequences{
T khh
}∞
k=1

and
{
T kll
}∞
k=1
, where

(
T 1
hh, T

1
ll

)
=
(
πh, πl

)
and

(
T k+1
hh , T k+1

hh

)
= (T khh

(
πh + πl − 1

)
+ 1−

πl, T kll
(
πh + πl − 1

)
+ 1 − πh), are positive and nondecreasing. From (16), the yield differences

rCM∞ − rsk, s = l, h are:

rCM∞ − rhk =
1

k
ln

[
T khh +

(
1− T khh

) zh
zl

]
> 0, rCM∞ − rlk =

1

k
ln

[
T kll +

(
1− T kll

) zl
zh

]
< 0. (29)

Since 1/k is strictly decreasing in k while T khh +
(
1− T khh

)
zh

zl
is nonincreasing in k (by the

monotonicity of
{
T khh
}∞
k=1

and the fact that zh ≥ zl), rCM∞ − rsk is strictly decreasing in k. Hence,
rhk lies below rCM∞ and is strictly increasing in k. A symmetric argument applies to the yield curve

in state l.

3. Monotonicity of the average yield curve. From (29), the average yield difference ψ (k) ≡
r̄k − rCM∞ is given by:

ψ (k) = −1− ηl
k

ln

(
T khh +

(
1− T khh

) zh
zl

)
− ηl

k
ln

(
T kll +

(
1− T kll

) zl
zh

)
, (30)

with ηl =
(
1− πh

)
/
(
2− πh − πl

)
. Diagonalising T , we may express

(
T kll , T

k
hh

)
as follows:

T khh = ηl(πh + πl − 1)k + 1− ηl and T kll = (1− ηl)(πh + πl − 1)k + ηl, (31)

Substituting (31) into (30), we can write ψ (k) = −φ(k)/k, where φ(k) is a function parame-

terised by πl and πh. Taking derivatives, we can show that ∂(k2ψ′(k))/∂k = −kφ′′(k) is positive.

This in turn implies that ψ(k) < 0 and ψ′(k) > 0, i.e., r̄k lies below rCM∞ and is strictly increasing

in k.
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B. Proof of proposition 2

1. Pricing kernel From (12)—(13), we find that

pt,k = βEt

[(
αt+1

zt
zt+1

+ (1− αt+1) ztu
′ (δ)

)
pt+1,k−1

]
, k = 1, . . . , n,

which provides the pricing factorization in mZV
t+1 and I

ZV
t+1. From the literature on asset pricing

with finite state-space (e.g., Mehra and Prescott (1985)), we conjecture (and verify) the existence

of an equilibrium in which bond prices at any date t only depend on the current aggregate state st

(and not on the whole history st, i.e., pt,k(st) = pt,k). With two aggregate states, bond prices are

generated by the following recursions:

psk
zs

= βπs
(
αs + (1− αs) zsu′ (δ)

) psk−1

zs
+ β (1− πs)

(
αs̄ +

(
1− αs̄

)
zs̄u′ (δ)

) ps̄k−1

zs̄
, s = l, h, (32)

for k = 1, . . . , n and where s̄ is the state opposite to s. From (13), at these prices unemployed

agents face a binding borrowing constraint in state s if and only if:

psku
′(δ) > β

(
πs
(

1− ρs
zs

+ ρsu′(δ)

)
psk−1 + (1− πs)

(
1− ρs̄
zs̄

+ ρs̄u′(δ)

)
ps̄k−1

)
, s = l, h.

Assumption C is a suffi cient condition for these two inequalities to be satisfied when bond prices

satisfy (32), so that unemployed agents do not participate in bond markets (i.e., they would like

to issue bonds, but face a binding borrowing constraint, in either aggregate state).

2. Convergence towards a common limit. We first prove the following technical lemma.

Lemma 1. Let (un)n≥0, (vn)n≥0 be two real sequences such that [ un vn ]> = M [ un−1 vn−1 ]>,

where M is a 2 × 2 real diagonalisable matrix whose eigenvalues λmax and λmin are such that

λmax ≥ λmin > 0. Then,
(
−n−1 ln(un)

)
n≥0

and
(
−n−1 ln(vn)

)
n≥0

converge towards the common

limit ln(λmax).

Proof: Diagonalising M , we may rewrite the recursion in the Lemma as[
un

vn

]
= Q

[
λnmax 0

0 λnmin

]
Q−1

[
u0

v0

]
,

where (λmax, λmin), λmax ≥ λmin ≥ 0, are the eigenvalues of M and Q the matrix of eigenvectors.
un
λnmax

and vn
λnmax

are affi ne functions of
(
λmin
λmax

)n
, which is positive and either is equal to 1 or converges

towards 0 as n→∞. Thus, un
λnmax

and vn
λnmax

converge towards finite limits. We infer that− 1
n ln( un

λnmax
)

and − 1
n ln( vn

λnmax
) converge toward 0, and that limn→∞− 1

n ln(un) = limn→∞− 1
n ln(vn) = ln(λmax)�
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We may rewrite the bond price recursion in (32) in matrix form as follows:

[ phk/z
h plk/z

l ]> = MZV [ phk−1/z
h plk−1/z

l ]> for k ≥ 1, with ps0 = 1, (33)

MZV = β

(
πhκh

(
1− πh

)
κl(

1− πl
)
κh πlκl

)
and κs ≡ αs + (1− αs)zsu′(δ). (34)

Then, Lemma 1 implies that limk→∞ r
s
k = rZV∞ , s = h, l, where

rZV∞ = − ln(β)− ln (ν1) , and (35)

ν1/2 =
1

2

(
κh πh + κl πl ±

(
(κh πh + κl πl)2 − 4κh κl(πh + πl − 1)

) 1
2

)
. (36)

3. Monotonicity of conditional yield curves. As stated in the proposition, a suffi cient

condition for the monotonicity of conditional yield curves in the incomplete-market, zero-volume

case is that αl and αh be suffi ciently close to each other. The necessary and suffi cient condition is(
πl + (πh − 1)

zh

zl

)(
αl + (1− αl)zlu′(δ)

)
≤
(
πh + (πl − 1)

zl

zh

)(
αh + (1− αh)zhu′(δ)

)
, (37)

and is indeed satisfied when αl and αh are close to each other, including when αh = αl. Under

(37), the eigenvalues (ν1, ν2) of MZV in (36) satisfy

ν2 ≤ ν1 ≤ πhκh + (1− πh)
(
zh/zl

)
κl, (38)

ν2 ≤ πhκh ≤ ν1. (39)

Since ν1 is the largest eigenvalue, we have ν2 ≤ ν1, while (37) implies that the second inequality

in (38) also holds. The inequalities in (39) directly follow from (36) and the definition of κs in (34).

From (33), bond prices are given by [ phk/z
h plk/z

l ]> = MZV,k[ 1/zh 1/zl ]>, whereMZV,k ≡(
MZV

)k
(MZV to the k) is diagonalisable and can be written as

MZV,k = βkP

[
νk1 0

0 νk2

]
P−1, with P =

[
(1− πh)κl (1− πh)κl

ν1 − πhκh ν2 − πhκh

]
.

From the latter recursion and equation (35), we find that rhk − rZV∞ = φ̃(k)/k, where

φ̃(k) ≡ ln [ν1 − ν2]− ln

[
νk2
νk1

(
ν1 − πhκh − (1− πh)

zh

zl
κl
)
−
(
ν2 − πhκh − (1− πh)

zh

zl
κl
)]

.

Condition (37) implies that 1
k
∂
∂k

(
k2 ∂(r

h
k−rZV∞ )
∂k

)
> 0 and successively that k2 ∂(r

h
k−rZV∞ )
∂k > 0 and

∂(rhk−rZV∞ )
∂k > 0: The yield curve is increasing in state h and converges from below to rZV∞ .
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C. Proof of Proposition 3

Lemma 2. Consider the following mean-preserving spread in aggregate and idiosyncratic risks

around their unconditional means (z, α): αh = α + 2ηl a, αl = α − 2
(
1− ηl

)
a, zh = z

(
1 + 2ηlε

)
and zl = z

(
1− 2

(
1− ηl

)
ε
)
(where ηl =

(
1− πl

)
/
(
2− πl − πh

)
. A second-order development in

a and ε gives

∆ZV =
2(1− πh)(1− πl)(πh + πl)

(2− πh − πl)3(α+ (1− α)zu′(δ))2

(
−(3− πh − πl)(πh + πl − 1)(zu′(δ)− 1)2a2

+2(zu′(δ)−1)(α(2−πh−πl)2 +(1−α)zu′(δ))ε a+
(
α2(2− πh − πl)2 − (1− α)2z2u′(δ)2

)
ε2
)
�

Proof. Let us first define Σπ ≡ πl + πh, Ω ≡ [(2− Σπ)(α+ (1− α)zu′(δ))]−1 and s̄ the state

opposite to s. From (20), the second-order expansion around (a, ε) = 02 of the conditional one-

period yield gives

rZV,s1 = − ln(β)− ln(α+ (1− α)zu′(δ))

± 2Ω(1− πs)
[
(Σπ − 1)(zu′(δ)− 1)a− (α(2− Σπ) + (1− α)zu′(δ))ε

]
+ 2Ω2(1− πs)2(Σπ − 1)2(zu′(δ)− 1)2a2

+ 4Ω2(1− πs)
[
πs(2− Σπ)2(α+ (1− α)zu′(δ)) + (1− πs)(

∑
π − 1)2zu′(δ)

]
aε

+ 2Ω2(1− πs)
[

(1− πs)(α(2− Σπ) + (1− α)zu′(δ))2

−2α(1− πs̄)(2− Σπ)(α+ (1− α)zu′(δ))

]
ε2, (40)

where ± is a − if s = h and a + if s = l. Moreover, the second-order expansion of rZV∞ in (35))

gives:

rZV∞ = − ln(β)− ln(α+ (1− α)zu′(δ))− 4Ω2(1− πl)ηl
[
(Σπ − 1)(zu′(δ)− 1)2

]
a2

+ 4Ω2(1− πl)ηlzu′(δ)
[
(Σπ)(α+ (1− α)zu′(δ))− 2(Σπ − 1)

]
aε

− 4Ω2(1− πl)ηl
[
(Σπ − 1)

(
(1− α)zu′(δ)

)2]
ε2. (41)

The average short yield is r̄ZV1 = ηlrl1 +
(
1− ηl

)
rh1 and the slope is ∆ZV = rZV∞ − r̄ZV1 .

1. Yield curve without aggregate shocks. Without aggregate shocks, (20) gives rk =

− ln(β)− ln(α+ (1− α)zu′(δ)), k = 1, . . . , n.

2. Impact of α on level and the slope of the yield curve The level effect is proven by

induction. From (33)—(34) and with αl = αh = α, we have, for k = 1,

∂ (ps1/z
s)

∂α
= βπs

[(
1− zsu′ (δ)

) 1

zs

]
+ β (1− πs)

[(
1− zs̄u′ (δ)

) 1

zs̄

]
, s = l, h,

29



which is negative since 1− zsu′ (δ) < 0 (by Assumption B). For k ≥ 2, we have

∂ (psk/z
s)

∂α
= βπs

[(
1− zsu′ (δ)

) psk−1

zs
+
(
α+ (1− α) zsu′ (δ)

) ∂ (psk−1/z
s
)

∂α

]

+β (1− πs)
[(

1− zs̄u′ (δ)
) ps̄k−1

zs̄
+
(
α+ (1− α) zs̄u′ (δ)

) ∂ (ps̄k−1/z
s̄
)

∂α

]
,

We know that 1−zsu′ (δ) < 0, psk−1 > 0 and α+(1− α) zsu′ (δ) > 0. Thus, if ∂
(
psk−1/z

s
)
/∂α <

0 for s = l and s = h, then ∂ (psk/z
s) /∂α < 0 for s = l and s = h. Since ∂ (ps1/z

s) /∂α < 0, s = l, h,

this is true for all k ≥ 1. It follows that a rise in idiosyncratic volatility (a fall in α) raises all bond

prices, and thus lowers all bond yields, in both aggregate states. By implication, the same is true

of the average yield curve.

From Lemma 2, when a = 0 we have

∂∆ZV

∂α
= 4Ω3(1− πh)(1− πl)(Σπ)

[
α(2− Σπ)2 + (1− α)zu′(δ)

]
zu′(δ)ε2 > 0.

3. Greater slope under incomplete markets/zero-volume than under complete markets

From Lemma 2, the slope is a quadratic concave function in a (negative coeffi cient in a2) that admits

a unique maximum. It is then easy to check that the maximal value of the slope is ∆ZV
max, with:

∆ZV
max −∆CM =

2(2− Σπ)(1− πh)(1− πl)(Σπ)

(3− Σπ)(Σπ − 1)
ε2 > 0,

where ∆CM = 2ηl(1− πl)(Σπ)ε2 is the slope in the complete-market case.

D. Proof of Proposition 4

1. Equilibrium portfolios. We proceed by construction: we first conjecture, and then derive a

suffi cient condition for, the existence of an equilibrium in which employed agents hold symmetric

portfolios and never face a binding borrowing constraint, while unemployed are always borrowing-

constrained and hold no bond. Formally, we conjecture, for k = 1, ...n:

eit = 1⇒ ϕit,k = 0 and eit = 0⇒ ϕit,k > 0. (42)

Conjectured consumption levels and equilibrium pricing kernel. Consider first the consumption level

of an unemployed agent at date t. If the agent was employed at date t− 1, then from the budget

constraint (7) and conjecture (42) the agent liquidates his entire portfolio and consume

cit = δ +
n∑
k=1

pt,k−1 b
i
t−1,k (> 0) . (43)

If, however, this agent was already unemployed at date t − 1, then by (7) and (42) the agents
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consumes cuut = δ > 0.

Now consider the consumption level of an employed agent at date t. From (12), this agent

enjoys marginal utility 1/zt regardless of ei,t and consumes cet = u′−1 (1/zt) (> 0). If this agent

stays employed in the next period (which occurs with probability α), he will enjoy marginal utility

1/zt+1 (again by (12)). If, on the contrary, this agent moves into unemployment in the next

period (which occurs with probability 1− α), then his marginal utility will be u′
(
cit+1

)
, where by

construction cit+1 is given by (43). Then, substituting these marginal utilities into the intertemporal

optimality conditions for employed agents (13) under conjecture (42), we obtain the following set

of Euler equations:

pt,k
zt

= αβEt

[
pt+1,k−1

zt+1

]
+ (1− α)βEt

u′
δ +

n∑
j=1

pt+1,j−1b
i
t,j

 pt+1,k−1

 , k = 1, . . . , n. (44)

From (44), the bond demands bit,j are functions of aggregate variables only. Total supply

being Bk, market clearing requires that bt,k = Bk/ω
e, meaning that no agent holds negative bond

quantities. Substituting it in (44) together with (4), we express prices as a function of aggregate

variables only.

Following the same steps, borrowing constraint condition (42) becomes:

pt,k u
′ (δ) > β (1− ρ)Et

[
pt+1,k−1

zt+1

]
+ βρEt

[
pt+1,k−1u

′ (δ)
]
, (45)

where τ t is given by (4). On the other hand, agents who were employed at date t − 1 and who

become unemployed at date t face a binding borrowing constraint if and only if, for all k = 1, . . . , n:

pt,k u
′

δ +

n∑
j=1

pt,j−1Bj
ωe

 > β(1− ρ)Et

[
pt+1,k−1

zt+1

]
+ βρEt

[
pt+1,k−1u

′ (δ)
]

(46)

Since (46) implies (45), we only need to check that the equilibrium satisfies (46).

We prove the equilibrium existence in three steps. First, we derive initial conditions allowing

us to avoid transitory dynamics. Second, we show the equilibrium exists when volumes are 0 and

when there is no aggregate shocks. Third, we show by a continuity argument that the equilibrium

exists when volumes and aggregate shocks are small. The technical part is the proof of continuity.

Conditions on agents’ initial wealth. We assume that employed agents enter period 0 holding

a quantity of bonds b−1,k = Bk/ω
e with probability α, and no bond with probability 1 − α.

Unemployed agents hold no bond with probability ρ, and b−1,k = Bk/ω
e bonds with probability

1 − ρ. The initial joint distribution of employment status and bond holdings is thus identical to
the stationary distribution.

Existence of a no-trade equilibrium without aggregate shocks. If assets are in zero net supply, then

there is no trade between agents and both the liquidation value of the portfolio and taxes will be
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equal to zero. Without aggregate uncertainty zh = zl = z, one easily finds the price of a one period

bonds p = mZV , where mZV is given by (20). Rearranging (46) yields the following inequality:

(α+ (1− α)zu′ (δ)) zu′ (δ) > 1− ρ + ρ zu′ (δ). Since zu′ (δ) > 1 by assumption B, the right hand

side is maximum at ρ = 1, in which case the inequality remains true for any value of α; hence the

no-trade equilibrium exists in the economy with zero volume and without aggregate risk.

Continuity of the yield curve w.r.t. bond supplies and aggregate shocks. Let us introduce the

following change of variables, which greatly simplifies the algebra:

Csk = psk/z
s, s = h, l, k = 1, . . . , n. (47)

Solving for Csk is equivalent to solving for prices (given the z
ss). We now define B ≡ [Bn . . . B1]>

as the vector of bond quantities for the n maturities, Z ≡
[
zl zh

]>
as the vector of productivity

levels, and C ≡
[
Chn C ln . . . C

h
0 C l0

]>
as the vector of price coeffi cients. 1n and 0n are vectors of

length n containing respectively only ones and zeros. We then have the following lemma:

Lemma 3 (Equilibrium existence). There are neighbourhoods B of 0n and Z of 12, such that if

B ∈ B and Z ∈ Z then C is a C1 function of B and of Z.

Proof. Let us first define X ≡ [zh zl B>] and vs ≡ v
(
δ + (zs/ωe)

∑n
j=1C

s
j−1Bj

)
, whether

v = u′ or u′′ (for example, u′h ≡ u′(δ +
(
zh/ωe

)∑n
j=1C

h
j−1Bj)). Finally, let 1cond. be the function

that takes value 1 when cond. is true and 0 otherwise, and

M(C,X) ≡ β
[

πh(α+ (1− α) zh u′h) (1− πh)(α+ (1− α) zl u′l)

(1− πl)(α+ (1− α) zh u′h) πl(α+ (1− α) zl u′l)

]
. (48)

Since bij = Bj/ω
e, (44) can be written as follows:

[ Chk C lk ]> = M(C,X) · [ Chk−1 C lk−1
]> for k = 1, . . . , n. (49)

By stacking equalities, we rewrite (49) as f(C,X) = 0(2n+2)×1, where f is the following C1

function:

f(C,X) ≡ C −


02×2 M(C,X) 02×2 . . . 02×2
...

. . .
. . .

...
...

. . . M(C,X)

02×2 . . . 02×2

 C −


0
...

0

1/zh

1/zl


.

To prove that C is a C1 function of B and Z, we show that the Jacobian of f w.r.t. C is

invertible. The derivatives of f w.r.t.
(
Csn−i

)
i=0,...,n

can be written as ∂f/∂Csn−i = Γsn−i + Ks
n−i,
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i = 0, . . . , n, with Γsn−i defined, for i = 0, as Γsn ≡ [1s=h, 1s=l, 02n]> and, for i = 1, . . . , n, as

Γsn−i ≡



02(i−1)×1

−β (α+ (1− α)zsu′s) π̃hs

−β (α+ (1− α)zsu′s) π̃ls

1s=h

1s=l

02(n−i)×1

 ←− Rank 2i+ 1

←− Rank 2i+ 2,

where π̃hh ≡ πh, π̃lh ≡ 1− πl, π̃ll ≡ πl, π̃hl ≡ 1− πh and

Ks
n−i ≡ −β (1− α) [Bn+1−i 1i>0/ω

e] (zs)2 u′′s

×
[
π̃hsCsn−1, π̃

lsCsn−1 . . . , π̃
hsCs0 , π̃

lsCs0 , 0, 0
]>

for i = 0, . . . , n.

The Jacobian DfY = ( ∂f
∂Chn

, ∂f
∂Cln

, . . . , ∂f
∂Chn−i

, ∂f
∂Cln−i

, . . . , ∂f
∂Ch0

, ∂f
∂Cl0

) of f w.r.t. to C can be ex-

pressed as the sum of an upper triangular matrix with only 1s on its diagonal and a matrix that

is equal to 0 when B = 0 (because Ks
n−i = 0 if B = 0). The Jacobian is thus invertible for B = 0.

Then, the implicit function theorem allows us to prove that C is a continuous (in fact C1) function

of
[
B> Z>

]
in a neighbourhood V1 of

[
0>n 1>2

]
. Moreover, if

[
B> Z>

]
=
[
0>n 1>2

]
, then C satisfies

conditions (46). By continuity, there exists a neighbourhood V2 ⊂ V1, such that condition (46) is

satisfied if
[
B> Z>

]
∈ V2. �

The lemma establishes that, starting from a no uncertainty/zero net supply situation, a gradual

increase in aggregate risk or bond supplies does not cause the yield curve to jump. Since the

equilibrium exists in the zero-volume/no aggregate uncertainty case, it also exists when volumes

and aggregate risk are suffi ciently small (that is, (46) holds).

2. Pricing kernel decomposition Substituting the market-clearing condition bt,k = Bk/ω
e

into the Euler equation (44) and rearranging gives the bond-pricing equation and the corresponding

pricing kernel components in the proposition.

E. Proof of Proposition 5

1a. Impact of bond supplies on the level of the yield curve. We prove the result by

induction. Taking the derivative of (49) w.r.t. to Bi, 1 ≤ i ≤ n, we get:

∂Cζk
∂Bi

= β
∑
s=h,l

π̃ζs

(α+ (1− α)zsu′s)
∂Csk−1

∂Bi
+

(1− α)Csk−1(zs)2u′′s

ωe

n∑
j=1

(
∂Csj−1

∂Bi
Bj + Csi−1

)
(50)

where u′s and u′′s are defined in the proof of Lemma 3, and the π̃s are as in Lemma 3.
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• The result holds for k = 1, since for small bond supplies we have

∂Cζ1
∂Bi

≈ β (1− α)u′′ (δ)

ωe

∑
s=h,l

π̃ςszsCsi−1 < 0.

• Suppose that the result holds for k − 1:
∂Chk−1
∂Bi

,
∂Clk−1
∂Bi

< 0. Since Csj−1 is a C1 function of Bi,
∂Csj−1
∂Bi

is continuous in Bi and Bj
∂Csj−1
∂Bi

is negligible relative to Csi−1 for small bond supplies.

Then, (50) implies ∂Chk
∂Bi

< 0, so that greater bond supply decreases prices (i.e., raises yields).

1b. Impact of bond supplies on the slope of the yield curve. Diagonalising M(C,X) in

(48), we get M(C,X) = βQDQ−1, where Q is a invertible matrix and D = Diag(ν̃1, ν̃2), with

ν̃1 = H + ν̃2 =
1

2

(
α
(
πh + πl

)
+ (1− α)

(
zhu′hπh + zlu′lπl

)
+H

)
, and

H ≡
[ (

α(πh + πl) + (1− α)(zhπh u′h + zlπl u′l)
)2

−4(πh + πl − 1)(α+ (1− α)zh u′h)(α+ (1− α)zl u′l)

]1/2

> 0.

Using Lemma 1, the long yield rPV∞ is given by:

lim
k→∞

rhk = lim
k→∞

rlk = − lnβ − ln (ν̃1) . (51)

From (48)—(49) and the fact that Cs0 = 1/zs, the short yield in state s is:

rs1 = − ln ps1 = − lnβ − ln
[
πs(α+ (1− α)zsu′s) + (1− πs)(αzs/zs̄ + (1− α)zsu′s̄)

]
, s = l, h,

where s̄ is the state opposite to s.

As in proof of Proposition 3, we consider a mean preserving spread in z and carry out a second-

order Taylor expansion of the derivative of the slope of the yield curve w.r.t. to an increase in bond

supplies of maturity j (i.e., ∂∆PV

∂Bj
=

∂(rPV∞ −((1−ηl)rh1+ηlrl1))
∂Bj

) around ε = 0 and zero net volumes.

The next section presents a second-order Taylor expansion of ∆PV for the case of i.i.d. shocks,

which leads to the expressions in (26)—(27). For a general shock process, we only focus on the

expansion of ∂∆PV

∂Bj
. We just state the result here and leave the proof in the separate technical

appendix. In the general case, the derivative of the slope of the yield curve w.r.t. to an increase in

bond supplies of maturity j is found to be:

∂∆PV

∂Bj

∣∣∣∣
Bk=0, k=1,...,n

=
4Ω2(1− πh)(1− πl)(Σπ)

(
(2− Σπ)2α+ (1− α)zu′(δ)

)
(2− Σπ)(α+ (1− α)zu′(δ))2−j

× (1− α) (−zu′′(δ))
ωe

βj−1

(
α+ 1j>1

j−2∑
i=0

(Σπ − 1)i
(
(2− Σπ)α+ (1− α)zu′(δ)

))
ε2,

with 1j>1 = 1 if j > 1 and 0 if j = 1, and where Σπ = πl+πh and Ω ≡ [(2− Σπ)(α+ (1− α)zu′(δ))]−1.
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The impact on volumes the slope is thus positive.

2. Impact on the slope of an increase in the relative supply of short bonds. From

the latter expression we have ∂∆PV /∂B1 < ∂∆PV /∂Bj>1, an increase in the supply of one-period

bonds increases less the slope of the yield curve than an increase in the supply of bonds of any

maturity greater than one.

F. Positive net bond supplies: explicit formulas in the i.i.d. case

First, we have Ch0 = (1 + ε)−1 and C l0 = (1− ε)−1. Using the recursion (48)—(49) to compute Cs1 ,

s = l, h and rearranging, we find

Cs1 =
αβ

1− ε2
+ (1− α)βu′(δ) +

(1− α)βu′′(δ)

2

(1 + ε)
n∑
j=1

Chj−1

Bj
ωe

+ (1− ε)
n∑
j=1

C lj−1

Bj
ωe

)

 ,
which in turn implies that Ch1 = C l1 ≡ C1. The same recursion gives, for j ≥ 2,

Csj
Csj−1

= αβ + β(1− α)u′(δ) + β
(1− α)u′′(δ)

2

(1 + ε)
n∑
j=1

Chj−1

Bj
ωe

+ (1− ε)
n∑
j=1

C lj−1

Bj
ωe

)

 .
By induction, Chj = C lj ≡ Cj for all j ≥ 1, so the latter two equations can be written as:

C1 =
αβ

1− ε2
+ (1− α)βu′(δ) + (1− α)βu′′(δ)

B1

ωe
+

n∑
j=2

Cj−1
Bj
ωe

 , (52)

Cj
Cj−1

= βα+ β(1− α)u′(δ) + β(1− α)u′′(δ)

B1

ωe
+ (1 + ε2)

n∑
j=2

Cj−1
Bj
ωe

 . (53)

Equations (52)—(53) define a system of n equations with n unknown, the Cjs. The solution

to this system expresses the vector [Cj ]
n
j=1 as a function of ε

2, and for small shocks we have

Cj ' Cj +
(
∂2
εCj

)
ε2, j = 1, . . . , n, where Cj is the value of Cj without aggregate shocks and(

∂2
εCj

)
≡ ∂Cj/∂ε

2
∣∣
ε2=0

(both the Cjs and the
(
∂2
εCj

)
s are undetermined coeffi cients at this stage).

Moreover, we define W ≡ 1
ωe
∑n

j=1 p̄j−1Bj = 1
ωe
∑n

j=1Cj−1Bj as the value of the portfolio without

aggregate shocks, W 2 ≡ W − B1/ω
e = 1

ωe
∑n

j=2Cj−1Bj the same value excluding holdings of

one-period bonds, and
(
∂2
εW
)
≡ 1

ωe
∑n

j=2

(
∂2
εCj−1

)
Bj as the change in the value of the portfolio

following a marginal change in ε2. Computing the first-order approximations to the right hand
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sides of (52)—(53) around ε2 = 0, we get

C1 ' αβ + (1− α)βu′(δ) + (1− α)βu′′(δ)W︸ ︷︷ ︸
=C̄1

+
(
αβ + (1− α)βu′′(δ)

(
∂2
εW
))︸ ︷︷ ︸

=(∂2εC1)

ε2, (54)

Cj
Cj−1

= αβ + (1− α)βu′(δ) + (1− α)βu′′(δ)W︸ ︷︷ ︸
=C̄1

+ β(1− α)u′′(δ)
(
W 2 +

(
∂2
εW
))︸ ︷︷ ︸

≡µ

ε2. (55)

From (55), we have, for j ≥ 2, Cj = Cj−1C̄1 + Cj−1µε
2. Using this recursion starting at

C1 = C̄1 +
(
∂2
εC1

)
ε2 and neglecting terms in ε4, we find that, for j ≥ 1,

Cj '
(
C1

)j
+
(
C1

)j−1
(
(
∂2
εC1

)
+ (j − 1)µ)ε2,

where C̄j =
(
C1

)j
. Now substitute the values for

(
∂2
εC1

)
and µ in (54) and (55) into the latter

expression to find

Cj '
(
C1

)j
+
(
C1

)j−1
(αβ + (1− α)βu′′(δ)

[
(j − 1)W 2 + j

(
∂2
εW
)]

)ε2.

For small bond volumes, the terms in W, W 2 and
(
∂2
εW
)
(which include the Bjs) are second-

order relative to αβ, so the latter equation gives Cj '
(
C1

)j
+ αβ

(
C1

)j−1
ε2, where C1 ' αβ +

(1− α)βu′(δ) (by (54)). Since Cj ' Cj +
(
∂2
εCj

)
ε2, this implies that

(
∂2
εCj

)
' αβ

(
C1

)j−1
, which

in turn gives Cj '
(
C1

)j
+ αβ

(
C1

)j−1
ε2. We infer

(
∂2
εW
)
to be:

(
∂2
εW
)

=
n∑
j=2

(∂εCj−1)Bj
ωe

'
n∑
j=2

αβ
(
C1

)j−2
Bj

ωe
=
αβ
∑n

j=2

(
C1

)j−1
Bj

ωeC1

=
αW 2

α+ (1− α)u′(δ)
.

(56)

From (51), the long yield in the i.i.d. case is

rPV∞ = − ln(β)− ln

(
α+

1− α
2

((1 + ε)u′h + (1− ε)u′l)
)
, (57)

with u′s = u′
(
δ + 1

ωe
∑n

j=1 p
s
j−1Bj

)
. Since psj−1 = Cj−1z

s for j ≥ 2 and ps0 = 1, we have

u′s = u′

δ +
B1

ωe
+

1± ε
ωe

n∑
j=2

Cj−1Bj

 ' u′ (δ) + u′′(δ)

B1

ωe
+

1± ε
ωe

n∑
j=2

Cj−1Bj

 ,

and hence, again neglecting terms in ε4,

(1 + ε)u′h + (1− ε)u′l)
2

= u′ (δ) + u′′(δ)

B1

ωe
+

1 + ε2

ωe

n∑
j=2

Cj−1Bj


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' u′ (δ) + u′′(δ)

(
W̄ +

1

ωe
.
∂
(
1 + ε2

)∑n
j=2Cj−1Bj

∂ε2
.ε2

)
' u′ (δ) + u′′(δ)

(
W +

(
W 2 +

(
∂2
εW
))
ε2
)
.

Substituting this expression into (57) and using the value of
(
∂2
εW
)
in (56), we find

rPV∞ = − ln(β)− ln

(
α+ (1− α)u′ (δ) + (1− α)u′′(δ)

(
W +W 2ε

2 +
αW 2

α+ (1− α)u′(δ)
ε2

))
(58)

The linearisation of (58) around
(
W,W 2

)
= (0, 0) , with W 2 = W − B1/ω

e = W − b1, gives
(26) in the body of the paper.

Let us now turn to the short yield. Under i.i.d. shocks, the average short yield is

r̄PV1 = −1
2

∑
s=l,h lnC1z

s = − lnC1 −
ln(1−ε2)

2 . With ε2 small, we have − ln
(
1− ε2

)
/2 ' ε2/2,

while C1 is given by (54) and
(
∂2
εW
)
by (56)). This gives:

r̄PV1 ' ε2

2
− lnβ − ln

(
α+ (1− α)u′(δ) + (1− α)u′′(δ)W + αε2 +

α(1− α)u′′(δ)W 2

α+ (1− α)u′(δ)
ε2

)
Linearising the latter expression around

(
W,W 2

)
= 02, we obtain

rPV1 ' − ln(β) +
ε2

2
− ln

(
α+ (1− α)u′(δ) + αε2

)
− (1− α)u′′(δ)W

α+ (1− α)u′(δ) + αε2
− α(1− α)u′′(δ)ε2

[α+ (1− α)u′(δ) + αε2] [α+ (1− α)u′(δ])
W 2. (59)

For small ε2 small, this expression gives (27) in the body of the paper.
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