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A hybrid approach for the estimation of

time-varying delays of discrete-time systems

M. Halimi ∗ G. Millerioux ∗ J. Daafouz ∗

∗ Université de Lorraine, Centre de Recherche en Automatique de
Nancy, France

Abstract: This paper addresses the problem of the estimation of unknown time-varying delays
of discrete-time systems. The problem is reformulated as a mode detection for hybrid systems
with a switching law depending on the unknown delay. Some existing data-based residual
methods used for the estimation of the mode of switching linear discrete-time systems are
briefly reviewed and presented in a unified way. Furthermore, it is shown that the usual existence
conditions of some detectors can be relaxed. Next, results concerning the so-called discernibility
property are particularized to the hybrid formulation of the estimation problem. Finally, it is
shown that the issue is especially interesting in the context of chaotic secure communications
both for information recovery and cryptanalysis purposes.

1. INTRODUCTION

Time-delay systems have been the subject of intensive
researches over the years. This is due to the fact that
time delays are inherent in many real physical systems,
such as mechanical systems, chemical processes, biology,
transportation or communication systems and econometric
models. The estimation of time delays of dynamical sys-
tems has received considerable attention in automatic con-
trol. However, most of the available methods are dedicated
to continuous systems. A review and a comparison of the
estimation techniques is proposed in Bjorklund and Ljung
[2003]. In the two last decades, there has been an increas-
ing interest in delayed chaotic systems for communication
purposes. Indeed, the delays increase the system complex-
ity and so is interesting for enhancing confidentiality. A
pioneering work dealing with opto-electronic communi-
cation systems has been first reported in Mirasso et al.
[1996]. Since then, performances have been improved and
nowadays, very high throughputs communication systems
can be designed as in Lavrov et al. [2010]. An overview
on this topic can be found in Uchida et al. [2005] where
the interest of non-linear delayed feedback chaotic laser
systems is pointed out. The estimation of the delay is an
important issue in this context since it might play the role
of the secret parameter in secure communication. Discrete-
time delayed systems have been proposed to increase the
security of chaotic communications in Zheng et al. [2008].
However, the question of the security in terms of the
complexity for the recovey of the time-varying delayed
sequence injected into a chaotic systems is not discussed.
As it turns out, the general problem of the estimation of
the delay for discrete-time systems is rather scarce. This
motivates the present work.

The key idea of this paper consists in formulating the
estimation problem of time varying delays as a mode de-
tection problem for an equivalent switched linear system.
To this end, it is used the switched system transformation
approach of Hetel et al. [2008] Nikolakopoulos et al. [2005]
Tzes et al. [2005] where the switching signal changes ac-

cording to the delay. The delay is assumed to be unknown
but lies in a finite and known set.

This paper is organized as follows. In Section 2, the prob-
lem of the estimation of the delay is formulated as a mode
detection for hybrid systems. Some existing data-based
residual methods used for the estimation of the switch-
ing law are briefly reviewed and presented in a unified
way. Then, a new detector is proposed. The problem of
uniqueness of the mode detection is discussed in Section 3.
The corresponding notions of Discernibility and Backward
Discernibility are recalled. Then, the discernibility prop-
erty is particularized to the case of the hybrid formulation
of the estimation problem. In Section 4, a comparison
between the different estimators is carried out. Section 5
is devoted to a summary of the step by step procedure for
the estimation. It is followed by an application where delay
estimation is particularly useful: chaotic-based communi-
cation. The example involving chaotic signals is well suited
to highlight the efficiency of the method which applies
without any restrictions on the time variation of the delay.
In particular, no assumption on the dwell-time is required.
Notation: R

n is the n-dimensional set of real numbers
and Z

+ is the set of positive integers. 1 is the identity
matrix and 0 is the zero matrix, both being of appropri-
ate dimension when unspecified. XT is the transpose of
the matrix X. The matrix X† stands for the generalized
inverse (Moore-Penrose) of X satisfying X†X symmetric,
XX† symmetric, XX†X = X and X†XX† = X†. ker(X)
stands for the kernel of the matrix X.

2. HYBRID FORMULATION

2.1 Problem statement

Let us consider the discrete time delayed system given by
{

xk+1 = A1xk +A2xk−τ(k) +Buk

yk = Cxk
(1)

where k is the natural number standing for the discrete-
time, xk ∈ R

n is the state vector, yk ∈ R
m is the



output, uk ∈ R
p is the input. The matrices A1 ∈ R

n×n,
A2 ∈ R

n×n, B ∈ R
n×p and C ∈ R

m×n are respectively
the dynamical, the input and the output matrices. The
quantity τ(k) is the time-varying delay. It is assumed to
take values in a finite set assumed to be known: τ(k) ∈
{0, 1, · · · , α}. The time variation is arbitrary. The case
when τ(k) is not directly accessible is considered. The
objective is to estimate τ(k) based on the knowledge of
the model, the sequences of uk and yk. To this end, we
propose to rewrite (1) as a hybrid system. That constitutes
the central starting point of the approach. Defining

Xk =













xk

xk−1

xk−2

...
xk−α













, Uk = uk, Yk = yk (2)

system (1) can be equivalently rewritten as
{

Xk+1 = Aτ(k)Xk + Bτ(k)Uk

Yk = CXk
(3)

where Xk ∈ R
N with N = (α+1)n, Yk ∈ R

m and Uk ∈ R
p

Aτ(k) =

[

V Vα

1n.α 0

]

, Bτ(k) =

[

B
0

]

, C = [C 0 ]

with
V = [ V0 V1 · · · Vα−1 ]

and Vi defined as

V0 =

{

A1 +A2 if τ(k) = 0
A1 if τ(k) 6= 0

Vi 6=0 =

{

A2 if τ(k) = i
0 if τ(k) 6= i

System (3) can be considered as a switching linear system
that switches between ”α + 1” modes depending on the
value of the unknown delay τ(k).

This being the case, estimating τ(k) amounts to estimate
the mode of the hybrid equivalent system (3). Hereafter,
τ[k1,kh] = {τ(k1) · · · τ(kh)} will denote the finite sequence
of delays in the interval of time [k1, k2]. Based on the
equivalent hybrid formulation, τ[k1,kh] is referred to as a
sequence (or a path) of modes. In the following, we review
some different mode detection methodologies which apply
for switched linear systems and present them in a unified
way. Then, a new detector is proposed.

2.2 Mode detectors

There mainly exist two approaches to perform a mode
detection for switched linear systems. All are based on
the consideration of the following equation, obtained by
stacking up the successive outputs Yk in the interval of
time [k − h, k].

Yk−h,k = Oτ[k−h,k]
Xk−h + Tτ[k−h,k]

Uk−h,k (4)

where
Akh

k1
= Ak1

Ak2
· · · Akh

Bkh

k1
=

[

A
kh−1

k1
Bkh

· · · Ak2

k1
Bk3 Ak1Bk2 Bk1

]

Yk1,k2 =









Yk1

Yk1+1

...
Yk2









, Uk1,k2 =









Uk1

Uk1+1

...
Uk2









Oτ[k−h,k]
is the observability matrix in the finite observa-

tion window [k − h, k] defined as

Oτ[k−h,k]
=

















C
CAτ(k−h)

...

CA
τ(k−h)
τ(k−2)

CA
τ(k−h)
τ(k−1)

















Tτ[k−h,k]
=

















0 0
CBτ(k−h) 0

...
...

CB
τ(k−h)
τ(k−2) 0

CB
τ(k−h)
τ(k−1) 0

















Detector 1 A first mode detector has been proposed in
Babaali and Egerstedt [2005]. The mode detector delivers
the true mode τ∗(k − 1) whenever the mode fulfills

τ∗(k − 1) =
{

j ∈ {0, · · · , α} |Yk−h,k − Tτ[k−h,k]
Uk−h,k ∈

R(Oτ[k−h,k]
)
}

(5)
where R(•) is the "column range space" of matrix.
A way of verifying (5) is derived from the following
equivalence. Given a vector Y ′ and a matrix O, X being
unknown, it holds that

Y ′ ∈ R(O) ⇔ ∃X |Y ′ = OX ⇔ (OO† − 1)Y ′ = 0

Now, letting Y ′ = Yk−h,k − Tτ[k−h,k]
Uk−h,k and O =

Oτ[k−h,k]
, it can be defined a quantity called residual having

the following form

r1h,τ = (Oτ[k−h,k]
O†

τ[k−h,k]
− 1)(Yk−h,k − Tτ[k−h,k]

Uk−h,k)

(6)
If the estimation of τ(k) is correct up to the time k − 2,
the true mode τ∗(k − 1) is such that the corresponding
residual fulfills

r1h,τ∗ = 0 (7)

Detector 2 Another detector has been introduced in
Domlan et al. [2007]. For such a detector, it is assumed
a so-called pathwise observability (PWO) first introduced
in Babaali and Egerstedt [2003].

Definition 1. (Babaali and Egerstedt [2003])
The system (3) is pathwise observable (PWO) if there

exists an integer h such that every path τ[k−h,k−1] of length
h is observable, i.e. satisfies rank(Oτ[k−h,k]

) = N . The
smallest integer h is called the index of PWO.

Then, assuming that system (3) is PWO, it is defined a
so-called projection matrix fulfilling

Ωτ[k−h,k]
Oτ[k−h,k]

= 0 (8)

It turns out that Ωτ[k−h,k]
corresponds to the left null space

of Oτ[k−h,k]
. Finally, a residual having the following form

is proposed

r2h,τ = Ωτ[k−h,k]
[Yk−h,k − Tτ[k−h,k]

Uk−h,k] (9)

If the estimation of τ(k) is correct up to the time k − 2,
the true mode τ∗(k − 1) is such that the corresponding
residual fulfills

r2h,τ∗ = 0 (10)



Detector 3 Before proceeding further, let us recall a
result provided in Paoletti et al. [2008]. Let us notice that
it is restated here with the notation of the present paper.

Theorem 1. System (3) admits an equivalent SARX rep-
resentation if and only if there is h ∈ Z

+ such that for
every mode sequences τ[k−h,k−1], there exists a vector Ξ
verifying

ΞOτ[k−h,k−1]
= CA

τ(k−h)
τ(k−1) (11)

Whenever Theorem 1 is fulfilled, the SARX model is given
by

Yk = Θτ[k−h,k]
vk (12)

with

Θτ[k−h,k]
=

[

Ξ
(1)
l Ξ

(2)
l

]

and
vk = [Yk−h · · ·Yk−1 Uk−h · · ·Uk−1 Uk]

T

where

• Ξ
(1)
l : solution of (11),

• Ξ
(2)
l =

[

CB
τ(k−h)
τ(k−1) 0

]

− Ξ
(1)
l Tτ[k−h,k−1]

.

The solution of the equation (11) reads

Ξ
(1)
l = CA

τ(k−h)
τ(k−1) O†

τ[k−h,k−1]
+QT

τ (1−

Oτ[k−h,k−1]
O†

τ[k−h,k−1]
)

(13)

with Qτ an arbitrary matrix.
If Theorem 1 is fulfilled, the following residual can be
proposed

r3h,τ =
[

−Ξ
(1)
l 1

]

(Yk−h,k − Tτ[k−h,k]
Uk−h,k) (14)

Hence, a new mode detector can be proposed as defined in
the following proposition.

Proposition 1. Whenever Theorem 1 is fulfilled, if the
estimation of τ(k) is correct up to the time k− 2, the true
mode τ∗(k − 1) is such that the corresponding residual
fulfills

r3h,τ∗ = 0 (15)

Proof 1. From (12), if Theorem 1 is fulfilled, the following
equality holds

∆ = Yk −Θτ∗

[k−h,k]
vk = 0 (16)

The quantity ∆ can be rewritten as follows

∆ = Yk −
[

Ξ
(1)
l Ξ

(2)
l

]

[

Yk−h,k−1

Uk−h,k

]

= Yk − Ξ
(1)
l Yk−h,k−1 − Ξ

(2)
l Uk−h,k

=
[

−Ξ
(1)
l 1

]

[

Yk−h,k−1

Yk

]

− (
[

CB
τ∗(k−h)
τ∗(k−1) 0

]

− Ξ
(1)
l Tτ∗

[k−h,k−1]
)Uk−h,k

=
[

−Ξ
(1)
l 1

]

Yk−h,k −
[

−Ξ
(1)
l 1

]

[

Tτ∗

[k−h,k−1]

CB
τ∗(k−h)
τ∗(k−1) 0

]

Uk−h,k

=
[

−Ξ
(1)
l 1

]

(Yk−h,k − Tτ∗

[k−h,k]
Uk−h,k)

Finally, we get that

∆ = r3h,τ∗ = 0

which completes the proof.

3. UNICITY OF RESIDUALS

3.1 Discernibility

The important question which arises is the unicity of
the solution delivered by the detectors. In other words,
it is worth checking whether a mode detector is able to
discriminate the true sequence from any other ones. Such
an issue is known as the discernibility and is discussed in
Babaali and Egerstedt [2005] and Domlan et al. [2007].
Formally, discernibility obeys the following definition.

Definition 2. For a given detector delivering a residual
rh,τ , two modes sequences τ1 and τ2 are discernible on an
observation window of length h + 1, if the corresponding
residuals rh,τ1 et rh,τ2 are not simultaneously zero when
one of the sequence τ1 or τ2 is the true one.

A necessary and sufficient condition for discernibility of
two sequences is proven in Domlan et al. [2007] and is
recalled below.

Theorem 2. (Domlan et al. [2007]) Two modes sequences
τ1 and τ2 of a switching system are discernible on an
observation window of length h + 1, for almost all initial
conditions Xk−h if:

Ωτ iOτj 6= 0, i, j ∈ {1, 2} , i 6= j (17)

or

Ωτ i(Tτj − Tτ i)Uk−h,k 6= 0, i, j ∈ {1, 2} , i 6= j (18)

Such a condition depends on the structure of the detector
since it involves the matrices Ωτ i . Other conditions have
been established regardless of the structure of the detector,
see in particular Babaali and Egerstedt [2004] and the
following rank condition.

Definition 3. (Babaali and Egerstedt [2004]) A path τ1 is
discernible from another path τ2 of the same length if

rank([Oτ1 Oτ2 ]) > rank(Oτ2) (19)

where [Oτ1 Oτ2 ] denotes the horizontal concatenation of
Oτ1 and Oτ2 . The degree of discernibility is defined as the
integer d satisfying

d = rank([Oτ1 Oτ2 ])− rank(Oτ2)

Whenever (19) is fulfilled, it is said that τ1 is d−discernible
from τ2.

3.2 Backward Discernibility BD

A less restrictive condition to guarantee the unicity of
the solution delivered by the detectors is the so-called
Backward Discernibility (BD). It has been introduced in
Babaali and Egerstedt [2005] and recalled here. We restrict
our attention to the case of autonomous systems since it
will correspond to the situation of our expected applica-
tion. The reader shall refer to Babaali and Egerstedt [2005]
to get further details.

Definition 4. (Babaali and Egerstedt [2005]) A mode i is
BD from another mode j, if there is an integer h such that
for every sequence τ of length h, τi is discernible from
τj. The smallest of such integer h is the index of BD of i
from j.

Clearly, discernibility implies backward discernibility but
the converse is not true. To check backward discernibility



of a mode i from another mode j, it suffices to prove
the following condition which is directly derived from
Definition 3.

Condition 1. A mode i is backward discernible from an-
other mode j if for every sequence τ of length h

rank([Oτi Oτj ]) > rank(Oτj) (20)

3.3 Specificity for time-delayed systems

In this section, it is shown that for the switched linear
system (3) resulting from the equivalent formulation of
the delay estimation, discernibility cannot hold for every
paths. From this perspective, it suffices to show that there
exist sequences for which the rank condition (19) cannot
be fulfilled when τ(k) ∈ {0, 1, · · · , α} with α > 0.
Let us consider the sequences τ1 = 0 · · · 0 and τ2 = 10 · · · 0
of length h. The two respective observability matrices
denoted Oτ1 et Oτ2 read

Oτ1 =









C
CA0

...

CA0
h









=













C 0 · · · 0
C(A1 +A2) 0 · · · 0

C(A1 +A2)
2 0 · · · 0

...
...

...
C(A1 +A2)

h 0 · · · 0













Oτ2 =









C
CA1

...

CA0
h−1A1









=













C 0 0 · · · 0
CA1 CA2 0 · · · 0

C(A1 +A2)A1 C(A1 +A2)A2 0 · · · 0
...

...
...

...
C(A1 +A2)

h−1A1 C(A1 +A2)
h−1A2 0 · · · 0













Denote V1 the first column of Oτ1 , and V2, V
′
2 the first and

the second column of Oτ2 respectively. It can be clearly
seen that V1 = V2 + V ′

2 . As a result,

rank([Oτ1 Oτ2 ]) = rank(Oτ2)

and according to Definition 3, the paths τ1 and τ2 are not
discernible.

4. COMPARATIVE STUDY

This section aims at comparing the different aforemen-
tioned mode detectors.

4.1 Comparison of detector 3 and detector 2

Let us show that the detector 3 is a particular case of
the detector 2. Let us first notice that the conditions (10)
and (15) are based on residuals which get the same form

except that Ωτ[k−h,k]
is replaced by

[

−Ξ
(1)
l 1

]

. Then, it

suffices to show that any solution of the detector 3 is also
a solution of the detector 2. To this end, it must be shown

that
[

−Ξ
(1)
l 1

]T

is in the kernel of OT
τ[k−h,k]

.

Let H2 be defined as

H2 =
[

−Ξ
(1)
l 1

]T

The following equalities are in order.

OT
τ[k−h,k]

H2 =

[

Oτ[k−h,k−1]

CA
τ(k−h)
τ(k−1)

]T

H2

=
[

OT
τ[k−h,k−1]

(CA
τ(k−h)
τ(k−1) )

T
]

[

−Ξ
(1)
l

T

1

]

= −OT
τ[k−h,k−1]

Ξ
(1)
l

T

+ (CA
τ(k−h)
τ(k−1) )

T

= − (Ξ
(1)
l Oτ[k−h,k−1]

)T + (CA
τ(k−h)
τ(k−1) )

T

= − (CA
τ(k−h)
τ(k−1) )

T + (CA
τ(k−h)
τ(k−1) )

T

= 0

meaning that
[

−Ξ
(1)
l 1

]T

is in the kernel of OT
τ[k−h,k]

.

4.2 Comparison of detector 2 and detector 1

Now, we show that the detector 2 is equivalent to the
detector 1. We recall that the residual r2h,τ is built from
the matrices Ωτ[k−h,k]

verifying

Ωτ[k−h,k]
Oτ[k−h,k]

= 0

This equality can be equivalently rewritten as

OT
τ[k−h,k]

ΩT
τ[k−h,k]

= 0

We first notice that the conditions (7) and (10) are based
on residuals which get the same form except that Ωτ[k−h,k]

is replaced by (Oτ[k−h,k]
O†

τ[k−h,k]
− 1). Let us show that a

solution of detector 1 is also a solution of detector 2 and
vice-versa. To this end, define H1 as

H1 = (Oτ[k−h,k]
O†

τ[k−h,k]
− 1)T

We get that

OT
τ[k−h,k]

H1 = OT
τ[k−h,k]

(Oτ[k−h,k]
O†

τ[k−h,k]
− 1)T

= OT
τ[k−h,k]

((O†
τ[k−h,k]

)TOT
τ[k−h,k]

− 1)

= OT
τ[k−h,k]

(O†
τ[k−h,k]

)TOT
τ[k−h,k]

−OT
τ[k−h,k]

= 0

The last equality stems from the definition of the Moore
generalized inverse. Hence, (Oτ[k−h,k]

O†
τ[k−h,k]

− 1)T is in

the kernel of OT
τ[k−h,k]

.

Besides, we have that

dim(Ωτ[k−h,k]
) = (m(h+1)− rank(Oτ[k−h,k]

))×m · (h+1)

and

dim(Oτ[k−h,k]
O†

τ[k−h,k]
− 1) = m(h+ 1)×m(h+ 1)

As a result, whenever Oτ[k−h,k]
6= 0 which always holds

since C 6= 0 (no sense otherwise), one has

dim(Ωτ[k−h,k]
) < dim(Oτ[k−h,k]

O†
τ[k−h,k]

− 1)

meaning that every row (Oτ[k−h,k]
O†

τ[k−h,k]
− 1) can be

obtained by a linear combination of the rows of Ωτ[k−h,k]

and then, span the kernel of OT
τ[k−h,k]

, which proves the

equivalence.

Besides, we can show that the existence condition stated in
terms of PWO for the mode detector 2 (and so detector 1)



to exist, as required in Domlan et al. [2007], can be
relaxed. From this perspective, we can again resort to
condition (11) which is reformulated. First, the following
standard lemma is recalled.

Lemma 3. For any two matrices (W,Z), the equation
W X = Z, with X unknown, has a solution if and only
if rank([W Z]) = rank(W ).

Based on Lemma 3, checking whether Equation (11) has
a solution is equivalent to check the rank condition below

rank(
[

Oτ[k−h,k−1]

T (CA
τ(k−h)
τ(k−1) )

T
]

) = rank(Oτ[k−h,k−1]

T )

which is equivalent to

rank(

[

Oτ[k−h,k−1]

CA
τ(k−h)
τ(k−1)

]

) = rank(Oτ[k−h,k−1]
)

and finally means that

rank(Oτ[k−h,k]
) = rank(Oτ[k−h,k−1]

) (21)

Hence, the lower bound h given in Domlan et al. [2007]
and corresponding to rank(Oτ[k−h,k]

) = N is too restric-
tive. Clearly, if the condition of observability is verified,
i.e, rank(Oτ[k−h,k−1]

) = N for all sequences, (11) has
always a solution. However, we can consider h < N , h
verifying (21) for the detector 2 and so detector 1 to exist.
In other words, the detection horizon h can be chosen
such that the rank of the observability matrices is kept
unchanged considering the horizons of length h− 1 and h.

5. OVERALL PROCEDURE AND APPLICATION TO
CHAOTIC COMMUNICATIONS

5.1 Overall delay estimation procedure

Step 1: hybrid formulation - rewrite system (1) in the
form (3).
Step 2: detection horizon h - find out the minimal
integer h such that (21) is satisfied.
Step 3: discernibility - check whether (19) is fulfilled or
in last resort, find out the sequences which are discernible.
Step 4: backward discernibility - check whether (20)
is satisfied for the non discernible sequences.
Step 5: mode detection - given a detector i = 1, 2 or
3, find out the residuals rih,τ which vanish and infer the
corresponding true mode. Let us notice that, if backward
discernibility is verified for every sequences, an approach
based on a sliding window can be used. Indeed, only the
residuals of the sequences τ∗j (j ∈ {0, . . . , α}) with τ∗

resulting from the previous estimation have to be checked.
That allows to drastically reduce the number of tests.

5.2 Application to chaotic-based communications

The block diagram of the considered communication setup
is depicted in Figure 1. It corresponds to two distinct usual
problems addressed in the literature and solved here in a
unified way. The delay may correspond to, according to
a bijective rule, the information to be encrypted at the
transmitter side. If so, the objective at the receiver side is
to recover the information. The scheme can alternatively
be considered as two cascaded systems. The time-varying
delay results from a chaotic sequence delivered by an
external system supposed to be secret (at least its initial

condition). In this context, we are interested in recover-
ing the “hidden” time-varying sequence for cryptanalysis
purposes. In both situations, a mode detector is needed.
As an example, let us consider the discrete-time delayed

Fig. 1. Communication setup

system given by:






x1(k + 1) = −0.21x1(k) + 0.1x2(k) + 0.69x1(k − τ(k))

x2(k + 1) = x2(k)− 0.1x1(k − τ(k))

yk = 2x1(k) + x2(k)
(22)

where τ(k) ∈ {0, 1} results from a binarized sequences
of the chaotic Lozi map. Chaoticity induces that no dwell
time is guaranteed. The equations for the chaotic Lozi map
read

{

z1(k + 1) = −1.7 |z1(k)|+ z2(k) + 1
z2(k + 1) = 0.5z1(k)

(23)

and its chaotic attractor is shown in Fig. 2.

Hybrid formulation: the switched linear equivalent sys-
tem (3) is obtained with

Xk =

[

xk

xk−1

]

and xk =

[

x1(k)
x2(k)

]

A0 =







0.48 0.1 0 0
−0.1 1 0 0
1 0 0 0
0 1 0 0






, A1 =







−0.21 0.1 0.69 0
0 1 −0.1 0
1 0 0 0
0 1 0 0







C = [ 2 1 0 0 ]

Fig. 2. Chaotic attractor of Lozi map



Detection horizon: the smallest detection horizon h
which verifies (21) is h = 3. As stressed in Subsection 4.2,
it can be noticed that h < N with N = 4.
Discernibility: discernibility is checked using (19). The
result is shown in Table 1. For every true sequence τ∗ of
length 3, the corresponding non discernible sequences of
the same length, if any, are reported on the same line. From

True sequence τ
∗ Sequences τ non discernible from τ

∗

000 100

001 101

010 110

011 111

100 none

101 none

110 none

111 none

Table 1. Discernible sequences

this table, it is clear that condition (19) does not hold for
all sequences, and thus the system is not discernible for
h = 3. Actually, even if we would increase h, discernibility
would never be verified as it is proven in Section 3.3.
For the non discernible sequences, we should check whether
at least Backward Discernibility would be fulfilled. To this
end, we must resort to the rank test (20). It turns out that
BD is verified because for every pairs (i, j) ∈ {0, 1}2, the
following rank condition holds

rank(
[

Oτ∗

[1,2]i
Oτ[1,2]j

]

)− rank(Oτ[1,2]j ) > 0

Delay estimation: since discernibility is not fulfilled for
all sequences, it is not guaranteed that the mode detector
delivers the true first sequence τ∗(0), τ∗(1), τ∗(2). An
exhaustive search over the 23 possible sequences must be
performed. After k = 3, the detector successfully recovers
the “hidden” chaotic sequence as depicted on Figure 3.

Fig. 3. True sequence τ∗ and reconstructed sequence τ

6. CONCLUSION

We have presented an approach to estimate time-varying
delays of discrete-time systems. The problem has been
turned into an equivalent mode detection problem for
switched linear systems. A brief overview of mode de-
tection existing methods has been provided and unified.
Some conditions on the existence of detectors have been

relaxed and a new detector has been proposed. Conditions
on discernibility have been particularized to our special
context taking into account the particular structures of
the matrices resulting from the hybrid formulation of the
delay estimation. Finally, a step-by-step approach has
been proposed and the efficiency of the method has been
highlighted in a chaotic-based communication problem.
The method can be extended in a straightforward way to
switched linear delayed systems.

REFERENCES

M. Babaali and M. Egerstedt. Pathwise Observability
and Controllability are decidable. In Proceedings 42nd
IEEE Conference on Decision and Control (CDC’03),
volume 6, pages 5771–5776, Maui, Hawaii, 2003.

M. Babaali and M. Egerstedt. Observability of Switched
Linear Systems. Hybrids Systems: Computation and
Control, pages 48–63, 2004.

M. Babaali and M. Egerstedt. Asymptotic Observers for
Discrete-Time Switched Linear Systems. In Proceedings
of the 16th IFAC World Congress, Czech Republic, 2005.

S. Bjorklund and L. Ljung. A Review of Time-Delay
Estimation Techniques. In Proceedings 42nd IEEE
Conference on Decision and Control, 2003.

E. A. Domlan, J. Ragot, and D. Maquin. Switching Sys-
tems Mode Estimation using a Model-based Diagnosis
Method. In 8th Conference on Diagnostics of Processes
and Systems, Slubice, Poland, 2007.

L. Hetel, J. Daafouz, and C. Iung. Equivalence Between
the Lyapunov-Krasovskii Functional Approach for Dis-
crete Delay Systems and the Stability Conditions for
Switched Systems. Nonlinear Analysis: Hybrids Sys-
tems, pages 697–705, 2008.

R. Lavrov, M. Jacquot, and L. Larger. Nonlocal non-
Linear Electro-optic Phase Dynamics Demonstrating 10
gb/s Chaos Communications. IEEE Journal of Quant.
Electron, 46(10):1430–1435, 2010.

C. R. Mirasso, P. Colet, and P. Garcia-Fernadez. Synchro-
nization of Chaotic Semiconductor Lasers: Application
to Encoded Communications. IEEE Photon. Technol.
Lett, 8(2):299–301, 1996.

G. Nikolakopoulos, A. Panousopoulou, A. Tzes, and
J. Lygeros. Multi-Hopping Induced Gain Scheduling
for Wireless Networked Controlled Systems. In Pro-
ceedings 44th IEEE Conference on Decision and Control
(CDC’05), Seville, 2005.

S. Paoletti, A. Garulli, J. Roll, and A. Vicino. A Nec-
essary and Sufficient Condition for Input Realization
of Switched Affine State Space Models. In Proceeding
47th IEEE conference on decision and control, Cancun,
Mexico, December 2008.

A. Tzes, G. Nikolakopoulos, and I. Koutroulis. Develop-
ment and Experimental Verification of a Mobile Client-
Client Networked Controlled System. European Journal
of Control, 11(3):229–241, 2005.

A. Uchida, F. Rogister, J. Garcia-Ojalvoand, and R. Roy.
Synchronization and Communication with Chaotic
Laser systems. In Progress in Optics, pages 48:203–341,
2005.

G. Zheng, D. Boutat, T. Floquet, and J.-P. Barbot.
Secure Data Transmission Based on Multi-Input Multi-
Output Delayed Chaotic System. International Journal
of Bifurcation and Chaos, 18(7):2063–2072, 2008.


