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A reduced-order model is constructed to predict, for the low- 1

frequency range, the dynamical responses in the stiff parts

of an automobile constituted of stiff and flexible parts. The

vehicle has then many elastic modes in this range due to tNemenclature

presence of many flexible parts and equipments. A non-usual

reduced-order model is introduced. The family of the elastiGeneral system of notation

modes is not used and is replaced by an adapted vector ba-

sis of the admissible space of global displacements. Sugh A lower case letter is a real deterministic variable.

a construction requires a decomposition of the domain af = (qi1,...,qn) A boldface lower case letter is a real de-
the structure in subdomains in order to control the spatial terministic vector.

wave length of the global displacements. The Fast Marchin@ An upper case letter is a real random variable.

Method is used to carry out the subdomain decompositio®.= (Q1,...,Qn) A boldface upper case letter is a real ran-
A probabilistic model of uncertainties is introduced. The pa- dom vector.

rameters controlling the level of uncertainties are estimated

solving a statistical inverse problem. The methodology is——

validated with a large computational model of an automo- 1preprint submitted to Advances in Mechanical Engineering and ac-
bile. cepted for publication on July 5, 2013



[A] An upper case letter between brackets is a real detdt= Medium Frequency.
ministic matrix. ROM Reduced-Order Model.

[A] A boldface upper case letter between brackets is a reé@lROM  Stochastic Reduced-Order Model.
random matrix.

Particular notation 1 Introduction
Automobiles are complex three-dimensional dynamical
f(w) External force vector. systems for which the prediction of vibration and acoustic

)
7 (o) Generalized external force on the elastic modes. behavior requires highly advanced computational tools. Au-
f9®w) Reduced external force on the global displacemet@mobiles are made up of stiff parts such as hollow bodies

eigenvectors. and flexible parts such as panels and many equipments.
C Setof all the complex numbers and also Hermitian spadéis kind of structure presents in the low-frequency (LF)
of dimension 1. band[5,200 Hz, a very large number of elastic modes (for
C" Hermitian space of dimension instance 1000). The flexible parts of an automobile as well
D] Damping matrix. as equipments are not fully defined during the advanced

Generalized damping matrix on the elastic modes. design phase, that is not the case for the stiff parts. During

D] . : . ;
D% Reduced damping matrix on the global displacemeH’t"S draft design, the flexible panels and equipments are
eigenvectors. not yet completely defined. A vibration analysis in the LF

[K] Stiffness matrix. range is performed during the draft design. Since a noise
[X] Generalized stiffness matrix on the elastic modes. gnd vibration analysis in the LF range_has to bg performed
[K99 Reduced stiffness matrix on the global displacemetl order to assess the advanced design, it is important to

eigenvectors. construct a robust computational model for predicting the
[K99 Random reduced stiffness matrix on the global did-F vibrations of the stiff parts with respect to the design

placement eigenvectors. variations of the flexible parts and the equipments, and
[M] Mass matrix. with respect to uncertainties. The objective of this paper
IM]  Projected mass matrix. is to present a novel approach for constructing an adapted
(%] Generalized mass matrix on the elastic modes. reduced-order model, which does not use the elastic modes
M99 Reduced mass matrix on the global displacememjt which use another vector basis, in order to predict, in

eigenvectors the LF range, the responses of the stiff parts. In addition, it

[M%] Random reduced mass matrix on the global displacér?omd be noted that the multiplication of equipments and
the refinement of meshes yields very large computational

ment eigenvectors. del than 8 milli fd f freed DOF
R Set of all the real numbers and also Euclidean space%Sﬁ €l, more than S miion of degrees ot freedom ( .
mension 1. is aspect increases the. necessity to build reduceq-qrder

" Euclidean space of dimension models with a low dimension and which remain predictive

U(w) Displacement vector in the LF band for the stiff parts.

(ng) imati [
UT(w)  Approximation of the displacement vector on the For automobiles, in the LF band, there are numerous

U9(m) Apglrc())z?r:gtsig:]agsEinrta?gggvﬁicstglr;cement vectof lastic modes with Pr gdomingnt local displ.acements (dis-
on the global displacement eigenvectors. placements at a spgcnﬁc location on thg vehicle) induced by
X Generic point in domai. the presence of erX|bI§ panels ar!d equmentg and there are
S a few elastic modes with predominant global displacements
® Pulsat!on in rad/s. (displacements in phase over all the vehicle). In this LF
£ Domain of.the structure. . band, each elastic mode shows global and local contribu-
2 Subd_omam of the domain of the structure. tions and it is difficult to define an objective criterium in
(Pa‘ Elastic ”.‘Ode- . order to isolate the elastic modes which have predominant
(P;* Global @splacement ¢|genvector. global displacements which would allow us to construct a
s Local displacement eigenvector. reduced-order model to predict the responses of the stiff

p(X) Mass density. parts in the LF band.
Abbreviation In the LF band, the vibration analysis was the subject
of numerous research. The fundamentals and in particular
CROM Classical Reduced-Order Model. the technique of modal analysis are presented in the text-
DOF Degree Of Freedom. books [1-5]. The main techniques of dynamic substructur-
FEM Finite Element Method. ing are developed in the books and papers [4-16]. All these
FMM Fast Marching Method. techniques are very well adapted for the construction of a
FRF Frequency Response Function. reduced-order model in the LF band, when the resonances
HF High Frequency. are relatively well separated (low modal density).

LF Low Frequency. This paper deals with the dynamical analysis of com-



plex automobile structures for which there are global elastauced in the stochastic reduced-order computational model.
modes coupled to numerous local elastic modes in the LThese parameters are identified using the maximum likeli-
band. The construction of a global displacements basis, iheod method for which the experimental data come from pre-
dependently of the frequency band analyzed, has been thieus works [29]. The methodology proposed has been vali-
subject of a few research. Most of them are based on a sgiated in [26] for a simplified model of an automobile (most
tial filtering of the "short” spatial wavelengths. In signal pro-of the equipments and flexible panels, which induced numer-
cessing of experimental data, this filtering is done using regus local elastic modes, are removed from the computational
ularization techniques [17], image processing [18]. In thenodel). In this paper, a complete validation of the method-
context of the use of computational model build using thelogy is presented for a complete computational model of
Finite Element (FE) method, the construction of the globan automobile. In Section 2, the reference nominal compu-
displacements basis can be carried out using for instantational model is built. Section 3 is devoted to a summary
(1) an extraction technique of the family of eigenvectors resf the construction of the reduced-order model with uncer-
lated to the frequency mobility matrix, (2) an direct extractainties. Finally, Section 4 deals with the application to a
tion of the family of the elastic modes and (3) the techniqueomplete automobile.

of the lumped masses. In the static condensation method of

Guyan, the masses are concentrated in some nodes (master

nodes) and the inertia is neglected. The choice of the ma&- Nominal computational model and classical reduced-
ter nodes is difficult [19-21]. The techniques related to the order model (CROM)

concentrated mass method has been the subject of numerous The frequency response functions are predicted in the
research, particularly with regard to the convergence of thefiequency band of analysis, = [®min, ®max], With 0 < ®min,
methods [22-24]. for a damped structure occupying a dom@inThe nominal
There are three objectives in this paper: (1) the first one is tkemputational model is constructed with the finite element
construction of a reduced-order model adapted to the predinethod. LetU(w) be the complex vector of the DOF in
tions of the LF responses of the stiff parts of the structurdisplacements of the structure. Lgf], [D] and[K] be the

in presence of numerous flexible parts and equipments; sugiass, the damping and the stiffness matrices. It is assumed
a construction requires the introduction of an adapted vethat there are no rigid body displacements. Consequently,
tor basis related to the global displacements, (2) the secoid], [D] and[K] are positive-definite symmetrienx m) real

one is the construction of a stochastic reduced-order modshtrices. Lef(w) be the vector which discretizes the exter-
to take into account both the system-parameters uncertaintied forces. For alt fixed in 3, complex vectofU(w) is the

and the model uncertainties induced by the irreducible errousique solution of the complex matrix equation,

introduced by neglecting the local displacements contribu-

tions anq thg other modeling errors, (3) the Ia§t one concerns (_wz [M] +i0[D] + [K]) Ulw) = f(0). 1)

the application of this method on an automobile represented

by a very large computational model. To solve the first objec- . .

tive, the recent method proposed in [25] is used and adaptegt @« P€ the eigenfrequency of the elastic maglgof the

to the present framework of the LF vibration analysis of augonser;/atlve part of the computational model. Introducing
tomobiles [26]. This method introduces a non-usual basis & = @5, One has

the admissible space of global displacements. The construc-

tion of this basis requires the decomposition of the domain K] 9y = Ao [M] @y - )

of the structure in subdomains. This subdomain decomposi-

tion is performed by using the Fast Marching Method whicbrhen an approximatid]jm)(m) of U(w) at ordem, is the so-

is extended for complex computational model [26]. Th(i: tion of theClassical Reduced-Order ModEROM) con-
reduced-order computational model is then constructed wi ructed with the elastic modes

this vector basis deduced from the computational model. To
take into account uncertainties, a stochastic reduced-order N

model is introduced. These uncertainties are due to (i) the U(”)(m) _ 2 O (©) @y » ©)
system-parameter uncertainties and the model uncertainties =1

induced by the modeling errors in the computational model

and (i) by the errors induced in neglecting the elastic modegg whichq(®) = (qu(®), ..., gn(®)) is the complex vector of

with predominant local displacements. These sources of Wi h generalized coordinates, which is the solution of the
certainties are modeled using the nonparametric probab|ILs5mp|eX matrix equation

tic approach of uncertainties [27, 28]. For an automobile, the

large computational model of automobile has numerous un- ) .

certainties associated with the system-parameter uncertain- (o [M]+io[p]+[x])q(w) = 7 (v), 4)

ties and the modeling errors introduced during the construc-

tion of the computational model. This has been clearly efna which[4/ ], [»] and[% | are the classical generalized mass,

tablished in previous work (see [29], [30] and [31]). damping and stiffness matrices and wheréw) is the gen-
Dispersion parameters related to uncertainties are intreralized external force.



3 Construction of the reduced-order model (ROM) construction of the FMM used in this paper are developed
In this section, the methodology [26] used to construdh [26]. Let gij be the geodesic distance between the node

the Reduced-Order Model (ROM) with a global displaceindexed by i and the node indexed by j. The algorithm can

ments basis, and not with the elastic modes, is summarizée summarized as follow:

This ROM is adapted to the prediction of the FRF in the

low-frequency band for the stiff parts of the structure. Thignitialization

ROM is different from the CROM. e Choose a starting node indexed by 0, andgsgt= 0 (see

Two non usual eigenvalue problems are introduced for whidfig. 2-(a)).

the solutions provide a basis of the global displacemenés The four neighboring nodes of the starting node are

space and a basis of the local displacements space. Hafected such as these nodes are the front and for each

union of these two bases yields a basis of the admissibleighboring nodes, the geodesic distarzg, is calculated

displacement space [25]. The construction of these twaith the starting node (see Fig. 2-(a)).

bases is carried out in introducing a spatial filtering whick For all the other nodes, pgbj = .

allows us to introduce a kinematic reduction of the kinetic

energy while the elastic energy remains exact. The spatladop

filtering is based on the decomposition of the domain im Among the front nodes, select the node with the smallest

subdomains. The mean size of the subdomains correspondiie ofgp;.

to the spatial wavelength cutoff. This decomposition im Remove this node from front nodes and add this node to

subdomains is automatically carried out using the Fa#ite subdomain (see Fig. 2-(b)).

Marching Method [26] and which is summarized bellowe For each neighboring node of this node, the geodesic

Finally, a Stochastic Reduced-Order ModéBROM) is distance is calculated or recalculated (if this neighboring

constructed in implementing the nonparametric probabilistitode is in front nodes).

approach of uncertainties (see [28]) in the ROM in order to

take into account both the system-parameter uncertainties The loop is repeated until all the nodes belong to a sub-

and the model uncertainties induced by the modeling errordomain (see Fig. 2-(d)). For the calculation of the geodesic

distance, the method used depends on the angle (acute or ob-
tuse) of the finite elements of the mesh [32,33]. The different

3.1 Decomposition of the domain in subdomains cases which can be encountered have been analyzed in [26].

Domain Q of the structure is decomposed hh sub-

domainsQ;, with j belonging to 1...,N (see Fig. 1). For |

a complex finite element model such as the computational J\‘-‘
model of an automobile, the automatic construction of do-
mainQ in subdomaing2;, for which a characteristic dimen- —
sion corresponding to the spatial wavelength cutoff is im-
posed, is relatively difficult and requires adapted methods. Tgu
As proposed in [26], this decomposition is carried out using | _4 _o _o' _g 9 <8, <9, <9.<9 <8 <9 9
the Fast Marching Method (FMM) introduced in [32, 33]. o

(2) (b)

(©) (d)
a Fig. 2. Diagram of the Fast Marching Method: step 1 (a), step 2 (b),
W step 3 (c) and last step corresponding to the diagram, step 5 (d).

Fig. 1. Decomposition of {2 in subdomains.

3.1.2 Construction of subdomains
The subdomaingj of Q are constructed using the
FMM. This construction is performed in two steps. The first
3.1.1 Presentation of the Fast Marching Method one consists in introducing master points which are defined
This method allows a front to be propagated in a finitas the points which will be the centers of the subdomains.
element mesh from a starting point. All the details of th&he second one consists in generating the subdomains using



these master points as starting points. It can be proven that the rank of matri® '] is 3N. To
obtain the spatial filtering and thus, to construct the vec-
(i) Selection of the master points tor basis of the global displacements space, the mass ma-
In the context of the present developments, heterogenedts [M] is replaced in the generalized eigenvalue problem
structures which exhibit stiff parts and flexible parts argK]o, = Ao [M] o, by the projected mass matri¥I'] de-
considered. The master points will then be "uniformly’fined by Eqgn. (7). The following generalized eigenvalue
distributed in the stiff parts such that the distance betwegmoblem, called the global spectral problem, is then obtained
two neighboring master points is of the order of the smallest
wavelength of local displacements which has to be filtered (K] g3 =22 M2, (8)
(wavelength cutoff).

in which the positive eigenvalug? is called the global

I . eigenvalue and whergj, is the associated global displace-
To construct the subdomaifs; using a set of master pomts’[nents eigenvector. The familjo?,...,0%} associated

the fronts starting from master points are simultaneous . ;
. : ith the 3N ordered positive eigenvaluek; < ... < A,
propagated until all the nodes belongs to a subdomain. Then b g L= —="3N

the boundaries of the generated subdomains correspondcijonsmmefc’ a basis of thg space of t'he global d|§plapements
o space which has the finite dimensiomN 3and which is a
the meeting lines of the fronts.

subspace aR™.

(ii) Generation of subdomains

3.2 Construction of vector bases for the global and the Let [H°] be the(m x m) matrix of the complementary
local displacements spaces operatoh®, such thafH® = [I ] — [H'], where[l ] is the(m x
In this section, the projection operatar which will be m) identity matrix. Matrix[H €] is then used to construct the
applied to the mass matrix in order to obtain the spatial ficomplementary mass matiii®] such that
tering is introduced. Let — u(x) be any displacement field
defined inQ and belonging to the admissible displacement [M°] = [HC]T [M] [H]. (9)
space. For all displacement fialdbelonging the admissible

displacement space, operakdris defined by It can be proven that the rank of matri¥ €] is m— 3N.

As previously done, the mass matfi] is replaced by the
N 1 complementary mass matiixI®] in Eqn. (2) and yields the
{h" (W)} (%) = Y Ig; (x) m/ P(X)u(xX)dx’,  (5) following generalized eigenvalue problem, called the local
=1 e spectral problem,

in which x - 1g,(x) = 1 if x belongs t0Q; and = 0 (K] (Pfs :xé [M©] (pé, (10)
otherwise. For alj = 1,...,N, m;j is the local mass defined
by mj = fgj p(x)dx, andp(x) is the mass density. The dis-.

- . . [ -
placement fielch' (u) corresponds to a kinematic reductionIn which the positive elgenvaluaﬁ is called the local

which will be used to calculate the kinetic energy. As i€igenvalue ancﬂ)ﬁ is the associated local displacements
can be seenh’(u) average the displacement fieldover eigenvector. The family{of,...,0% gy} associated with
each subdomain®; with respect to the mass density. Thighem— 3N ordered positive eigenvaluds; < ... <A sy,
operator will allow a given spatial filtering to be obtainectonstitutes a basis of the space of the local displacements
and a vector basis of the global displacements space to dygace which has the finite dimension- 3N and which is a
calculated. subspace aR™.

Leth®(u) be the complementary operator defined by It is proven that the familieg65,...,03} and {¢4, ...,
¢fHN} are not orthogonal, but are algebraically indepen-

ho(u) = u— h' (u). ©6) genF anﬂ%nt]hat their unior(03, ..., 03y, 0%, -, 05 a1, is @
asis ofR™.

This operator will allow a basis of the local displacements ti the computational model is developed with a commercial
be calculated. software, these two spectral problems can be solved by the
double projection method presented in [25], in order to avoid
Let [H'] be the(mx m) matrix of the projection operator having to export the mass matfiXl] outside the software.
h' relative to the finite element discretization of the compu-
tational model. The projected mass matrix denote@Miy], 33 Construction of the ROM

of the mass matrijt], is then written as This section deals with the ROM constructed using only
the global displacements basis which is suitable for the pre-
M =[H"]" [M][H"]. (7) dictions of the frequency responses of the structural stiff



parts in the LF band. As explained in Section 1, we are irconstituted of a very large finite element model (FEM), see
terested in the frequency responses in the stiff part and in tRég. 3. In this FEM, all the parts of the real vehicle (seats,
low-frequency bands, for which the global displacements dashboard, interior finishes, etc) are modeled. In addition,
are dominant with respect to the local displacements. Tliee FEM mesh is very dense and consists of aba@@Q 000
reduced-order model at ordey < n, adapted to this case, isnodes (see Fig. 3) and contains many volume elements, sur-
constructed in introducing the projecti@fi™ (») of U(w) face elements and beam elements. This model has about
on the subspace spanned by the global displacements eig00,000 DOF. The stiff parts correspond to the hollow bod-
vectorsq)g, .. ,q)gg. We then have the following ROM, ies which are the frame of the car. The flexible parts are all
the panels and the different elements which are fixed on these
ng stiff parts. Therefore, this computational model will exhibit a
Uhg) () = Z o2 (w)0d (11) numerous local elastic modes in the LF band which is for the
a=1 car under consideration the frequency bane [0,120Hz

(—0?[M%9] +iw[DY] + [K99)) g9 = {9, (12)

in which [M99] = [@9]T [M][®9] , [D%] = [®9)T [D] [&7],

(K99 = [@9]" [K][@9] are full (ng x ng) real matrices,
wheref9(o) = [@9]" F(w) is a complex vector of dimension
ng and where thelm x ng) real matrix [®9] is such that

[@9] = 67 .- - 08, ]-

3.4 Construction of the SROM

As explained above, the nonparametric probabilistic aj.
proach of uncertainties is used to construct the SROM. Fig. 3. Finite element computational model of an automobile.
Therefore the matriced199] and [K99] are replaced by the
random matrice$M 99] and[K99] for which the probability
density functions and the generator of independent realiza-
tions are given in [27, 28]. The probability density functions4_1
of these two random matrices depend on two dispersion pa-
rameters §uog and dkgg) which have to be identified using

the random frequenpy responses of the stochastic refgrel%%%sists in decomposing the domarin N subdomain?

model and th.e maximum I|kel|hood. method. The details 0using the Fast Marching Method. We select 90 master nodes

the construction of the SROM are givenin [26]. The' randoru,hich are uniformly distributed on the stiff parts, which yield

frequency responda®(c; Sus, kss) is constructed with the \ _ g syhdomains. The average distance between two adja-

following SROM, cent master nodes characterizes the wavelength cuttoff. The
repartition of the master nodes is plotted in Fig. 4 and the

(13) result of the domain decomposition, constructed by the Fast
Marching Method, is plotted in Fig. 5. As it can be seen in
Fig. 5, the subdomains constructed with the FMM starting
from the master points have a homogeneous size.

[A%(0)] Q¥(w; dmag, dkag) = f9(w), (14)

Decomposition of domainQ (complete surface of
the vehicle) in subdomains
As explained in Section 3, the first step of the method

Ng
U9(; Smug, Skog) = z Q*(w; 5M9975K99)¢g¢7

a=1

in which the random complex matr{A %9(w)] depends on

®, dmog, dkee and is written as T T-l
- . 2~
[A%(w)] = —®* M9 (Spg0)] +i®[D99] 4 [K 99(3kas)] . (15) o 4 -
] IR -
=] e L o
4 Nominal computational model and SROM for an au- SN W
tomobile wN
This section is devoted to the application of the metho
proposed for the computational model of a complete auto- Fig. 4. Position of the master nodes.

mobile. This type of computational model is very com-
plex (many types of elements, complex geometry, etc) and is



forn<2,165. In Eqn. (16)L|Ui(n)(m)|\ is the Hermitian norm

of the displacement vector at no@bsiandngpsis the num-
ber of observation nodesdys= 4).

The convergence analysis shows that the convergence is
reached fom = 907 elastic modes. The eigenfrequency of
the 907" elastic mode is 205 Hz. Consequently, for the fre-
guency band0,120]Hz, the reduced-order models are con-
structed with 907 elastic modes. For the displacement fol-
lowing OZ, the reference FRF are computed for the observa-
tion nodesObsl, Obs2, Obs3 andObs4, and are plotted in
the Fig. 7.

Fig. 5. Subdomains constructed by the FMM (one per color).

4.2 Frequency response functions of the nominal com- B I
putational model ]

The frequency response functions of the nominal con

putational model defined in Section 2, and calteference

FRF, are computed using the classical modal analysis. TI

first 2165 elastic modes of the FEM have been calculats

with Nastran software. The eigenfrequency correspondit

to the highest elastic mode is 365 Hz. 355 5 -

The frequency response function are calculated in the fre-

quency bands = [0’ 12q Hz The structure is subjected to Fig. 7. Reference FRF: modulus in |Oglo-scale of the velocity fol-

forces and moments applied to the nofieel andExc2. 'owing OZ for observation nodes : ObsL (dashed line), Obs2 (dot-

In each node, there are two forces & in OX andOZ and  ted line), ObS3 (mixed line) and Ob$4 (solid line).

two moments of N x m aroundOX and QY. These two

nodes are located on a stiff part. The responses are calcu-

lated in four observation nodes located on the stiff parts. The

nodeObsl is located on the left front of the vehicle, the nodes. 3 Confidence regions of the random frequency re-

Obs2 on the right front, the nod®bs3 on the left back and sponse functions of the stochastic computational

the nodeDbs4 on the edge of the trunk. All these points are model

represented in Fig. 6. The convergence of the responses in The random frequency response functions of the
stochastic computational model (called theference
stochastic FRIFfor such an automobile are constructed us-
ing the nominal reduced-order computational model con-
structed with the first 907 elastic modes and using the
nonparametric probabilistic approach of both the system-
parameter uncertainties and the model uncertainties induced
by the modeling errors as explained in [29]. This stochas-
tic model of uncertainties is controlled by the dispersion pa-
rametersy, " andd P of the generalized mass and stiffness
matrices. These dispersion parameters have been identified
with experimental measurements for an automobile of the
same class than the one of the present application for which
the same values are used. The statistics of the reference
stochastic FRF are estimated using the Monte Carlo method

o2 s with 1000 independent realizations for solving the stochastic

equations. The confidence regions of the reference stochas-
Fig. 6. Localization of observation nodes (Obsl, Obs2, Obs3and  tic FRF, corresponding to a probability level aB8, are es-
Obs4) and excitation nodes (Exc1 and EXC2). timated for observation nod&bsl, Obs2, Obs3 andObs4
and are plotted in Figs. 8, 9, 10 and 11 (gray region).

Velocity in log 10(ms‘le‘l)

,
60 100
Frequency (Hz)

frequency bands, with respect to the number of elastic

modes, have been analyzed in studying the function 4.4 Global and local displacements eigenvectors _
The local displacements eigenvectors and the global dis-

. placements eigenvectors are constructed using the method of
obs . . . . . .
nis Cony(n) = / z HUi(n)(w)szm 7 (16) double projectionas epramedm [25,26]. Matjiik'] is con- _

B 21 structed withN = 90 subdomains. Consequently, the maxi-



Obs1 constructed with the reduced-order model (see Egn. (11) and

Eqn. (12)), has been carried out in function of the nunmgger
of global displacements eigenvectors. For that, the following
error function is introduced,

&
o

'
N

=N
o

N
&

LS (@) - UV (0)|*do
L5 251U (0)|2do
Zb 4b 66 86 100 120 (17)
Frequency (Hz) whereUf”)(m) is relative to the reference FRF calculated

with n = 907 for observatiorObsi and Ui(ng)(m) is the
frequency response function at the same node calculated
with theng global displacements eigenvectors (see Eqn. (11)
Obs2 and Eqn. (12)).

ng — Error(ng)

Velocity in Iog10(ms'1Hz'1)
& O

'
w
o

Fig. 8. Confidence region (gray region) of the reference stochastic
FRF for observation node Obsl.

'
o
&

-

Fig. 12 displays functiong — Error (ng) and shows that
a reasonable convergence is reachedfor= 50. There are
n, = 382 local displacements eigenvectors in the frequency
band[0,120|Hz. The distributions of the global eigenval-
ues and the distribution of the local eigenvalues are plotted
in Fig. 13 which shows that the global displacements eigen-
20 0 0 80 100 120 vectors are interlaced with a very large number of local dis-
Frequency (Hz) placements eigenvectors.
Fig. 9. Confidence region (gray region) of the reference stochastic
FRF for observation node Obs2.
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Fig. 10. Confidence region (gray region) of the reference stochastic
FRF for observation node Obs3.
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Fig. 11. Confidence region (gray region) of the reference stochastic ~ Fig. 13. Distribution of the number of global displacements eigen-
FRF for observation node Obs4. values (red histogram) and distribution of the number of local dis-
placements eigenvalues (blue histogram) expressed in terms of fre-

. . quency in Hz.
mum value ofng is 3 x 90= 270 and the maximum value of

ng is 907— 270= 637. For the frequency bard,120]Hz,
a convergence analysis of the frequency response functions,



Obs3

4.5 Frequency response functions calculated with the oy
ROM

In this section, for the four observations and for the
frequency band0,120]Hz, we compare the frequency re-
sponse functions calculated with the reduced-order model
constructed with the first 50 global displacements eigenvec-
tors (see Eqgn. (11) and Eqgn. (12) witly = 50), with the ‘ ‘
reference FRF (constructed with the classical reduced-order ’ 2” “ Frequency (+2)
model on the basis of the first 907 elastic modes, see Eqn. €9. 16. Modulus in l0g; g-scale of the frequency response function
and Eqgn. (3) witm = 907). In addition, in order to show the in velocity for observation node Obs3. Reference FRF (black solid
gain obtained on the dimension of the reduced-order modgl). Classical reduced-order model with the first 50 elastic modes
when the global displacements eigenvectors are used with [Back dashed line). Reduced-order model with the first 50 global
spect to the classical reduced-order model constructed Wilgpiacements eigenvectors (red thick line).
elastic modes, we show the frequency response function cal-
culated with the first 50 elastic modes. The results are dis-
played in Figs. 14, 15, 16 and 17. It can be seen that the 08
reduced-order model constructed with 50 global displace-
ments eigenvectors gives a reasonable good prediction of
the reduced-order model constructed with 907 elastic modes.
There is an important gain on the dimension of the reduced-
order model. The differences which appear will be taken into
account by the stochastic model presented in the next section.

Velocity in Ioglo(ms‘in‘l)

-4.51

L
100 120

Obs4
T

Velocity in Iogm(ms‘]Hz‘l)

L L L L
20 40 80 100 120

Obs1
T

Velocity in Iogm(ms‘]Hz‘i)

. .
60 100 120
Frequency (Hz)

Fig. 14. Modulus in |Og10-scale of the frequency response function
in velocity for observation node Obsl. Reference FRF (black solid
line). Classical reduced-order model with the first 50 elastic modes
(black dashed line). Reduced-order model with the first 50 global
displacements eigenvectors (red thick line).
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Fig. 15. Modulus in |Og10-scale of the frequency response function
in velocity for observation node ObS2. Reference FRF (black solid
line). Classical reduced-order model with the first 50 elastic modes
(black dashed line). Reduced-order model with the first 50 global
displacements eigenvectors (red thick line).

Frequear?cy (Hz)
Fig. 17. Modulus in |Og10-scale of the frequency response function
in velocity for observation node Obs4. Reference FRF (black solid
line). Classical reduced-order model with the first 50 elastic modes
(black dashed line). Reduced-order model with the first 50 global
displacements eigenvectors (red thick line).

4.6 Random frequency response functions calculated

with the SROM

The objective of this section is to compare (1) the confi-
dence regions of reference stochastic FRF with (2) the con-
fidence regions of the random frequency response functions
calculated with the stochastic reduced-order computational
model. This stochastic reduced-order computational model
is constructed with the global displacements eigenvectors
and the level of uncertainties is induced by two sources of
uncertainties. The first source corresponds to the level of
uncertainties introduced in the reference stochastic compu-
tational model. The second source is induced by the use of
the global displacements eigenvectors without using the lo-
cal displacements eigenvectors for constructing the reduced-
order model. This second source of uncertainties is taken
into account with the nonparametric probabilistic approach
of uncertainties similarly to the approach used in [29]. In
this section, the total level of uncertainties induce by the
two sources is globally identified by the maximum likelihood
method for which the "experiments” are the confidence re-
gions of reference stochastic FRF.
The deterministic damping matrix of the reduced-order
model, constructed with the first 50 global displacements
eigenvectors, is reused. The first step consists in calculating
the optimal valuedpi, anddgb; of the dispersion parameters
of the random matricefV 99(3maeg)] and [K99(8keg)] using
the maximum likelihood method as explained above. The
likelihood function (8mog, 8kas) — £ (Smog, Skas) is shown



in Fig. 18 and the maximum obtained is indicated in the fig ] Obs2
ure. The second step consists, using the optimal values
the dispersion parameters, in calculating the confidence |
gions corresponding to a probability levet = 0.95 for the
four observations. These confidence regions are display
in Figs. 19, 20, 21 and 22 (red region). It can be seen th:
for the frequency band, the confidence regions of the refer-
ence stochastic FRF are included in the confidence regions
the random frequency response functions calculated with t 35 ; ! ! !

. . 0 20 40 60 80 100 120
stochastic reduced-order computational model construct Frequency (Hz)
with the global displacements eigenvectors. These resuf§. 20. confidence region for observation Obs2: reference
constitute a validation of the proposed stochastic reducegdschastic FRF (dark grey region), random frequency response
order computational model, constructed with a small nUMb@fnction calculated with the stochastic reduced-order computational
of global displacements eigenvectors, for the prediction @fodel (red region).
the frequency response functions on the stiff parts of an au-
tomobile, in the LF range, for which there is a large number
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Fig. 18. Likelihood function (Spmog, Okas) — L (Omag,Okes). The  stochastic FRF (dark grey region), random frequency response
optimal values are denoted by B,C\),gg and Bﬁgg. function calculated with the stochastic reduced-order computational
model (red region).
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Fig. 19. Confidence region for observation ObSL: reference Stochastic FRF (dark grey region), random frequency response
stochastic FRF (dark grey region), random frequency response function calculated with the stochastic reduced-order computational
function calculated with the stochastic reduced-order computational ~ M0del (red region).

model (red region).

have used the Fast Marching Method which is adapted to
complex geometry for constructing the subdomains and the
adapted reduced order computational model. An associated
stochastic reduced order model has then been introduced to
5 Conclusion take into account uncertainties in the adapted reduced-order
In this paper, we have applied a recent methodology aodel. The results obtained are good with respect to the
lowing a reduced-order computational dynamical model tobjectives fixed in this work consisting in constructing a
be constructed for the low-frequency domain in which thereeduced-order model with a very low dimension, which has
are simultaneously global and local elastic modes which catite capability to predict the frequency responses in the low-
not easily be separated with usual methods. Moreover, flr@quency range with an sufficient accuracy for a use in the
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