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INTRODUCTION

Tensor decompositions are now seen as promising tools in data mining [START_REF] Smilde | Multi-Way Analysis[END_REF][START_REF] Mørup | Applications of tensor (multiway array) factorizations and decompositions in data mining[END_REF][START_REF] Dunlavy | Temporal link prediction using matrix and tensor factorizations[END_REF] and signal processing [START_REF] Sidiropoulos | Parallel factor analysis in sensor array processing[END_REF][START_REF] Landsberg | Tensors: Geometry and Applications[END_REF][START_REF] Acar | Scalable tensor factorizations for incomplete data[END_REF][START_REF] Comon | Handbook of Blind Source Separation, Component Analysis and Applications[END_REF], to cite a few. In [START_REF] Sidiropoulos | Parallel factor analysis in sensor array processing[END_REF] for instance, a deterministic approach has been proposed, which permits not only to work with short data lengths, to localize more sources than sensors, but also to extract source copies for free.

In tensor-based approaches, it is well known that factor matrices are identified up to column scaling. This indeterminacy is complicated to take into account because of a constraint: the product of all scaling matrices should be equal to identity. For this reason, only approximate performance indices have been used so far, by simply ignoring the latter constraint. In this paper, we concentrate on calculating an exact performance index, and we subsequently show that the usual approximate index can be significantly optimistic. This is illustrated by computer experiments involving three decomposition algorithms, including two new ones, which are interesting in and of themselves.

NOTATION

In the following, vectors will be denoted by bold lowercases, e.g. a, whereas matrices or higher-order arrays will be denoted by bold uppercases, e.g. A. Moreover, a r will denote the rth column of matrix A, diag λ the diagonal matrix whose diagonal entries are λ i , 1 will represent a vector containing ones.

We are interested in decomposing a 3rd order tensor T as:

T = R r=1 λ r E(r) (1) 
where E(r) are decomposable tensors, that is, E(r) = a r ⊗ ⊗ ⊗ b r ⊗ ⊗ ⊗ s r , where ⊗ ⊗ ⊗ denotes the tensor (outer) product, and R is the tensor rank. Vectors a r (resp. b r and s r ) live in a linear space of dimension I (resp. dimension J and K). Once bases of these three spaces are fixed, tensor decomposition (1) is equivalent to the decomposition of the I × J × K array of coordinates:

T ijk = R r=1 λ r A ir B jr S kr (2) 
where A ir (resp. B jr or S kr ) denote the entries of vector a r (resp. b r or s r ). Equation ( 1) is often referred to as the Canonical Polyadic decomposition (CP) 1 of T. Even when the CP is unique, the explicit writing of decomposable tensors in given bases as in ( 2) is subject to scale indeterminacies. By normalizing the R columns of matrices A, B and S, i.e. vectors a r , b r and s r , and by pulling real positive factors λ r outside the product, these indeterminacies are clearly reduced to unit modulus but are not completely fixed, hence the difficulty in estimating the identification error of factor matrices A, B and S. The purpose of Section 4 is precisely to fix these 3R complex phases (reducing to signs in the real case).

EXISTENCE AND UNIQUENESS

The goal is to identify all parameters in the right hand side of (2), given the whole array T. According to existing results [START_REF] Ten Berge | On uniqueness in Candecomp/Parafac[END_REF][START_REF] Rhodes | A concise proof of kruskal's theorem on tensor decomposition[END_REF], uniqueness 2 of the exact CP decomposition (2) is generally ensured when I +J +K ≥ 2R+2 (see infra for more details); and this condition is claimed to be only sufficient for R > 3. However, observations are actually corrupted by noise, so that (2) does not hold exactly.

Low rank approximation

The natural idea is then to fit model (2) by minimizing the error

Υ(A, B, S; Λ) = T -(A, B, S) • Λ 2 (3) 
where Λ denotes the R×R×R diagonal array whose diagonal entries are λ r , and where (A, B, S) • Λ is an Ersatz for the three-way tensor of coordinates r λ r A ir B jr S kr .

Up to now, the choice of the norm has not been specified, but we shall subsequently use the Frobenius norm, for either matrices or tensors: T 2 = ijk |T ijk | 2 , and the L 2 norm for vectors.

Minimizing error (3) means finding the best rank-R approximate of T and its CP decomposition. However, as already pointed out in [START_REF] Comon | Tensors, usefulness and unexpected properties[END_REF][START_REF] Lim | Multiarray signal processing: Tensor decomposition meets compressed sensing[END_REF] and references therein, the infimum of Υ may not always be reached, even if it often is. But this is out of the scope of the present paper.

Coherence

In compressed sensing [START_REF] Gribonval | Sparse representations in unions of bases[END_REF][START_REF] Donoho | Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization[END_REF] the coherence of a set of unit norm vectors is defined as the maximal value of the modulus of cross scalar products:

µ A = sup p =q |a H p a q | (4) 
We define this way coherences µ A , µ B and µ S associated with matrices A, B and S, respectively, being understood that a r , b r and s r denote their columns. Coherences play a role in the conditioning of the problem. To see this, suppose matrices A, B and S are given. Then the optimal value Λ o minimizing error Υ satisfies the following linear system:

G λ o = f , (5) 
where G denotes the R × R Gram matrix defined by:

G pq = (a p ⊗ b p ⊗ s p ) H (a q ⊗ b q ⊗ s q ),
λ is the R-dimensional vector with entries λ r , ⊗ is the Kronecker product and vector f in the RHS is defined by the con-

traction f r = ijk T ijk A * ir B * jr S * kr , 1 ≤ r ≤ R.
This can be seen by expanding the Frobenius norm in (3), which is a quadratic form in the entries of Λ, and by canceling the gradient w.r.t. λ.

In view of ( 5), and since diagonal entries of G are equal to 1, it is clear that imposing coherences to have a modulus strictly smaller than 1 will permit to impose an acceptable 2 Uniqueness is always understood up to matrix scale factors.

conditioning. Also note the striking fact that only the product between coherences appears, and not coherences individually. It turns out that this statement has deeper implications, especially in existence and uniqueness of the solution to Problem (3), as briefly elaborated below.

Existence

It has been shown in [START_REF] Lim | Multiarray signal processing: Tensor decomposition meets compressed sensing[END_REF][START_REF] Lim | Blind multilinear identification[END_REF] that if

µ A µ B µ S < 1 R -1 (6) 
then the infimum of ( 3) is reached. The reason for this is that error (3) becomes coercive as soon as ( 6) is satisfied. And since it is continuous, it must reach its minimum. We see that this condition already gives a quantitative bound to the conditioning of (5).

Uniqueness

Now to give a sufficient condition to uniqueness, we can rely on Kruskal's theorem previously quoted, which can be expressed as follows: T = R r=1 E(r) where E(r) are rankone tensors, admits a unique solution if krank{A} + krank{B} + krank{S} ≥ 2R + 2 [START_REF] Comon | Handbook of Blind Source Separation, Component Analysis and Applications[END_REF] where krank{•} denotes Kruskal's rank 3 .

Following the lines of [START_REF] Gribonval | Sparse representations in unions of bases[END_REF][START_REF] Lim | Multiarray signal processing: Tensor decomposition meets compressed sensing[END_REF][START_REF] Lim | Blind multilinear identification[END_REF], one can observe that krank{A} ≥ µ -1 A , as long as krank{A} is strictly smaller than the column rank of A. Plugging this inequality in [START_REF] Comon | Handbook of Blind Source Separation, Component Analysis and Applications[END_REF] leads to the sufficient uniqueness condition:

µ -1 A + µ -1 B + µ -1 S ≥ 2R + 2 (8) 

PERFORMANCE MEASURE

As pointed out in section 2, there remains an indeterminacy in the CP decomposition, characterized by 2R complex numbers of unit modulus. More precisely, let a, b and s denote the rth column of matrices A, B and S, respectively, r being any fixed value between 1 and R. Also denote â, b and ŝ one column of the estimated matrices entering in the CP decomposition. It is desired to define the minimal distance:

δ(x; x) = min ϕ,ψ,χ
{||a -e ϕ â|| 2 + ||b -e ψ b|| 2 + ||s -e χ ŝ|| 2 } (9) under the constraint that exp((ϕ + ψ + χ)) = 1. For convenience, x again denotes the vector [a T , b T , s T ] T . It turns out that this distance can be exactly computed. In fact, because of the constraint, (9) involves two angles, say ϕ and ψ. An elimination is possible in the two equations defining stationary points, and leads to the roots of a polynomial of degree 6 in a single variable, say ϕ. By plugging back the admissible values of ϕ in the system of two equations, corresponding values of ψ are obtained. The global minimum of (9) can hence be efficiently calculated (see appendix for details).

We end up with the performance criterion below:

E(T; A, B, S, Λ) = min π∈Π R r=1 δ(x r ; xπ(r) ) ( 10 
)
where Π is the group of permutations of {1, 2, . . . R}. This criterion allows to properly fix the permutation-scale ambiguity. In case the permutation acts in too large dimension, greedy versions are possible to limit the exhaustive search in the permutation group. Surprisingly, such a performance criterion using the solution of [START_REF] Rhodes | A concise proof of kruskal's theorem on tensor decomposition[END_REF] has not yet been proposed in the literature.

COMPUTER RESULTS

Optimization

In order to illustrate the interest of our performance measure, we shall report the performances of three simple algorithms computing the approximate CP decomposition: Algorithm 0 is a gradient descent, where variables A, B and S are free, and Λ = I; Algorithm 1 is a projected gradient with an approximate value of Λ; Algorithm 2 is a projected gradient with the optimal value of Λ given by [START_REF] Landsberg | Tensors: Geometry and Applications[END_REF]. Note that the focus is on the performance measure, not on algorithms. For the sake of clarity, Algorithms 1 and 2 are detailed below.

ALGORITHM 1.

1. Initialize (A(0), B(0), S(0)) to full-rank matrices with unitnorm columns, and set λ(0) = 1. 2. For k ≥ 1 and subject to a stopping criterion, do (a) Compute the descent direction as the gradient w.r.t. X:

D(k) = -∇Υ(X(k -1); λ(k -1)) (b) Compute a stepsize (k) (c) Update X(k) = X(k -1) + (k) D(k) (d) Extract the 3 blocks of X(k): A(k), B(k) and S(k),
and store the norm of their columns into λA, λB, λS (e) Normalize them to unit-norm columns as

A(k) := A(k) diag(λA) -1 , B(k) := B(k) diag(λB) -1 and S(k) := S(k) diag(λS) -1 (f) update λ(k) = λ(k -1) * λA * λB * λS
where * denotes the entry-wise product. ALGORITHM 2.

1. Initialize (A(0), B(0), S(0)) to full-rank matrices with unitnorm columns. 2. Compute G(0) and f (0), and solve G(0) λ(0) = f (0) for λ, as defined in Section 3.2. 3. For k ≥ 1 and subject to a stopping criterion, do (a) Compute the descent direction as the gradient w.r.t. X: The gradient expressions 4 necessary to determine the descent direction D(k) are of the form:

D(k) = -∇Υ(X(k -1); λ(k -1)) (b) Compute a stepsize (k) (c) Update X(k) = X(k -1) + (k) D(k) (d)
∂Υ ∂A = 2 AM -2N
where 

Performances

In this section, we analyze matrix estimation errors obtained with the performance criterion proposed in [START_REF] Rhodes | A concise proof of kruskal's theorem on tensor decomposition[END_REF]. Two scenarii are analyzed with random tensors of rank 5 corrupted by an additive Gaussian noise: one with dimensions 4 × 4 × 4 and another with dimensions 10 × 10 × 10. Factor matrices are initialized with random values with 5 columns. The results were obtained from 50 Monte Carlo runs. At each run and for every SNR value, a new noise realization is drawn.

Figures 1 and2 report matrix estimation errors involved in error (9) as a function of SNR. First, it can be seen that the performance results using Algorithm 0 is poor in comparison with results obtained with Algorithms 1 and 2 (curves with stars and curves circles). This supports the idea that our algorithms isolating the scale matrix are attractive. Second, we check that when we do not consider the phase constraints when calculating the performance measure, the results are significantly more optimistic, especially at high SNR (compare curves with the same color/symbol); this supports the interest in using our performance index defined in [START_REF] Rhodes | A concise proof of kruskal's theorem on tensor decomposition[END_REF]. Third, to see a significant difference between Algorithms 1 and 2, it is necessary to look at the convergence speed, since the final error is about the same (cf. Figures 1 and2). In all our experiments, Algorithm 2 converged faster in terms of number of iterations; this is illustrated in Figure 3. 

CONCLUDING REMARKS

We have shown in Section 3.2 that, in CP tensor decompositions, the scale matrix Λ takes as optimal value a Gram matrix controlling the conditioning of the problem. This shows that bounding coherences would allow to ensure a minimal conditioning. Next, two descent algorithms have been described and tested, which involve a separate explicit calculation of the scale matrix Λ. Third, this numerical approach allows to compute a performance index, more realistic than performance measures used in the literature which are optimistic by construction. Future works include the development of more efficient numerical algorithms based on the same idea, with possibly a coherence constraint.

APPENDIX

In this appendix, we explain in more details how one can obtain performance index δ, and in particular how phases (ϕ, ψ, χ) are calculated. Setting χ = -ϕ -ψ [2π], equation ( 9) can be rewritten as:

δ = ||a|| 2 + ||â|| 2 + ||b|| 2 + || b|| 2 + ||s|| 2 + ||ŝ|| 2 -2ρ a cos(ϕ -α) -2ρ b cos(ψ -β) -2ρ s cos(ϕ + ψ + γ)
where a H â def = ρ a e α , b H b def = ρ b e β and s H ŝ def = ρ s e γ . Stationary points are given by the solutions of the trigonometric system in e.g. variables x = ϕ -α and y = ψ -β as unknowns:

ρ a sin x + ρ s sin(ϕ + ψ + γ) = 0

ρ b sin y + ρ s sin(ϕ + ψ + γ) = 0
The first simplification is achieved by noting that ρ s sin(ϕ + ψ + γ) = -ρ a sin x = -ρ b sin y.

implies sin y = sin x ρa ρ b . Now, using trigonometric identities, we can rewrite the first equation of the trigonometric system

ρ s sin(ϕ + ψ + γ) = ρ s sin(x + y + α + β + γ) = -ρ a sin x, as: ρ a sin x = -ρ s sin x cos y cos(α + β + γ) + sin y cos x cos(α + β + γ) + cos x cos y sin(α + β + γ)
-sin x sin y sin(α + β + γ) .

Letting cos y = 1 -sin 2 y and sin y = ρa ρ b sin x, we obtain

ρ a sin x = - ρ s ρ a ρ b sin x cos x cos(α + β + γ) + ρ s ρ a ρ b sin 2 x sin(α + β + γ) + ρ s sin x sin(α + β + γ) -ρ s cos x sin(α + β + γ) 1 - ρ a ρ b sin 2 x.
The goal of the next step is to eliminate the square root and to rewrite the equation in term of variables sin x or cos x. So, let us squaring both side of this equation and using trigonometric identities such as cos 2 x = 1+cos(2x) 2 , sin 2 x = 1-cos(2x) 2 , cos x sin x = sin(2x) 2 and cos 2 (2x) + sin 2 (2x) = 1. Thus, after simplification we obtain In the same way as above, we squared twice both sides of the resulting equation to eliminate the squares roots. Finally we get an equation of degree six of the form c 0 + c 1 cos(2x) + c 2 cos 2 (2x) + c 3 cos 3 (2x) +c 4 cos 4 (2x) + c 5 cos 5 (2x) + c 6 cos 6 (2x) = 0, with: 

                       c 0 = c
                   c 1 = 1 2 ρ 2 a + 1 2 ρsρa ρ b 2 -1 2 ρ 2 s c 2 = -1 2 ρ 2 a -1

  Extract the 3 blocks of X(k): A(k), B(k) and S(k) (e) Normalize the columns of A(k), B(k) and S(k) (f) Compute G(k) and f (k), and solve G(k) λ(k) = f (k)for λ, according to (5).

Fig. 1 .

 1 Fig. 1. Matrix estimation errors, with a random tensor of size 10 × 10 × 10 and rank 5: (a) matrix A, (b) matrix B, (c) matrix S. Note the 3 matrix factors typically contribute equivalently in E.

It=600Fig. 2 .

 2 Fig.2. Sum E of matrix estimation errors, with a random tensor of size 4 × 4 × 4 and rank 5. Note the asymptote depending on the maximum number of iterations executed.

Fig. 3 .

 3 Fig. 3. Typical example of reconstruction error (3) as a function of the number of iterations, for a tensor of size 4 × 4 × 4 and rank 5.
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 2 (α + β + γ) cos 2 (2x) + 2ρs cos(α + β + γ) sin(α + β + γ) 1 -cos 2 (2x) + β + γ) 1 -cos 2 (2x)

c 1 = 2 4 -2c 5 c 6 -c 2 7 + c 2 5 c 3 == c 2 3 + 2c 2 c 4 -c 2 6 + 2c 5 c 6 + c 2 7 c 5 = 2c 2 c 3 + 2c 6 c 7 c 6 c 5 = -2c 1 c 3 + c 4 c 5 c 6 = c 4 c 5 c 7 =

 122532275365367 2c 1 c 4 -2c 5 c 7 c 2 = 2c 1 c 3 + c 2c 1 c 2 + 2c 3 c 4 -2c 6 c 7 + 2c 5 c 7 c 4 -2c 2 c 3 -2c 4 c 5 and:

2 ρsρa ρ b 2 + ρ 2 s 2 c 3 = 2 a= ρsρ 2 a

 2222322 cos 2 (α + β + γ) -1 -2ρ 2 s cos(α + β + γ) sin(α + β + γ) c 4 = -2 ρsρ ρ b cos(α + β + γ) c 5 ρ b sin(α + β + γ)Solving the sixth degree equation yields x. Replacing x in sin y = ρa ρ b sin x yields y.

also sometimes called Candecomp/Parafac in Psychometry.

k A = krank A if any k A columns of matrix A are linearly independent. This is in contrast to the usual matrix rank, where any is replaced by at least in the definition.

Matrix gradients are written with the conventions described in[START_REF] Comon | Estimation multivariable complexe[END_REF][START_REF] Hjørungnes | Complex-valued matrix differentiation: Techniques and key results[END_REF].
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