Solid drops — Supplementary material

S. Mora, C. Maurini, T. Phou, J.-M. Fromental, B. Audoly, Y. Pomeau
August 20, 2013

1 Numerical method

Minimizing the total energy of a capillary solid with non-trivial shape requires the use of numerical
computations. For a solid occupying a domain € of arbitrary shape in its the reference configuration,
we use the finite element method to predict its equilibrium configuration under the action of the
capillary forces. In the numerical work, we model the body as an almost incompressible hyperelastic
body with a surface energy proportional to the total area of its boundary in the current configuration
and we accept that the body can undergo large displacement and deformations, by using a fully
non-linear kinematical theory. We assume a Neo-Hookean elastic energy density in the form [2]

w(u) = g(f —3)— pln(J) + %(m J)2,
where I = trC and J = det C with C = FTF. In the almost incompressible case where \ > pu,
the finite element method should be applied with caution because of the bad-conditioning and the
kinematical locking induced by the finite element discretisation [3, 5]. We adopt here a classical
solution to bypass these issues consisting in the use of a mixed formulation, where a pressure-like
variable
p=—-An(J)

appears as independent variable together with the displacement field u. Imposing the expression
for the p as a function of J as a constraint through the Lagrange multiplier A, the energy density
may be re-written as

wlu,p,A) = %(I —3)—pln(J) + %pz +A(p+ Aln(J))

The stationarity condition of the energy with respect to p implies that A = —p/A. Hence the energy
density may be rewritten in the final form

I A
w(u,p) = (I =3) = (p+p)In(J) = 5p*.
which is a u—p mixed form frequently used for almost incompressible hyperelastic solids [1]. Hence,
our finite element formulation is based on the research of the stationary points of the mixed total
energy functional

E(u,p) = / w(u,p)dx+’y/ HJFiTNH ds (1)
Q oQ
Bulk energy Surface energy

where the term H J F_TNH dS gives the element of area of the deformed configuration as a function
of the quantities defined on the reference domain €2, N being the unit normal to the reference
boundary 0f2.

An ad-hoc numerical code is developed for the purpose using the FEniCS finite element library
[4]. The displacement vector u and the pressure-like variable p are discretized using Lagrange finite
elements, with a quadratic interpolation for u and a linear interpolation for p. The resulting finite
element formulation is very similar to the Taylor-Hood family of elements used for solving almost
incompressible fluid flows. The nonlinear problem in u — p is solved using a Newton algorithm based
on a direct parallel solver (MUMPS). For a given geometry, quasi-static simulations are performed by
setting g = 1, A = 1000 and slowly increasing the surface tension v up to the desired dimensionless
value. The 3D results are obtained using tetrahedral meshes suitably refined in the regions close to
edges and vertices of the boundary, where the deformations induced by capillarity are expected to
be higher. In a 3D computation the typical number of total degrees of freedom varies between 1 to
10 millions. Parallel computations on high performance computing architectures are necessary to
resolve the full non-linear problem in a reasonable time. The high dimensionality is a consequence
of the use of quadratic finite elements for the displacement interpolation and the required level of
mesh refinement in 3D.

2 Numerical simulations

Numerical simulations are performed on elongated 3D cylinders with different cross-sections. In
each case, we perform the simulations in dimensionless units by setting the shear modulus p to 1,
the height of the cross section to 1, and varying the surface tension 4. The lame parameter \ is
fixed to 1000 to approach the incompressible limit. We tested that the value of A has no influence
on the results provided that it is sufficiently high.

Figure 1 reports the case of the square cross-section. On the right-end side we block only the
axial (Z) component of the displacement, leaving free the displacement components in the plane
of the cross-section. This is equivalent to consider a free-free cylinder of twice the length used in
the simulation subjected to a symmetry condition with respect to the plane Z = 0. To get the
quantitative results on the shape-change of the cross-section reported in the paper, we consider
the right-end cross-section in the figure, whose shape is not perturbed by boundary effects. The
mesh is refined in correspondence of geometrical discontinuities, which are expected to induce large
capillary forces and then large deformations. Mesh refinement tests are performed to assure the
convergence of global quantities as beam shortening and global cross-sectional shape change mea-
sures.

Figure 2 shows the bending deformations obtained for triangular cross-sections. In this case we
set to 0 the three components of the displacement vector in order to imitate the clamping condition
imposed in experiments. The symmetry conditions on the cross-section are not exploited in order
to test the possibilities of symmetry breaking induced by bifurcations in the non-linear regime. The
simulation is run on the full mesh reported in figure 2. Mesh refinement tests are performed in
order to assure the convergence of the result for the tip displacement of the beam.

ARV
S
e,
o
A

H
i

I
ey P
G R
B
P
17}

A A S e
W‘n‘n‘;!jﬁa”r‘j.
A N
LAAAATES

1 i N 0
W T N 0 0
A E

0.5,
—AlnJ in a scale from 0 (blue)

f a cylinder with square cross-section of unit height for

0n o

Capillary deformat

Figure 1

1000. The colors represent the pressure variable p

pw=1 and A
to 5 (red).

= e
O ©®NOoE W N

o e e
coos woN

Figure 2: Capillary deformation of a cylinder with triangular cross-section of unit height for surface
tension v = 0.084, u = 1, and A = 1000. The colors represent the pressure variable p = —AInJ in
a scale from 0 (blue) to 5 (red).

3 A minimal FEniCs script to solve the problem

We report below a minimal python code that can be used to perform a simulation. The code is
based on the use of the finite element library FEniCs. FEniCS is a free software that may be
downloaded at http://fenicsproject.org/download/. To Run the program:

1. Install FEniCs and test that the example of FEniCS are working. The code below is tested
with FEniCs version 1.2.0.

2. Run this file by typing at the command line python CapillarySolid.py (in a terminal with
FEniCS enabled).

To get a full list of command-line options type: python CapyllaryBeam.py --help

Copyright (C) 2011-2013 Corrado Maurinti, corrado.maurini@upme.fr
Licensed under the GNU LGPL Version 3.

This file s free software: you can redistribute it and/or modify

it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either wversion 3 of the License, or

(at your option) any later wversion.

This file ts distributed in the hope that <t will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

A copy of the GNU Lesser General Public License ts available at
<http://www.gnu.org/licenses/>.

R OR K W R R R W R R R W R R

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
74
75
76
T
78
79
80
81
82
83
84

oM RO OH O R OH W W R H WO R W WO W R R W R R WO R R W R RH WO RW W RE W RE W RE R RRR

""" This demo program solves a hyperelastic problem with surface energy to model the large deformations of a capillary solids

This software is based on the use of FEniCS wverstion 1.2

First added: 2011-05-31
Last changed: 2013-08-20

Created by Corrado Maurini, 2013
For any further information contact corrado.maurini@upmc. fr

Description:

This demo program solves a problem for an almost inmcompressible

hyperelastic solid with surface tension.

The code below considers a 3D cantilever beam with rectangular cross-section.
The loading ts given only by the surface tension

(acting on all the surfaces of the boundary, except the clamped one)

To change boundary conditions and loading, refer to the FEniCS manual:
http://fenicsproject.org/documentation/

and the FEniCS book available for free at:
https://launchpadlibrarian.net/83776282/fenics-book-2011-10-27-final.pdf

Technical details:

To solve the problem for the almost incompressible hyperelastic solid we use

a mized formulation including both the displacement and the pressure as state

variables. We solve a series of problems for increasing surface tension.

For each wvalue of the surface tension, we solve a non-linear problem using a

Newton algorithm. The linear solver used in the Newton iterations is a DIRECT solver

like umfpack (for serial runs) or mumps (for parallel runs). An iterative solver would be prone to
convergence issue because the problem is ill-conditioned.

To Run the program:

1) Install FEniCS version 1.2 and test that the example of FEniCS are working.
FEniCS is a free software that may be dowloaded at http://fenicsproject.org/download/

2) Run this file by typing at the command line (in a terminal with FEniCS enabled):
python CapillarySolid.py

To get a full list of command-line options type:
python CapyllaryBeam.py --help

Some examples to set command-line arguments
python CapillaryBeam.py --user.mesh_ref 15 --user.fe_order_u 2 --user.plot False --gamma_maz 0.4 --gamma_nsteps 12

mpiezec -n 8 python CapillaryBeam.py --user.mesh_ref 30 --user.fe_order_u 1 --user.solver.newton_solver.relazation_parameter 1 --solve

To visualize the results open the .pud (or .zdmf) files in the directory "results” using Paraview (downloadable for free at http://www.parav

Further support:

For any question or bug report, please e-mail to corrado.maurini@upmc. fr

author: Corrado Maurini (corrado.maurini@upmc.fr)
date of the first version: 08/2011
last modified 08/2013

wn

#

Load the required modules

from dolfin import *
import numpy as np
import os

* R B

Parameters

101

131

set_log_level (INFO)

Optimization options for the form compiler
#parameters ["num_threads"] = 1
parameters["mesh_partitioner"] = "SCOTCH"
parameters["form_compiler"] ["quadrature_degree"] = 2
parameters["form_compiler"] ["cpp_optimize"] = True
parameters["form_compiler"] ["optimize"] = True
parameters["form_compiler"] ["log_level"] = INFO
parameters["allow_extrapolation"] = True
ffc_options = {"optimize": True, \
"eliminate_zeros": True, \
"precompute_basis_const": True, \
"precompute_ip_const": True, \
"quadrature_degree": 2}

Some user parameters

user_par = Parameters("user")
user_par.add("bounds_xmin",-0.5)
user_par.add("bounds_xmax",0.5)
user_par.add("bounds_ymin",-0.5)
user_par.add("bounds_ymax",0.5)
user_par.add("bounds_zmin",0.)
user_par.add("bounds_zmax", 2.5)
user_par.add("fe_order_u",1)
user_par.add("fe_order_p",1)
user_par.add("gamma_min",0.)
user_par.add("gamma_max", .2)
user_par.add("gamma_nsteps",10)
user_par.add("mesh_ref",10)
user_par.add("save_dir","results")
user_par.add("output_type","pvd")
user_par.add("plot",True)

Non linear solver parameters

solver_par = NonlinearVariationalSolver.default_parameters()
solver_par.rename("solver")

solver_par["symmetric"]=True
solver_par["linear_solver"]="umfpack"# use "mumps” in parallel
solver_par["lu_solver"] ["same_nonzero_pattern"] = True
solver_par["lu_solver"] ["verbose"] = True
solver_par["newton_solver"] ["maximum_iterations"] = 20
solver_par["newton_solver"] ["relaxation_parameter"] = .8
solver_par["newton_solver"] ["relative_tolerance"] = le-5
solver_par["newton_solver"] ["absolute_tolerance"] = le-5

add user parameters in the global parameter set
parameters.add(user_par)

parameters.add(solver_par)

Parse parameters from command line
parameters.parse()
info(parameters,True)

user_par = parameters.user

Geometry

oW R

Create the geometry and the mesh

xmin,xmax = user_par.bounds_xmin,user_par.bounds_xmax
ymin,ymax = user_par.bounds_ymin,user_par.bounds_ymax
zmin,zmax = user_par.bounds_zmin,user_par.bounds_zmax
geom = Box(xmin,ymin,zmin,xmax,ymax,zmax)

mesh = Mesh(geom,user_par.mesh_ref)

#:
Definition of function spaces

154 #:

156 # Create function space

157 P2 = VectorFunctionSpace(mesh, "CG", user_par.fe_order_u) # Space for displacement
158 P1 = FunctionSpace(mesh, "CG", user_par.fe_order_p) # Space for pressure

159 V = MixedFunctionSpace([P1,P2])

160 V_u = V.sub(1)

161 V_p = V.sub(0)

162 ndim = P2.cell().d

164 # Create functions to define the energy and store the results
165 up = Function(V)
166 (p,u)=split(up)

168 # Create test and trial functions for the wariational formulation
169 dup = TrialFunction(V)

170 vq = TestFunction(V)

171 (q,v) = TestFunctions(V)

172

173 #

174 # Boundary conditions
175 #

176 # Mark boundary subdomains
177 xtol = mesh.hmin()/4.
178 class ClampedBoundary(SubDomain) :

179 def inside(self, x, on_boundary):
180 return x[2]-zmin<xtol and on_boundary
181

182 # Define the boundary conditions

183 zero_vector = Constant((0.0,0.0,0.0))

184 bcl = DirichletBC(V_u, zero_vector, ClampedBoundary())
185 bc_u = [bel]

186

187 #:

188 # Define boundaries with surface tension
189 #

190 # Define the part on the boundary where surface tension should be applied
191 class SurfaceBoundary(SubDomain) :

192 def inside(self, x, on_boundary):
193 return on_boundary
194

195 # Mark facets where apply surface tension with 1
196 boundary_parts = FacetFunction("size_t", mesh, 0)
197 surface_boundary = SurfaceBoundary()

198 surface_boundary .mark (boundary_parts, 1)

199

200 # Redefine element of area to include informations about surface tension
201 ds = ds[boundary_parts]

202

203 #

204 # Kinematics

205 #

206 I = Identity(ndim) # Identity tensor

207 F =1+ grad(u) # Deformation gradient

208 C = transpose(F)*F # Right Cauchy-Green tensor

209 E=0.5%x(C-1I) # Green-Lagrange tensor

210

211 # Invariants of deformation tensors

212 Ic = tr(C)

213 J = det(F)

214

215 # Normal and tangent vectors in the reference configuration

216 N = FacetNormal (mesh)

217 # Element of area transformation operator

218 NansonOp = transpose(cofac(F))

219 # surface element vector in the deformed configuration

220 deformed_N = dot(NansonOp,N)

221 # norm of the surface element vector in the current configuration
222 current_element_of _area = sqrt(dot(deformed_N,deformed_N))

231

Energy and variational formulation

#* W W

Lame’s parameters
mu, lmbda = Constant(1l.), Constant(1000.)

Bulk energy (strain energy for an almost incompressible neo-Hookean model)
bulk_energy_density = mu*(Ic - ndim) -(mu+ p)*In(J) - 1/(2+1lmbda)*p**2
bulk_energy = bulk_energy_density*dx

Surface energy

gamma=Expression("t",t=0.00)

surface_energy_density = gamma*current_element_of_area
surface_energy = surface_energy_density*ds(1)

Total potential energy
potential_energy = bulk_energy + surface_energy

First directional derivative of the potential energy (a linear form in the test function vg)
F=derivative(potential_energy,up,vq)

First directional derivative of the potential energy (a bilinear form in the test function vq and the trial function dup)
dF=derivative(F,up,dup)

Setup the wvariational problem
varproblem = NonlinearVariationalProblem(F, up, bc_u, J=dF,form_compiler_parameters=ffc_options)

#:
Set up the solver (Newton solver)
#

solver = NonlinearVariationalSolver(varproblem)
solver.parameters.update(parameters.solver)

Solve the problem

H* W R

loading parameter (list of values for the surface tension)

gamma_list = np.linspace(user_par.gamma_min,user_par.gamma_max,user_par.gamma_nsteps) # list of values of surface tension for the simulations
directory and files to save the results

save_dir = parameters.user.save_dir

file_u = File(save_dir+"/displacement."+parameters.user.output_type)

file_p = File(save_dir+"/pressure."+parameters.user.output_type)

Solve with Newton solver for each value of the surface tension, using the previous solution as a starting point.

for t in gamma_list:
update the value of the surface tension
gamma.t = t
solve the nonlinear problem (using Newton solver)
solver.solve()
Save solution to file (readable by Paraview or Visit)
(p,u) = up.split(Q)
file_u << (u,t)
file_p << (p,t)
Plot and save png image
if parameters.user.plot:
plot_u = plot(u, mode = "displacement",title="Displacement field gamma=}.4f"/t,elevate=25.0)
plot_u.write_png(save_dir+"/displacement_%.4f"%t)

save the parameters to file
File(save_dir+"/parameters.xml") << parameters

get timings and save to file

if MPI.process_number() ==
timings_str = timings().str("Timings")
text_file = open(save_dir+"/timings.txt", "w")
text_file.write(timings_str)
text_file.close()

References

[1] F. Auricchio, L. Beirao de Veiga, C. Lovadina, and A. Reali. The importance of the exact
satisfaction of the incompressibility constraint in nonlinear elasticity: mixed fems versus nurbs-
based approximations. Comput. Methods Appl. Mech. Engrg., 199:314-323, 2010.

[2] Ciarlet. Mathematical elasticity, Three dimensional elasticity, volume 1. North-Holland, 1998.

[3] P. Le Tallec. Numerical methods for nonlinear three-dimensional elasticity, volume 11T of Han-
book of numerical analysis. Elsevier Science B.V., 1994.

[4] A. Logg, K.-A. Mardal, Wells G. N., and al. Automated Solution of Differential Equations by
the Finite Element Method. Springer, 2012.

[5] P. Wriggers. Nonlinear finite element methods. Springer, 2001.

