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Under the effect of surface tension a blob of liquid adopts a spherical shape when immersed in
another fluid. We demonstrate experimentally that soft, centimeter-size elastic solids can exhibit a
similar behavior: when immersed into a liquid, a gel having a low elastic modulus undergoes large,
reversible deformations. We analyze three fundamental types of deformations of a slender elastic
solid driven by surface stress, depending on the shape of its cross-section: a circular elastic cylinder
shortens in the longitudinal direction and stretches transversally; the sharp edges of a square based
prism get rounded off as its cross-sections tend to become circular; a slender, triangular based
prism bends. These experimental results are confronted to analysis and non-linear simulations of
neo-Hookean solids deformed by surface tension, and are found in good agreement.

PACS numbers: 46.25-y,68.08-p,68.35.Gy,46.15-x

We all know that liquids can be shaped by surface ten-
sion: small droplets are spherical at equilibrium so as
to minimize their area, liquids climb on wet surfaces by
making a smooth meniscus. The deformation of elastic
solids by surface stress has been studied in more limited
contexts. The macroscopic behavior of solids whose in-
terface include features at the nanometer or micrometer
scale, such as porous materials, has long been known to
be influenced by the surface energy [1]. The smoothing
effect of surface stress on finely textured solid interfaces
has been pointed out [2, 3]. The deformations of solids
near a triple line (solid-liquid-vapor) has been understood
recently [4–6]. Thin structures can be deformed by capil-
lary forces very effectively, and many examples have been
studied in the past few years [7–10].

In all these examples, the effect of surface stress is am-
plified by the roughness of the solid or by the presence
of multiple interfaces — as happens near a triple line or
when an elastic structure is partially covered by a liquid
drop. Inspired by the canonical examples of spherical
drops and bubbles, we ask the following question: can
one change the shape of a smooth elastic solid just by
immersing it into a fluid? We demonstrate that this is
indeed possible using a centimeter-scale piece of elastic
gel. Neither surface roughness nor a triple line are re-
quired: the solid is smooth and is immersed in a uniform
fluid environment. As with drops and bubbles, the defor-
mation is driven by the change in surface tension caused
by immersion. Being both soft and slender, our gels are
very flexible: their deformation can be measured by sim-
ple experimental techniques and quantitatively compared
to model predictions.

To deform the gel, surface tension must work against
the restoring elastic forces. This competition is ruled by
the elasto-capillary length ℓ = γ/µ, where γ is the surface

tension and µ the shear modulus. In usual solids, both
γ and µ arise from phenomena at the atomic scale and
ℓ is of the order of a nanometer. Our gels are extremely
soft, having a shear modulus as low as µ = 35Pa; with
γ ∼ .04 N/m, the length scale ℓ ∼ 1 mm is large, making
it possible to observe capillary effects in solids at the
macroscopic scale [11–13]. The elasto-capillary length ℓ
is also relevant to instabilities deforming interfaces, such
as the Biot [13, 14], Rayleigh-Plateau [15] and Asaro-
Tiller-Grinfeld instabilities [16].

Fabrication of the gel In the experiments, a pris-
matic mould made of polystyrene is first prepared, by
heating a preform supported by a rigid negative mould.
A liquid is then introduced into the mould, which can be
a hot aqueous solution of agar (from Alfa Aesar GmbH
& Co) or a mixture of acrylamid and bis-acrylamid (from
Merck) in aqueous solution. In both cases, a gel is formed
after few hours at room temperature. The loss and stor-
age moduli [17], measuring viscosity and elasticity, re-
spectively, were measured in independent experiments
done in similar conditions: after three hours, the ratio of
the loss modulus to the storage modulus is below 10−2,
indicating that the gel’s response has become elastic. On
the time-scale of the experiment, we ignore the diffusion
of the solvent inside the gel and towards the outer fluid:
the gel is considered incompressible. Varying the nature
of the gel and the concentration of its components, we
can achieve shear moduli ranging from µ = 35 to 350 Pa.
Stress sweep tests reveal that the the gel remains elastic
well beyond a strain of 15 % for agar and up to 500 % for
polyacrylamid gels, with a slight strain-hardening above
150 %.

Model A fluid interface is present along the bound-
ary of the gel: the solvent, which remains trapped inside
the gel, meets the outer fluid along this boundary. This
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interface is associated with a surface energy γ A, where γ
denotes the surface tension between the outer fluid and
the solvent, and A is the area of the boundary. The
surface energy drives the deformation of immersed gels,
like that of drops and bubbles. It is resisted by the elas-
ticity of the gel, which we model as an incompressible
neo-Hookean material having a density of elastic energy
w = µ

2
tr(FT ·F− 1), where F is the deformation gradi-

ent, 1 the unit matrix. The equilibrium is governed by
the minimization of the free energy

E = γ A+

∫∫∫

Ω0

µ

2
tr
(

FT · F− 1
)

dV0, (1)

where dV0 is a volume element in reference configuration,
Ω0 is the reference volume occupied by the gel, and A is
the area of the deformed boundary. The incompressibil-
ity constraint writes J = detF = 1.

In the general theory of surface stress in solids, the
surface stress is anisotropic and is a function of the sur-
face strain [18, 19]. Our system is a special case: having
a fluid origin, the capillary term in equation (1) corre-
sponds to a surface stress that is both isotropic in the
plane tangent to the boundary, and independent of the
strain. The surface tension γ between the outer fluid and
the solvent can be measured independently: the compar-
ison of experiments and models involves no adjustable
parameter, even in the non-linear regime.
Longitudinal contraction of circular cylinders

We start with cross-sections having the highest possible
symmetry, namely circular cylinders. Cylindrical moulds
with a radius ranging from ρ0 = 0.45 to 2 mm, and a
length L ≈ 4 cm are prepared, and an agar gel is formed
inside the mould. Then the polystyrene mould is im-
mersed into liquid toluene and gets dissolved within few
minutes, see the inset in figure 1. The gel is denser than
toluene and sinks until it reaches a horizontal grid placed
at the bottom of the container. The grid is hydrophobic
to prevent adhesion with the gel. The gel is imaged using
a standard camera. It is always found to be shorter and
thicker when immersed in toluene, compared to its initial
shape set by the mould. Its surface appears to be smooth,
consistent with the fact that the radius ρ0 is larger than
the critical radius of the Rayleigh-Taylor instability [15].
We measure the ratio λ ≤ 1 of the final length to the
initial length L, as a function of µ and ρ0. The values of
λ collapse on a curve when plotted as a function of the
dimensionless surface energy γ = γ

ρ0 µ = ℓ
ρ0

(figure 1).
We use the independently measured water-toluene sur-
face tension γ = 36.5 mN/m as the gel’s solvent is pure
water. We have checked that the transverse expansion is
consistent with our approximation of incompressibility.
In view of the measured values of λ ≥ .85, the agar gel
remains below the elastic limit (1−λ) ∼ 15%. The same
phenomenon has been reproduced using polyacrylamid
gels (data not shown).
The measurements of the stretch λ can be confronted

0.80.60.40.20

1

0.9

0.8

in
 m

o
u

ld
af

te
r

d
is

so
lu

ti
o

n

1 mm

FIG. 1: Shortening of an initially circular cylinder made of
agar gel when immersed in toluene. The axial stretch λ ≤ 1 of
circular elastic cylinder is plotted, for different values for the
shear modulus µ and of the initial radius ρ0 (in the range 0.45
to 2 mm), as a function of the dimensionless surface energy γ.
It is compared to the analytical formula in equation (2) (solid
curve). Inset : experimental pictures for µ = 200 Pa and
ρ0 = 0.8 mm. The agar cylinder is formed inside a translu-
cent mould (top); after dissolution of the mould it lays on a
hydrophobic grid, and shortens as the result of surface stress
(bottom). To aid visualization, the boundary of the agar
cylinder are highlighted using a dashed brown overlay.

to a prediction based on equation (1). Assuming that
the cylinder is long, L ≫ ρ0, and ignoring any end ef-
fect, we seek a solution in the form of a homogeneous
and biaxial deformation gradient F. We use Carte-
sian coordinates (x, y, z), the coordinate axis z being
aligned with the cylinder’s axis. Owing to the cylin-
drical symmetry and to the incompressibility, we write
F = λ ez ⊗ ez +λ−1/2 (ex ⊗ ex + ey ⊗ ey). The deformed
lateral area is A =

(

2π ρ0

λ1/2

)

(λL), where the first factor
is the deformed perimeter proportional to the transverse
contraction λ−1/2, and the second is the length of the de-
formed cylinder proportional to the axial stretch λ. The
area contributions coming from the disks at the ends is
neglected. We insert this into equation (1), and use a
thin disk dV0 = π ρ0

2 dz0 as the undeformed volume ele-
ment, with 0 ≤ z0 ≤ L. The resulting expression of the
energy E(λ) = 1

2
π ρ0

2 Lµ
(

4 γ λ1/2 + λ2 + 2λ−1 − 1
)

is
then minimized with respect to λ, which yields

λ =

(

(

1 +
γ2

4

)1/2

−
γ

2

)2/3

where γ =
γ

µ ρ0
. (2)

In figure 1, this prediction is shown to yield very good
agreement with the experimental data with no adjustable
parameter.
Square based prisms: rounding of sharp edges

We now consider prismatic rods having an initially
square cross-section. After dissolution of the mould by
toluene, the gel is transferred into silicon oil. Com-
pared to toluene, silicone oils offers the advantage of
having a much lower density mismatch ∆ρ with water:
∆ρ < 0.01 g/cm−3. This warrants that the ratio of the
elasto-capillary length ℓ to the gravity length µ/(g∆ρ) is
smaller than 5.10−3 so that gravity can be neglected. We
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FIG. 2: Rounding of the edges of an initially square based
prism made of polyacrylamid gel, immersed in silicone oil.
(a) The amount of rounding is measured based on the surface
area ∆A defined in the text (yellow region). (b) Experimen-
tal shape of the cross-section (solid red curve) for a shear
modulus µ = 35Pa, surface stress γ = 42.6mN/m and initial
edge length a0 = 5mm, and comparison to the simulation
(γ = 0.26, light blue dots). (c) The dimensionless measure
of rounding ∆A/a2 in the experiments is plotted as a func-
tion of the dimensionless surface stress γ for various initial
cross-sectional width a0 and shear moduli µ, and compared
to simulations (solid line).

compared the deformed shapes of square based prisms
having the same dimensions and shear moduli: the agar
gel was significantly more deformed than the polyacry-
lamid gel. This can be explained by the fact that the
agar gel is deformed beyond its elastic limit (15%) in the
neighborhood of sharp edges; there the strain concen-
trates and has been argued to exceed 100 % [2]. There-
fore, we used polyacrylamid gels to study the deforma-
tion of sharp edges as it has a very large elastic limit
(∼ 500%).

Experiments are carried out for different sizes of the
initial cross-section (a0 = 3 to 6 mm), and for various
values for the shear modulus (µ = 35, 60, 88 and 125 Pa).
A longitudinal contraction was again observed. However,
the most striking effect is that the initially square cross-
sections get rounded by surface tension, see figure 2b.
The rounding of an elastic wedge by surface tension has
been simulated in earlier work [2], which focused on the
neighborhood of the tip. The stress is large there, mak-
ing the elastic constitutive law unreliable and the results
of the simulation sensitive to the mesh (having tried to
reproduce the simulation, we suspect that the finite tip
curvature reported in [2] is due to the finite mesh size).
This may explain why the quantitative predictions of this
simulation have not been confirmed in experiments so far.
We consider a global measure of the rounding of the cross-
sections instead, namely the difference ∆A between the
area of the deformed cross-sections, and the area b2 of
the smallest square enclosing it, as sketched in figure 2a.
When the relative difference ∆A/b2 is plotted as a func-
tion of the dimensionless surface stress γ = γ

a0 µ = ℓ
a0

, as

in figure 2c, experimental points are found to collapse on
a master curve. The rounding effect is more pronounced
as the ratio γ = ℓ

a0

is smaller. Transferring the gel from
oil into water, thereby suppressing the surface tension,
we recover the original square cross-sections: the defor-
mation of the gel is elastic and reversible, and is driven
by surface tension.

For square cross-sections, the minimization of the en-
ergy (1) defines a non-linear elasticity problem that has
no analytical solutions. We carried out numerical simu-
lations of a neo-Hookean solid deformed by surface ten-
sion, using the finite-element method (FEM). Assum-
ing reflectional symmetry, we considered a domain of
size a0

2
× a0

2
× L/2, and implemented the corresponding

symmetric boundary conditions. An incompressible neo-
Hookean model was used, including the effect of the sur-
face energy. We adopted a set of units such that a0 = 1
and µ = 1 and varied the dimensionless surface tension γ.
The dimensionless measure of rounding ∆A/b2 was im-
plemented numerically as described earlier. The agree-
ment between simulation (solid curve in figure 2c) and
experiments is very good in the entire range of values of
γ accessible in the experiments. Note that deformations
are large: the rounding parameter ∆A/b2 varies non-
linearly with surface tension, both in the simulation and
in the experiments. A detailed comparison of the shapes
of the lateral boundaries yields an excellent agreement
too (compare the solid red and dotted light blue curves
in figure 2b). To the best of our knowledge, these com-
parisons are the first quantitative test of the rounding of
elastic solids by surface tension without any adjustable
parameter.

Bending of triangular based prisms We consider
the even less symmetric case of a prism whose base is an
isosceles triangle: this leads to an entirely different type
of deformation. We analyze the case of an infinitely long
triangular prism subjected to small surface stress first:
according to the theory of linear elasticity, the stress can
be analyzed in the undeformed configuration. The sur-
face tension is uniformly distributed along the triangular
boundary; its component parallel to the axis of the prism
is equivalent to a point-like force applied at the centroid
G of this boundary — G is called the Spieker center of
the triangle, see figure 3a. According to the theory of
thin elastic rods, stretching and bending arise from the
resultant force and moment of the applied load with re-
spect to the centroid H of a cross-section, respectively.
In an isosceles but non-equilateral triangle, this point is
distinct from the Spieker center G. As a result, the force
equivalent to the surface tension, which is applied at G,
induces both a compressive resultant force and a bend-
ing moment. The compressive force induces a contraction
effect similar to that discussed earlier for circular cross-
sections. The bending effect is novel, however, and leads
to large and easily measurable displacements. Calculat-
ing the position of the points G and H and using the
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FIG. 3: Bending of a triangular prism by uniform surface
stress. (a) Initial geometry. Note that the centroid H of the
triangular cross-section is distinct from the centroid G of its
boundary, called the Spieker center. As a result, the uni-
form surface stress induces a non-zero bending moment. (b)
Dimensionless curvature κ of a triangular prism with apex
angle θ = 20 ◦ and aspect-ratio L/h = 5.55, as a function
of the dimensionless surface stress γ: non-linear 3d finite el-
ement simulation for a neo-Hookean incompressible material,
and comparison to the linear beam theory from equation (3)
for L ≫ h and γ ≪ 1. (c) 3d shapes of the deformed prism
for selected values of γ. The color code shows the pressure
contribution p to the stress enforcint incompressibility. (c’)
in inset : experimental evidence of bending of agar gels im-
mersed in silicone oil (h = 4.5 mm, L = 2.5 cm, θ = 20 ◦) and
comparison to the corresponding finite-element simulation la-
beled (B).

linear beam theory, one finds the curvature κ of the cen-
terline as a function of the height h of the cross-section
and of the apex angle θ as:

κ =
γ

h

(

1

sin θ
2

− 2

)

where γ =
γ

µh
. (3)

By symmetry, this bending effect disappears in the equi-
lateral case (κ = 0 when θ = π/3), as well as for circular
and square cross-sections.
This bending effect has been confirmed in experiments

using agar gel immersed in silicone oil, see the inset in
figure 3c’. The mould is designed to produce a prism
of length L = 2.5 cm, height h = 4.5 mm and apex
angle θ = 20◦ (the latter allows the points H and G
to be well separated while keeping the fabrication ro-
bust to imperfections). The effect of surface tension
is magnified by the slenderness of the rod and is visi-
ble to the naked eye: the measured radius of curvature
is rexp = 9.5 ± 1.5 cm, corresponding to a dimension-
less curvature κexp = h/rexp = .049 ± .008. Given the
small surface energy γ = .0172 (γ = 42.6 mN/m and
µ = 550 Pa) we would expect the linear theory (3) to
be accurate, but it predicts a significantly larger curva-
ture, κlin = .065. To explain this discrepancy, we set up
FEM simulations that account both for the finite length
and for non-linear elasticity, see figure 3c. The linear

theory appears to be accurate in a very narrow range,

γ = ℓ/h
<
∼ .005. Beyond this, the cross-sections become

round and the curvature is overestimated. The non-linear
simulation predicts κsimul = .040 for γ = .0172, see point
(B) in figure 3b, which matches the experimental value
κexp = .049± .008 up to the experimental error bounds.

Although solids are often believed to deform in a fun-
damentally different way than fluids, we have shown that
elastic rods made of soft gels can become rounded by sur-
face tension when immersed into a liquid, much like bub-
bles. This rounding has been demonstrated at the cen-
timeter scale and involves large, easily measurable defor-
mation. Three specific modes of deformation have been
identified — they can appear concurrently, as long as the
symmetry of the cross-sections allows it. A twisting mode
is expected in the absence of a particular symmetry, and
could be investigated in future work. The phenomenon
reported here gives a way to generate large, reversible
deformations simply by changing the chemical proper-
ties of a liquid bathing a solid. This effect is stronger in
filamentous structures which have a large area to volume
ratio and are ubiquitous in biology. This opens up the
possibility of tuning the texture of a hairy interface, or
actuating fibrous materials using surface tension.
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