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Homogenization of random parabolic

operators. Diffusion approximation.
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July 11, 2014

Abstract

The paper deals with homogenization of divergence form second

order parabolic operators whose coefficients are periodic in spatial

variables and random stationary in time. Under proper mixing as-

sumptions, we study the limit behaviour of the normalized difference

between solutions of the original and the homogenized problems. The

asymptotic behaviour of this difference depends crucially on the ratio

between spatial and temporal scaling factors. Here we study the case

of self-similar parabolic diffusion scaling.

1 Introduction

The goal of this paper is to characterize the rate of convergence in the ho-
mogenization problem for a second order divergence form parabolic operator
with random stationary in time and periodic in spatial variables coefficients.
We are also aimed at describing the limit behaviour of a normalized difference
between solutions of the original and homogenized problems
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To avoid boundary effects we study a Cauchy problem that takes the form

(1)
∂tu

ε = div
(
a
(x
ε
,
t

εα
)
∇uε

)
, x ∈ R

n, t > 0,

uε(x, 0) = g(x).

with α > 0. In this paper we consider the case α = 2. We assume that
the matrix a(z, s) = {aij(z, s)} is uniformly elliptic, (0, 1)n-periodic in z
variable, and random stationary ergodic in s. We denote Y = (0, 1)n and in
what follows identify Y -periodic function with functions define on the torus
T
n.
It is known (see [14], [8]) that under these assumptions problem (1) ad-

mits homogenization. More precisely, for any g ∈ L2(Rn), almost surely
(a.s.) solutions uε of problem (1) converge, as ε → 0, to a solution of the
homogenized problem

(2)
∂tu

0 = div
(
aeff∇u0

)

u0(x, 0) = g(x)

with a constant non-random coefficients. The convergence is in L2(Rn ×
(0, T )). More detailed description of the existing homogenization results is
given in Sections 3 and 3.1.

The paper focuses on the rate of this convergence and on higher order
terms of the asymptotics of uε. Our goal is to describe the limit behaviour
of the normalized difference ε−1(uε − u0).

Clearly, the main oscillating term of the asymptotics of this normalized
difference should be expressed in terms of the corrector. We recall (see [8],
[3]) that the equation

∂sχ(z, s) = divz
(
a(z, s)

(
∇zχ(z, s) + I

))

has a unique up to an additive (random) constant periodic in z and stationary
in s solution. Thus, the gradient ∇zχ is uniquely defined. The principal
corrector takes the form εχ

(
x
ε
, t
ε2

)
· ∇u0(x, t). We study the limit behaviour

of the expression

Uε(x, t) :=
uε(x, t)− u0(x, t)

ε
− χ

(x
ε
,
t

ε2
)
· ∇u0(x, t).

For generic stationary ergodic coefficients a(z, s) the family {Uε} need not
be compact or tight in L2(Rn × (0, T )).

For this reason we assume that (see Section 2 for further details)

2



• Coefficients a(z, s) have good mixing properties.

• Initial function g is sufficiently smooth.

Under these conditions we show (see Theorem 3, Section 6) that Uε converges
in law in L2(Rn × (0, T )) equipped with the strong topology to a solution of
a SPDE with constant coefficients and an additive noise. This SPDE reads

dU0 = div
(
aeff∇U0 + µ

∂3

∂x3
u0
)
dt+ Λ1/2 ∂

2

∂x2
u0 dWt,

U0(x, 0) = 0;

here aeff is the homogenized coefficients matrix, u0 is a solution of (2), Wt is
a standard n2-dimensional Wiener process, and µ and Λ are constant tensors
which are defined in Section 6. We show that this SPDE is well-posed and,
thus, defines the limit law of Uε uniquely.

Notice that under proper choice of an additive constant the mean value of
χ(z, s) is equal to zero. Therefore, the function χ

(
x
ε
, t
ε2

)
∇u0(x, t) converges

a.s. to zero weakly in L2(Rn × (0, T )), as ε → 0. Therefore, in the weak
topology of L2(Rn × (0, T )), the limit in law of the normalized difference
ε−1(uε(x, t)− u0(x, t)) coincides with that of Uε.

The first results on homogenization of elliptic operators with random
statistically homogeneous coefficients were obtained in [9], [11]. At present
there is an extensive literature on this topic. However, optimal estimates for
the rate of convergence is an open issue. In [13] some power estimates for the
rate of convergence were obtained in dimension three and more. In the recent
work [5] the further important progress has been made in this problem.

Parabolic operators with random coefficients depending both on spatial
and temporal variables have been considered in [14]. In the case of a diffusive
scaling, the a.s. homogenization theorem has been proved.

The case of non-diffusive scaling has been studied in [7] under the as-
sumption that the coefficients are periodic in spatial variables and random
stationary in time.

It turns out that the structure of the higher order terms of the asymptotics
of uε depends crucially on whether the scaling is diffusive or not. Here we
study the diffusive scaling. The case of non-diffusive scaling will be addressed
elsewhere.
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2 The setup

Let (Ω,F ,P) be a standard probability space equipped with a measure
preserving ergodic dynamical system Ts, s ∈ R.

Given a measurable matrix function ã(z, ω) = {ãij(z, ω)}ni,j=1 which is
periodic in z variable with a period one in each coordinate direction, we
define a random field a(z, s) by

a(z, s) = ã(z, Tsω).

Then a(z, s) is periodic in z and stationary ergodic in s.
We consider the following Cauchy problem in R

n × (0, T ], T > 0 :

(3)





∂uε

∂t
= div

(
a
(x
ε
,
t

ε2

)
∇uε

)

uε(0, x) = g(x)

with a small positive parameter ε.
We assume that the coefficients in (3) possess the following properties.

H1 The matrix a(z, s) is symmetric and satisfies uniform ellipticity con-
ditions that is there is λ > 0 such that for all (z, ω) the following
inequality holds :

λ|ζ |2 ≤ ã(z, ω)ξ · ξ ≤ λ−1|ζ |2 for all ζ ∈ R
n.

H2 The initial condition g is four times continuously differentiable, and for
any K > 0 there is CK > 0 such that

4∑

|j|=0

∣∣∣ ∂j

(∂x1)j1 . . . (∂xn)jn
g(x)

∣∣∣ ≤ CK(1 + |x|)−K

for all x ∈ R
n, and j = (j1, . . . , jn)

In order to formulate one more condition we introduce the so-called maxi-
mum correlation coefficient. Setting F≤r = σ{a(z, s) : s ≤ r} and F≥r =
σ{a(z, s) : s ≥ r}, we define

ρ(r) = sup
ξ1,ξ2

E(ξ1ξ2)

where the supremum is taken over allF≤0-measurable ξ1 and F≥r-measurable
ξ2 such that Eξ1 = Eξ2 = 0, and E{(ξ1)

2} = E{(ξ2)
2} = 1. We then assume

that
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H3 The function ρ satisfies the estimate

∫ ∞

0

ρ(r)dr < +∞.

Remark 1 Condition H3 is somehow implicit. In applications various suffi-
cient conditions are often used. In particular, H3 is fulfilled if ρ(r) ≤ cr−(1+δ)

for some δ > 0.

Remark 2 In an important particular case we set

a(z, s) = ˜̃a(z, ξs),

where ξs is a stationary process with values in R
N , and ˜̃a(z, y) satisfies the

uniform ellipticity conditions

λ|ζ |2 ≤ ˜̃a(z, y)ξ · ξ ≤ λ−1|ζ |2 for all ζ ∈ R
n, (z, y) ∈ Z

n × R
N .

If ξs is Gaussian then condition H3 follows from integrability of the correla-
tion function of ξ·.
If ξs is a diffusion process, then condition H3 can be replaced with some con-
ditions on the generator of ξs. This case is considered in Sections 3.1 and
7.

3 Homogenization results

In this section we remind of the existing homogenization results for prob-
lem (1). Although we only deal in this paper with the case α = 2, for
convenience of the reader we formulate the homogenization results for all
α > 0. To this end we first introduce the so-called cell problem. For α = 2
it reads

(4) ∂sχ(z, s) = div
(
a(z, s)(I+∇χ(z, s)

)
, (z, s) ∈ T

n × (−∞,+∞)

with I being the unit matrix; here χ = {χj}nj=1 is a vector function. In what

follows for the sake of brevity we denote diva = div(aI) = ∂
∂zi
aij(z). Also,

we assume summation over repeated indices.
According to Lemma 4.1, under assumption H1 this equation has a sta-

tionary periodic in y vector-valued solution. This solution is unique up to an
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additive constant. We define

(5) aeff = E

∫

Tn

a(z, s)
(
I+∇χ(z, s)

)
dz

Notice that due to stationarity the expression on the right-hand side does
not depend on s.

If α < 2, the cell problem reads

(6) div
(
a(z, s)(I+∇χ−(z, s)

)
= 0, z ∈ T

n;

here s is a parameter. This equation has a unique up to a multiplicative
constant solution. We then set

(7) aeff− = E

∫

Tn

a(z, s)
(
I+∇χ−(z, s)

)
dz.

For α > 2 we first define a(z) = Ea(z, s), then introduce a deterministic
function χ+(z) as a periodic solution to the problem

(8) div
(
a(z)(I+∇χ+(z)

)
= 0, z ∈ T

n,

and finally define

(9) aeff+ =

∫

Tn

a(z)
(
I+∇χ+(z)

)
dz.

The following statement has been obtained in [14] and [3].

Theorem 1 Let g ∈ L2(Rn), and assume that condition H1 holds. If α = 2,
then a solution uε of problem (1) converges a.s. in L2(Rn × (0, T )) to a
solution of the limit problem (2) with aeff given by (5).

If α < 2, then a solution uε of problem (1) converges in probability in
L2(Rn × (0, T )) to a solution of the limit problem (2) with aeff = aeff− defined
in (7).

If α > 2, then a solution uε of problem (1) converges in probability in
L2(Rn × (0, T )) to a solution of the limit problem (2) with aeff = aeff+ defined
in (9).
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Remark 3 An alternative way of defining the effective matrix aeff is related
to the operator with reversed time. We define χ− as a stationary solution of
the problem

(10) −∂sχ−(z, s) = div
(
a(z, s)(I+∇χ−(z, s)

)
, (z, s) ∈ (−∞,+∞)×T

n

and set

(11) aeff = E

∫

Tn

a(z, s)
(
I+∇χ−(z, s)

)
dz

In order to show that (11) and (5) define the same effective matrix, we
multiply the i-th component of equation (10) by χj, and the j-th component
of equation (4) by χi and integrate the resulting relations over T

n × (0, 1).
Subtracting the second relation from the first one, taking the expectation and
considering the symmetry of effective matrix, we obtain the desired equality.

3.1 Diffusive dependence of time

In this section as a particular case of (3) we introduce the following prob-
lem

(12)





∂uε

∂t
= div

(
ã
(x
ε
, ξ t

ε2

)
uε
)

uε(0, x) = g(x)

with a diffusion process ξs, s ∈ (−∞,+∞), with values in R
N or on a compact

manifold. This process is defined on a probability space (Ω,F ,P). For the
sake of definiteness we consider here the case of a diffusion in R

N . The
corresponding Itô equation reads

dξt = b(ξt)dt+ σ(ξt)dWt,

here W· stands for a standard N -dimensional Wiener process. The infinites-
imal generator of ξ is denoted by L:

Lf(y) = qij(y)
∂2

∂yi∂yj
f(y) + b(y) · ∇f(y), y ∈ RN ,

with a N ×N matrix q(y) = 1
2
σ(y)σ∗(y). We also introduce an operator

Af(x) = divx (a (x, y)∇xf) ;
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here y is a parameter. Applied to a function f(z, y), L acts on the function
y 7→ f(z, y) for z fixed, and A acts on the function z 7→ f(z, y) for y fixed.

In the diffusive case condition H3 can be replaced with certain assump-
tions on the generator L. More precisely, we suppose that the following
conditions hold true.

A1. The coefficients a and q are uniformly bounded as well as their first
order derivatives in all variables:

|a(z, y)|+ |∇za(z, y)|+ |∇ya(z, y)| ≤ C1,

|q(y)|+ |∇q(y)| ≤ C1.

The function b as well as its derivatives satisfy polynomial growth con-
dition:

|b(y)|+ |∇b(y)| ≤ C1(1 + |y|)N1.

A2. Both A and L are uniformly elliptic:

C2I ≤ a(z, y), C2I ≤ q(y), with C2 > 0,

where I stands for a unit matrix of the corresponding dimension.

A3. There exist N2 > −1, R > 0 and C3 > 0 such that

b(y)
y

|y|
≤ −C3|y|

N2

for all y, |y| > R.

Under above assumptions the process ξ has a unique invariant probability
measure (see [12]). This measure possesses a smooth density π that forms
the kernel of the formal adjoint operator L∗ of L. We assume that ξs is
stationary. Then

Ef(z, ξs) =

∫RN

f(z, y)π(y)dy

Remark 4 Notice that conditions A1–A3 need not imply condition H3. In
general, mixing properties that follow from A1–A3 are weaker than those
stated by H3. However, in the diffusive case these conditions are sufficient
for the CLT type results used in the proofs below. This makes the diffusive
case interesting. It should also be noted that in this case the conditions are
given in terms of the process generator, which might be more comfortable in
applications.
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Let us recall the result of [7] (see also [2]).

Theorem 2 Under Assumptions A1–A3, the solution uε of (12) converges
almost surely in the space L2((0, T )×R

n) to the solution of problem (2) with

(13) aeff =

∫

RN

∫

Tn

a(I+∇zχ
0)π(y) dzdy

and χ0 being the solution of the following equation

(14) (A+ L)χ0 = −divza(z, y).

4 Technical statements

In this section we provide a number of technical statements required for
formulating and proving the main results.

Consider an equation

(15) ∂sψ(z, s)− div
(
a(z, s)∇ψ(z, s)

)
= φ(z, s)

with a stationary in s and periodic in z random function φ.

Lemma 4.1 Let φ ∈ L2
loc(R;H

−1(Tn)), and assume that ‖φ‖2L2((0,1);H−1(Tn)) ≤
C with a non-random constant C. Assume, moreover, that

(16)

∫

Tn

φ(z, s)dz = 0 a.s.

Then equation (15) has a stationary solution ψ ∈ L∞
loc((−∞,+∞);L2(Tn))∩

L2
loc((−∞,+∞);H1(Tn)). It is unique up to an additive (random) constant,

and

(17) ‖ψ‖2L∞(R;L2(Tn)) ≤ C1, ‖ψ‖2L2((0,1);H1(Tn)) ≤ C1.

Proof. Since a proof of this statement is similar to that of Lemmata 2 and
4 in [8], we provide here only a sketch of the proof. Consider the Green
function of (15). It solves a Cauchy problem

∂sG(z, z0, s, s0)− div
(
a(z, s)∇G(z, z0, s, s0)

)
= 0, z ∈ T

n, s ≥ s0,

G(z, z0, s0, s0) = δ(z − z0).
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From the Harnack inequality and maximum principle it easily follows (see
[8]) that for all s ≥ s0 + 1

(18) ‖G(·, z0, ·, s0)− 1‖L2((s,s+1);H1(Tn)) ≤ Ce−ν(s−s0)

with deterministic constants C and ν > 0. Then we have

ψ(z, s) =

s∫

−∞

∫

Tn

G(z, ẑ, s, ŝ)φ(ẑ, ŝ) dẑdŝ =

=

s−1∫

−∞

∫

Tn

(
G(z, ẑ, s, ŝ)− 1

)
φ(ẑ, ŝ) dẑdŝ+

s∫

s−1

∫

Tn

(
G(z, ẑ, s, ŝ)

)
φ(ẑ, ŝ) dẑdŝ,

here we have also used (16). The first term on the right-hand side can be
estimated with the help of (18), the second one by means of the standard
energy inequality. This yields the first bound in (17). By construction,
ψ(z, s) is a stationary solution of (15). The second bound in (17) readily
follows from the first one. �

Corollary 1 If the function φ in (15) belongs to L∞(R;W−1,∞(Tn)), then
ψ ∈ L∞(R× T

n) and

‖ψ‖L∞(R×Tn) ≤ C‖φ‖L∞(R;W−1,∞(Tn))

with a deterministic constant C.

Proof. This statement follows from Lemma 4.1 due to the Nash type esti-
mates for solutions of parabolic equations (see [4, Theorem VII,3.1]). �

Denote by Fa,φ
≤T the σ-algebra σ{a(z, s), φ(x, s) : s ≤ T}. The σ-algebra

Fa,φ
≥T is defined accordingly. Let ρa,φ(r) be maximum correlation coefficient

of (a, φ). Denote also

l(s) =

∫

Tn

(
a(z, s)∇zψ(z, s)− E(a(z, s)∇zψ(z, s))

)
dz.

Lemma 4.2 For the vector-function l(·) the following estimate holds

‖E{l(s) | Fa,φ
≤0 }‖L2(Ω)

≤ C
(
e−νs/2 + ρa,φ(s/2)

)
, ν > 0.
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Proof. This inequality has been proved in [8, Proof of Lemma 3]. Here we
provide an outline of the proof. We represent

ψ(z, s) = ψ1(z, s) + ψ2(z, s) =

=

s/2∫

−∞

∫

Tn

(
G(z, ẑ, s, ŝ)− 1

)
φ(ẑ, ŝ) dẑdŝ+

s∫

s/2

∫

Tn

(
G(z, ẑ, s, ŝ)

)
φ(ẑ, ŝ) dẑdŝ.

Then

l(s) = l1(s)+l2(s), l1,2(s) =

∫

Tn

(
a(z, s)∇zψ

1,2(z, s)−E(a(z, s)∇zψ
1,2(z, s))

)
dz.

Considering (18) we get ‖l1(s)‖L2(Ω) ≤ Ce−νs/2. Since l2(s) is Fa,φ
≥s/2-measurable,

we obtain ‖E{l2(s) | Fa,φ
≤0 }‖L2(Ω)

≤ Cρa,φ(s/2). This yields the desired in-

equality. �

5 Formal asymptotic expansion

In this section we deal with the formal asymptotic expansion of a solution
of problem (1). Although, in contrast with the periodic case, this method
fails to work in full generality in the case under consideration, we can use it
in order to understand the structure of the leading terms of the difference
uε − u0. As usually in the multi-scale asymptotic expansion method we
consider z = x/ε and s = t/ε2 as independent variables and use repeatedly
the formulae

∂
∂xj
f
(
x, x

ε

)
=

(
∂

∂xj
f(x, z) + 1

ε
∂
∂zj
f(x, z)

)
z=x

ε

,

∂
∂t
f
(
t, t

ε2

)
=

(
∂
∂t
f(t, s) + 1

ε2
∂
∂s
f(t, s)

)
s= t

ε

.

We represent a solution uε as the following asymptotic series in integer powers
of ε:

(19) uε(x, t) = u0(x, t) + εu1
(
x, t,

x

ε
,
t

ε2

)
+ ε2u2

(
x, t,

x

ε
,
t

ε2

)
+ . . . ;

here all the functions uj(x, t, z, s) are periodic in z. The dependence in s is
not always stationary.
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Substituting the expression on the right-hand side of (19) for uε in (3)
and collecting power-like terms in (3) yields

(ε−1) : ∂su
1 − divz

(
a(z, s)∇zu

1
)
= −divz

(
a(z, s)∇xu

0
)
.

(ε0) :
∂su

2 − divz

(
a(z, s)∇zu

2
)
= −∂tu

0 + divx
(
a(z, s)∇xu

0
)

+divz
(
a(z, s)∇xu

1
)
+ divx

(
a(z, s)∇zu

1
)
.

(ε1) :
∂su

3 − divz

(
a(z, s)∇zu

3
)
= −∂tu

1 + divx
(
a(z, s)∇xu

1
)

+divz
(
a(z, s)∇xu

2
)
+ divx

(
a(z, s)∇zu

2
)
.

We will see later on that dealing with the first three equations is sufficient.

In equation (ε−1) the variables x and t are parameters. By Lemma 4.1 this
equation has the unique stationary solution. The fact that the right-hand
side of the equation is of the form [divz

(
a(z, s)] · ∇xu

0 suggests that

u1(x, t, z, s) = χ(z, s)∇u0(x, t).

with a vector-function χ = {χj(z, s)}nj=1 solving equation (4) that reads

∂sχ− divz

(
a(z, s)∇zχ

)
= divz

(
a(z, s)

)
,

divza(z, s) stands for ∂
∂zi
aij(z, s). By Lemma 4.1 and Corollary 1 we have

χ ∈ (L∞(R× T
n))n ∩ (L2

loc(R;H
1(Tn)))n, and

(20) ‖χj‖L∞(R×Tn) ≤ C, ‖χj‖L2([0,1];H1(Tn)) ≤ C, j = 1, . . . , n.

with a deterministic constant C. For the sake of definiteness we assume from
now on that

(21)

∫

Tn

χ(z, s)dz = 0.

One can easily check that this integral does not depend on s so that the
normalization condition makes sense.

We turn to the terms of order ε0. We do not reprove here the homoge-
nization results (see [14]) and assume that u0 satisfies problem (2) with aeff

given by (5). Then the right-hand side of equation (ε0) takes the form

−∂tu
0 + divx

(
a(z, s)∇xu

0
)
+ divz

(
a(z, s)∇xu

1
)
+ divx

(
a(z, s)∇zu

1
)
=

12



= divx
(
{a(z, s)(I+∇zχ(z, s))− aeff}∇xu

0
)
+ divz

(
a(z, s)∇xu

1
)

By the definition of aeff (see (5)) we have

E

∫

Tn

{a(z, s)(I+∇zχ(z, s))− aeff} dz = 0.

Letting

(22) Ψ2,1(s) =

∫

Tn

{a(z, s)(I+∇zχ(z, s))− aeff} dz

and

(23) Ψ2,2(z, s)={a(z, s)(I+∇zχ(z, s))−a
eff}−Ψ2,1(s)+divz

(
a(z, s)⊗χ(z, s)

)

with

divz

(
a(z, s)⊗ χ(z, s) =

{ ∂

∂zi
aij(z, s)χk(z, s)

}n

j,k=1
,

we rewrite equation (ε0) as follows

(24) ∂su
2 − divz

(
a(z, s)∇zu

2
)
=

(
Ψij

2,1(s) + Ψij
2,2(z, s)

) ∂2

∂xi∂xj
u0.

Since the process
∫ s

0
Ψ2,1(r)dr need not be stationary, we cannot follow

any more the same strategy as in the periodic case. Instead, we consider the
equation

(25)





∂V ε,1

∂t
= div

(
a
(x
ε
,
t

ε2

)
∇V ε,1

)
+Ψij

2,1

( t

ε2

) ∂2

∂xi∂xj
u0(x, t)

V ε,1(0, x) = 0.

This suggests the representation

(26)
uε(x, t) =u0(x, t) + εχ

(x
ε
,
t

ε2

)
∇u0(x, t)

+V ε,1 + ε2v2
(
x, t,

x

ε
,
t

ε2

)
+ . . .

with

v2(x, t, z, s) = χij
2,2(z, s)

∂2

∂xi∂xj
u0(x, t) ,
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where χij
2,2(z, s) is a stationary zero mean solution of the equation

(27) ∂sχ
ij
2,2(z, s)− divz

(
a(z, s)∇zχ

ij
2,2(z, s)

)
= Ψij

2,2(z, s).

It is straightforward to check that due to (20)–(23) we have

‖Ψ
ij

2,2
‖L2((0,1);H−1(Tn)) ≤ C, i, j = 1, . . . , n.

Then the conditions of Lemma 4.1 are fulfilled for equation (27) and, there-
fore, this equation has a stationary solution that satisfies the estimate

(28) ‖χ
ij

2,2
‖L2([0,1];H1(Tn)) + ‖χ

ij

2,2
‖L∞((−∞.+∞);L2(Tn)) ≤ C, i, j = 1, . . . , n.

with a deterministic constant C.
By its definition, Ψ2,1(s) is a stationary zero average process. Denote

χij
2,1(s) =

∫ s

0

Ψij
2,1(r)dr.

Estimates (20) imply that

‖Ψij
2,1‖L2(0,1) ≤ C, i, j = 1, . . . , n.

with a deterministic constant C. It follows from Lemmata 4.1 and 4.2 that
under condition H3 it holds
∫ ∞

0

‖E{Ψ2,1(s) | F
Ψ2,1

≤0 }‖
(L2(Ω))n2 ds ≤ C

∫ ∞

0

(
e−νs/2 + ρΨ2,1

(s/2)
)
dy <∞.

Therefore, the invariance principle holds for this process (see [6, Theorem
VIII.3.79]), that is for any T > 0

(29) εχ2,1

( ·

ε2

)
−→
ε→0

Λ1/2W·

in law in the space (C[0, T ])
n2

with

Λijkl =

∞∫

0

E
(
Ψij

2,1(0)Ψ
kl
2,1(s) + Ψkl

2,1(0)Ψ
ij
2,1(s)

)
ds,

here W is a standard n2-dimensional Wiener process. Since the n2 × n2

matrix Λ is symmetric and positive (but not necessary positive definite), its
square root is well defined.

14



Remark 5 One can see that the processes χ2,1 and χ2,2 show rather dif-
ferent behaviour. In fact, since the process χ2,2 is stationary, the function
εχ2,2(x/ε, t/ε

2) goes to zero, as ε → 0. To the contrary, by the Cental Limit
Theorem type arguments, the process εχ2,1(t/ε

2) need not tend to zero on
[0, T ], and, thus, it contributes to the asymptotics in question. Under our
standing conditions, this process is of order one.

Lemma 5.1 The functions ε−1V ε,1 converges in law, as ε→ 0, in the space
C((0, T );L2(Rn)) to the unique solution of the following SPDE with a finite
dimensional additive noise:

(30)





dV 0,1 = div(aeff∇V 0,1)dt+
(
Λ1/2

)ijkl ∂2

∂xi∂xj
u0(x, t)dWt,kl

V 0,1(0, x) = 0.

Proof. The proof is a consequence of (29) and the fact that u0(x, t) is a
smooth deterministic function vanishing with its derivatives at infinity. To
see this we introduce an auxiliary function V̌ ε as the solution to the following
Cauchy problem





∂V̌ ε

∂t
= div(aeff∇V̌ ε) +

1

ε
Ψij

2,1

( t

ε2

) ∂2

∂xi∂xj
u0(x, t)

V̌ ε(0, x) = 0.

For the sake of brevity we denote v0ij(x, t) = ∂2

∂xi∂xju
0(x, t). Notice that v0ij

solves the equation ∂tv
0
ij − div(aeff∇v0ij) for all i, j = 1, . . . , n. Then one can

easily check that

(31) V̌ ε(x, t) = εχij
2,1

( t
ε

2)
v0ij(x, t)

Our first goal is to show that

(32) ‖ε−1V ε,1 − V̌ ε‖L2((0,T )×Rn) −→ 0 in probability.

To this end we represent ε−1V ε,1 as

ε−1V ε,1 = εχij
2,1

( t
ε

2)
v0ij(x, t) + Zε(x, t)
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and substitute it in (25). This yields the following equation for Zε :





∂Zε

∂t
= div

(
a
(x
ε
,
t

ε2

)
∇Zε

)
+ εχij

2,1

( t

ε2

){
∂tv

0
ij − div

(
a
(x
ε
,
t

ε2

)
∇v0ij

)}

Zε(0, x) = 0.

Let ρ = ρ(t) be a continuous function on [0, T ]. Then

(33)
∥∥∥ρ(t)

{
∂tv

0
ij − div

(
a
(x
ε
,
t

ε2

)
∇v0ij

)}∥∥∥
L2(0,T ;H−1(Rn))

≤ C‖ρ‖L∞(0,T ),

where the constant C does not depend on ε. Next, we consider the following
Cauchy problem:

(34)





∂Zε

∂t
= div

(
a
(x
ε
,
t

ε2

)
∇Zε

)
+ ρ(t)

{
∂tv

0
ij − div

(
a
(x
ε
,
t

ε2

)
∇v0ij

)}

Zε(0, x) = 0.

With the help of energy estimates we derive from (33) that

‖Zε‖L2(0,T ;H1(Rn)) + ‖∂tZ
ε‖L2(0,T ;H−1(Rn)) ≤ C‖ρ‖L∞(0,T ).

Taking into account the fast decay of v0 and its derivatives at infinity we
deduce from this estimate (see [10]) that almost surely for a subsequence the
function Zε converges in C([0, T ];L2(Rn)) to some function Z0. In order
to characterize Z0, assume for a while that ρ is smooth. For an arbitrary
ϕ ∈ C∞

0 ((0, T ) × R
n) we use in the integral identity of problem (34) the

following test function

ϕε(x, t) = ϕ(x, t) + εχ
−

(x
ε
,
t

ε2

)
∇ϕ(x, t)

with χ
−

defined in (10). Setting aε(x, t) = a
(
x
ε
, t
ε2

)
, χε

−(x, t) = χ
−

(
x
ε
, t
ε2

)
,

after integration by parts in this integral identity and straightforward rear-
rangements we obtain

−

T∫

0

∫

Rn

Zε
(
∂tϕ+(aε)ij∂xi∂xjϕ+(aε)ij∂zj (χ

ε
−)

k∂xi∂xkϕ+∂zi[(a
ε)ij(χε

−)
k]∂xj∂xkϕ

)
dxdt

16



−ε−1

T∫

0

∫

Rn

Zε
(
∂zi(a

ε)ij∂xjϕ+ ∂s(χ
ε
−)

j∂xjϕ+ ∂zi[(a
ε)ij∂zj(χ

ε
−)

k]∂xkϕ
)
dxdt

−ε

T∫

0

∫

Rn

Zε
(
(aε)ij(χε

−)
k∂xi∂xj∂xkϕ+ (χε

−)
j∂t∂xjϕ

)
dxdt

=

T∫

0

∫

Rn

(
ρϕ∂tv

0
lm−ρv

0
lm{(a

ε)ij∂xi∂xjϕ−(aε)ij∂zi(χ
ε
−)

k∂xj∂xkϕ−∂zj [(a
ε)ij(χε

−)
k]∂xi∂xkϕ}

)
dxdt

−ε−1

T∫

0

∫

Rn

(
ρv0lm{∂s(χ

ε
−)

k + ∂zi((a
ε)ij∂zj (χ

ε
−)

k) + ∂zi(a
ε)ik}∂xkϕ

)
dxdt

−ε

T∫

0

∫

Rn

(
v0lm(χ

ε
−)

k∂t(ρϕ) + ρv0lm(a
ε)ij(χε

−)
k∂xi∂xj∂xkϕ

)
dxdt

Notice that due to equation (10) all the terms of order ε−1 are equal to zero.
Passing to the limit, as ε→ 0 yields

T∫

0

∫

Rn

Z0(∂tϕ+ div(aeff∇ϕ)) dxdt =

T∫

0

∫

Rn

(
ρϕ∂tv

0
lm − ρv0lmdiv(a

eff∇ϕ)
)
dxdt

Since v0lm solves the effective equation, the integral on the right-hand side is
equal to zero. Therefore,

∂tZ
0 − div(aeff∇Z0) = 0.

Since Z0(x, 0) = 0, we conclude that Z0 = 0.
By the density arguments, Z0 = 0 for any continuous ρ. Due to the tightness
of the family

{
εχij

2,1

(
t
ε2

)}
in C[0, T ] this implies that Zε converges to zero in

probability in L2(Rn × (0, T )), and (32) follows.
It remains to pass to the limit in (31) and check that the limit process

satisfies (30). Due to (29) and (31), V̌ ε converges in law in C(0, T ;L2(Rn))
to the process Λ1/2W·v

0 with n2-dimensional Wiener process Wt. Recalling
the definition of v0ij , we obtain the desired convergence. �
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We proceed with equation (ε1). Its right-hand side can be rearranged as
follows:

−∂tu
1 + divx

(
a(z, s)∇xu

1
)
+ divz

(
a(z, s)∇xv

2
)
+ divx

(
a(z, s)∇zv

2
)

=
{
− aeff ⊗ χ(z, s) + a(z, s)⊗ χ(z, s) + divz[a(z, s)⊗ χ2,2(z, s)]

+a(z, s)∇zχ2,2(z, s)
} ∂3

∂x3
u0(x, t) := Ψ3(z, s)

∂3

∂x3
u0(x, t);

here and in what follows the symbol ∂3

∂x3u
0(x, t) stands for the tensor of third

order partial derivatives of u0, that is ∂3

∂x3 =
{

∂3

∂xi∂xj∂xk

}n

i,j,k=1
; we have also

denoted
a(z, s)⊗ χ(z, s) =

{
aij(z, s)χk(z, s)

}n

i,j,k=1

and
divz[a(z, s)⊗ χ2,2(z, s)] =

{
∂zi [a

ij(z, s)χkl
2,2(z, s)]

}n

j,k,l=1
.

We introduce the following constant tensor µ = {µijk}ni,j,k=1:

µ = E

∫

Tn

{
− aeff ⊗ χ(z, s) + a(z, s)⊗ χ(z, s) + a(z, s)∇zχ2,2

(z, s)
}
dz

with a(z, s)∇zχ2,2
(z, s) = {aij(z, s)∂zlχ

lk
2,2(z, s)}

n
i,j,k=1, and consider the fol-

lowing problems:

(35)





∂Ξε,1

∂t
= div

(
a
(x
ε
,
t

ε2

)
∇Ξε,1

)
+
(
Ψ3

(x
ε
,
t

ε2
)
− µ

) ∂3

∂x3
u0(x, t)

Ξε,1(x, 0) = 0,

and

(36)





∂Ξε,2

∂t
= div

(
a
(x
ε
,
t

ε2

)
∇Ξε,2

)
+ µ

∂3

∂x3
u0(x, t)

Ξε,2(0, x) = 0.

Lemma 5.2 The solution of problem (35) tends to zero a.s., as ε → 0, in
L2(Rn × [0, T ]). Moreover,

lim
ε→0

E
(
‖Ξε,1‖

2
L2(Rn×[0,T ])

)
= 0.
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Proof. Splitting further the term (Ψ3 − µ) on the right-hand side of (35)
into two parts

Ψ3(z, s)− µ= divz[a(z, s)⊗ χ
2,2
(z, s)]

+
{
(a(z, s)− aeff)⊗ χ(z, s) + a(z, s)∇zχ2,2

(z, s)− µ
}

= Ψ3,1(z, s) + (Ψ3,2(z, s)− µ),

we represent the solution Ξε,1 as the sum Ξ1
ε,1 and Ξ2

ε,1, respectively.
Since the right-hand side g in (1) satisfies condition H2, the entries of

∂3

∂x3u
0 are C1(Rn) functions, and, moreover, for any K > 0 there exists CK

such that

∣∣∣ ∂
3

∂x3
u0(x, t)

∣∣∣ +
∣∣∣ ∂

4

∂x4
u0(x, t)

∣∣∣ ≤ CK(1 + |x|)−K , t ∈ [0, T ].

Combining this with (28) we conclude that

∥∥∥Ψ3,1

(x
ε
.
t

ε2

) ∂3

∂x3
u0(x, t)

∥∥∥
L2([0,T ];H−1(Rn))

≤ Cε.

Therefore,

(37) ‖Ξ1
ε,1‖L2([0,T ];H1(Rn)) ≤ Cε.

Due to (28) and the properties of u0, we have

∥∥
(
Ψ3,2

(x
ε
,
t

ε2

)
− µ

) ∂3

∂x3
u0

∥∥∥
L2(Rn×(0,T ))

≤ C

with a deterministic C. Using Theorem 1.5.1 in [10] we derive from this esti-
mate that a.s. the family Ξ2

ε,1 is compact in L2((0, T );L2
loc(R

n)). Considering
condition H2 and Aronson’s estimate (see [1]), we then conclude that the
family Ξ2

ε,1 is compact in L2(Rn × (0, T )).

By the Birkhoff ergodic theorem, the function
(
Ψ3,2

(
x
ε
, t
ε2

)
−µ

)
∂3

∂x3u0 con-
verges a.s. to zero weakly in L2(Rn× (0, T )). Combining this with the above
compactness arguments, we conclude that a.s. Ξ2

ε,1 converges to zero in
L2(Rn × (0, T )). Then in view of (37), Ξε,1 tends to zero in L2(Rn × (0, T ))
a.s. This yields the first statement of the lemma. The second statement
follows from the first one by the Lebesgue dominated convergence theorem.
�
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According to [14], problem (36) admits homogenization. In particular,
Ξε,2 converges a.s. in L

2(Rn × (0, T )) to a solution of the following problem:

(38)





∂Ξ0,2

∂t
= div

(
aeff∇Ξ0,2

)
+ µ

∂3

∂x3
u0(x, t)

Ξ0,2(0, x) = 0

This is not the end of the story with the asymptotic expansion because
the initial condition is not satisfied at the level ε1. In order to fix this problem
we introduce one more term of order ε1 so that the expansion takes the form

(39)
uε(x, t) = u0(x, t) +ε

{
χ
(x
ε
,
t

ε2

)
+ χil

(x
ε
,
t

ε2

)}
∇u0(x, t)

+V ε,1 + ε2v2
(
x, t,

x

ε
,
t

ε2

)
+ . . .

The initial layer type function χil has been added in order to compensate
the discrepancy in the initial condition. This function solves the following
problem:

(40)





∂χil

∂s
= div

(
a(z, s)∇χil

)

χil(0, z) = −χ(0, z).

Lemma 5.3 The solution of problem (40) decays exponentially as s → ∞.
We have

‖χ
il
(·, s)‖

L∞(Tn)
≤ Ce−νs, ‖χ

il
‖
L∞([s,s+1];H1(Tn))

≤ Ce−νs

Proof. The desired statement is an immediate consequence of the fact that∫
Tn χil(z, s)dz =

∫
Tn χil(z, 0)dz = 0, the maximum principle and the parabolic

Harnack inequality (see [8] for further details). �

6 Main results

In this section we present the main result. Consider the expression

(41) Uε(x, t) =
uε(x, t)− u0(x, t)

ε
− χ

(x
ε
,
t

ε2

)
∇xu

0.

It is easily seen that Uε is equal to the normalized difference between uε and
the first two terms of the asymptotic expansion. The limit behaviour of Uε

is described by the following statement.
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Theorem 3 Under the assumptions H1–H3 the function Uε converges in
law, as ε → 0, in the space L2(Rn × (0, T )) to a solution of the following
SPDE

(42)
dU0 = div

(
aeff∇U0 + µ

∂3

∂x3
u0
)
dt+ Λ1/2 ∂

2

∂x2
u0 dWt,

U0(x, 0) = 0.

Proof. We set

Vε(x, t) = Uε(x, t)− ε−1V ε,1(x, t)− Ξε,2(x, t)

−χ
il

(x
ε
,
t

ε2

)
∇u0(x, t)− εχ

2,2

(x
ε
,
t

ε2

) ∂2

∂x2
u0(x, t)− Ξε,1(x, t).

Substituting this expression in (1) for uε and combining the above equations,
we obtain after straightforward computations that Vε satisfies the problem

∂

∂t
Vε − div

(
a
(x
ε
,
t

ε2

)
∇Vε

)
= Rε,

Vε(x, 0) = Rε
1

with

Rε = ε−1
{
∂zi [(a

ε)ij(χε
il)

k] + (aε)ji∂zi(χ
ε
il)

k)
}
∂xj∂xku0 − (χε)j∂t∂xju0

− (χε
il)

j∂t∂xju0 + ε(aε)ij(χε
2,2)

lk∂xi∂xj∂xl∂xku0 − ε(χε
2,2)

ij∂t∂xi∂xju0

and
Rε

1 = εχ2,2

(x
ε
, 0
)
∂x∂xu

0(x, 0).

It follows from Lemma 5.3 that

∥∥ε−1∂zi [(a
ε)ij(χε

il)
k]∂xj∂xku0

∥∥
L2(0,T );H−1(Rn))

+
∥∥(χε

il)
j∂t∂xju0

∥∥
L2((0,T )×Rn)

≤ Cε,

By (20), (21) we obtain

∥∥(χε)j∂t∂xju0
∥∥
L2((0,T );H−1(Rn))

≤ Cε.

Then by (28) we have

∥∥ε(aε)ij(χε
2,2)

lk∂xi∂xj∂xl∂xku0
∥∥
L2((0,T )×Rn)

+
∥∥ε(χε

2,2)
ij∂t∂xi∂xju0

∥∥
L2((0,T )×Rn)

≤ Cε
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and ∥∥εχ2,2

(x
ε
, 0
)
∂x∂xu

0(x, 0)
∥∥
L2(Rn)

≤ Cε.

It remains to estimate the contribution of the term ε−1(aε)ji∂zi(χ
ε
il)

k)∂xj∂xku0.
From the estimates of Lemma 5.3 it is easy to deduce that

∥∥ε−1
(
(aε)ji∂zi(χ

ε
il)

k
)
∂xj∂xku0

∥∥
L2((0,T )×Rn)

≤ C.

and that a.s. the family
{
ε−1(aε)ji∂zi(χ

ε
il)

k)∂xj∂xku0
}
converges to zero weakly

in L2((0, T ) × R
n). Then, using the same compactness arguments as those

in the proof of Lemma 5.2 one can show that the solution of problem





∂Ξε,3

∂t
= div

(
a
(x
ε
,
t

ε2

)
∇Ξε,3

)
+ ε−1

(
(aε)∂z(χ

ε
il)
)
∂x∂xu

0

Ξε,3(0, x) = 0

converges a.s. to zero in L2((0, T )× R
n). Moreover,

lim
ε→0

E
(
‖Ξε,3‖

2
L2(Rn×[0,T ])

)
= 0.

Combining the above estimates we conclude that Rε a.s. tends to zero in
L2(Rn× (0, T )), as ε→ 0, and Rε

1 a.s. tends to zero in L2(Rn). Furthermore,

E‖Rε‖2L2(Rn×(0,T )) → 0, E‖Rε
1‖

2
L2(Rn) → 0.

By Lemmata 5.2 and 5.3 and estimate (28) it follows that (Uε−ε−1V ε,1−Ξε,2)
tends a.s. to zero in L2(Rn × (0, T )), and

E‖Uε − ε−1V ε,1(x, t)− Ξε,2(x, t)‖
2
L2(Rn×(0,T )) → 0.

By Lemma 5.1 the function ε−1V ε,1 converges in law to a solution of (30).
Also, Ξε,2 converges a.s. to Ξ0,2 in L2(Rn × (0, T )). This yields the conver-
gence

Uε −→ V 0,1 + Ξ0,2

in law in the space L2(Rn × (0, T )). It remains to note that due to (30) and
(38) the random function U0 := (V 0,1 + Ξ0,2) satisfies the stochastic PDE
(42) as required. �
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7 Diffusive case

The goal of this section is to extend the statement of Theorem 3 to the
diffusive case.

Theorem 4 Let assumptions A1–A3 be fulfilled. Then the function Uε de-
fined in (41) converges in law, as ε → 0, in the space L2(Rn × (0, T )) to the
solution of (42)

Proof. The arguments used in the proof of Theorem 3 also apply in the
case under consideration. We used assumption H3 only once, when justi-
fied convergence (29). Thus, this convergence should be reproved under our
standing assumptions.

Lemma 7.1 Under assumptions A1–A3 for any K > 0 there exists CK

such that the following estimate holds

‖E{Ψ2,1(s) | F≤0}‖L2(Ω)
≤ CK

(
e−νs/2 + (1 + s)−K

)
, ν > 0

the function Ψ2,1 has been defined in (22)

Proof. We follow the scheme of proof of Lemma 4.2. Denote

χ(z, s) = χ̂1(z, s) + χ̂2(z, s) =

s/2∫

−∞

∫

Tn

(
G(z, ẑ, s, ŝ)−1

)
divza(ẑ, ξŝ) dẑdŝ+

s∫

s/2

∫

Tn

(
G(z, ẑ, s, ŝ)

)
divza(ẑ, ξŝ) dẑdŝ.

Then Ψ2,1(s) = Ψ̂1(s) + Ψ̂2(s) with

Ψ̂i(s) =

∫

Tn

(
a(z, ξs)∇zχ̂

i(z, s)− E(a(z, ξs)∇zχ̂
i(z, s))

)
dz, i = 1, 2.

Considering (18) we obtain the inequality ‖Ψ̂1(s)‖L2(Ω) ≤ Ce−νs/2. Since

Ψ̂2(s) is F≥s/2 - measurable, we have

‖E{Ψ̂2(s) | F≤0}‖L2(Ω)
= ‖E

{
E{Ψ̂2(s) | F≤s/2} | F≤0

}
‖
L2(Ω)

= ‖E
{
E{Ψ̂2(s) | F=s/2} | F≤0

}
‖
L2(Ω)

= ‖E
{
R(ξs/2) | F≤0

}
‖
L2(Ω)

;
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here we have used the Markov property of ξ·. According to [12, Section 2]
this yields the desired inequality. �

From the last Lemma it follows that the invariance principle holds for the
process χ2,1(s) (see [6, Theorem VIII.3.79]), that is (29) holds for any T > 0.
The rest of proof of Theorem 4 is exactly the same as that of Theorem 3. �
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