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Abstract. As a first step towards particle-scale modeling of clayey soils, we investigate the mechanical behavior and
microstructure of assemblies of three-dimensional rectangular platy particles by means of the discrete element method. Several
samples composed of particles of different levels of platyness (ratio of width to thickness) were numerically prepared and
sheared to large deformations. We analyze the shear strength, packing fraction, connectivity, contact and force anisotropies,
and mobilization of friction forces as functions of platyness. We find that both the mechanical behavior and microstructure are
strongly dependent on the degree of platyness. This happens, in particular, because of the alignment of particle faces along a
particular direction. Additionally, as observed for other granular materials with complex shapes, the packing fraction passes
by a peak value before decreasing for larger values of platyness.
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INTRODUCTION

The application of DEM to the study of soils has been
restricted to a class of soils: coarse soils. Soils not be-
longing to this class (i.e., fine soils, such as clays) have
been left out of the scope of this analysis tool, because
a meaningful DEM simulation of a clayey soil should
include, at least, three characteristics: (1) a complex par-
ticle shape, (2) a complex interaction between particles,
and (3) a complex interaction between the particles and
the fluid filling the voids between them. The implementa-
tion and the efficient treatment of these characteristics in
a DEM simulation platform are difficult technical prob-
lems, which is why studies related to this subject are
scarce [1, 2, 3, 4].

The aim of this work was to explore the effect
of the platy shape of particles—typically observed in
clay particles—on the mechanical behavior and the mi-
crostructure of a granular material using DEM. It is im-
portant to note that our strategy was to single out the
effects of one of the distinctive characteristics of these
materials, the shape of their particles, and to isolate this
effect from those of other characteristics such as the com-
plex particle-particle or particle-fluid interactions.

The effect of the platy shape of particles is evaluated
by the platyness of the particles. The platyness, quanti-
fied through the parameter η , was varied systematically
from η = 0, which corresponds to spherical particles, to
η = 0.8, which corresponds to particles in which are 5
times longer than they are thick. Several monodisperse

assemblies were numerically built, one for each value
of η , and then sheared in the quasistatic limit up to the
steady state, also called “critical state” in soil mechan-
ics. In this state, we analyzed the mechanical behavior of
the material at the macroscale, in terms of shear strength
and solid fraction, as well as its microstructure, in terms
of orientation of the particles, connectivity, fabric of the
interactions network, and interaction forces.

NUMERICAL MODEL

We employed the Molecular Dynamics method, adapted
by Cundall and Strack for simulating granular materi-
als [5]. The particles were squared plates with rounded
edges, built through a spheroplates (i.e., the shape re-
sulting from sweeping a sphere around a square plate
by means of a Minkowsky addition [6, 7, 8]). By def-
inition, one spheroplate is composed of next entities:
four vertices, four edges, and one face, see Fig. 1(a).
The platyness η of these spheroplates was defined as
η = (R−r)/R, where R and r are, respectively, the maxi-
mum and minimum radii of the spheroplate as defined in
Fig. 1(b) (r is also called the spheroradius of the sphero-
plate).

In our system, one interaction ξ between two sphero-
plates represents single or multiple contacts c, each con-
tact occurring between two entities belonging to either
spheroplates. All possible contacts were resolved by con-
sidering two cases: a contact between two edges and a
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FIGURE 1. Color online. (a) Scheme of a spheroplate and
its constitutive entities. (b) Definition of the maximum and
minimum radii, R and r respectively.

contact between a vertex and a face [9].
Ten monodisperse made up of 8000 spheroplates were

built. The spheroplates’ platyness of the samples varied
from η = 0 to 0.8. The spheroradius r = 30nm was the
same for all samples, and the density ρ was 2700kg/m3.
The stiffness coefficients were 1.5×10−3N/µm, and the
damping coefficients were calibrated in order for the me-
chanical behavior to be independent of them. The fric-
tion coefficient µ was 0.58' tan(30◦), which is close to
that of kaolinite clay. The samples were sheared up to a
large cumulative shear strain γ ' 2.5 by imposing a con-
stant velocity vw and a confining stress σw to the upper
wall. In all simulations presented in this work the gravity
was set to zero. It was verified that all packings reached
the steady state, since, at the end of the shear test, q/p
fluctuated around mean values and the shear strain was
uniformly distributed in the bulk. The quasistaticity of
the simple shear tests and the stiffness of the particles
was evaluated, respectively, with two dimensionless pa-
rameters [10, 11]: the inertia parameter I ≈ 10−3 and the
dimensionless stiffness κ > 103. All presented quantities
correspond to the average over the last 40% of cumula-
tive shear strain (i.e., from γ = 1.5 to 2.5).

MECHANICAL BEHAVIOR

We analyze both stresses and strains in the steady state,
in terms of shear strength and solid fraction. The shear
strength was calculated from the stress tensor σσσ [12], de-
fined as σσσ = (1/V )∑ξ∈V (F

ξ

α `
ξ

β
), where V is the volume

containing the interactions ξ , FFF is the interaction force, `̀̀
is the branch vector (i.e., the vector joining the centers of
the interacting particles), and α and β denote de compo-
nents in the reference frame. The mean p = (σ1 +σ3)/2
and deviatoric q = (σ1−σ3)/2 stresses were then calcu-
lated from the principal stresses σ1 and σ3. We decided
to exclude the intermediate principal stress σ2 from the
calculation of p and q, since the simple shear test implies
plane strain conditions. The shear strength of the mate-
rial can be expressed as the stress ratio q/p, see Fig. 2.
We can see that q/p increases almost linearly with η ,
approximately from 0.3 to 0.7, showing that, as the par-
ticles’ platyness increases, the material’s shear strength
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FIGURE 2. Shear strength q/p as a function of the platyness
η . The inset shows the solid fraction ν as a function of η . Error
bars indicate the standard deviation.

also increases.
On the other hand, the solid fraction is defined as

ν = Vp/V , where Vp is the volume occupied by the
particles and V is the total volume. We can see that ν first
increases with η , then reaches a maximum at η ' 0.3,
and then declines as η increases. This shows that the
relationship between the platyness of the particles and
the material’s solid fraction is not monotonic.

MICROSTRUCTURE

We analyze the microstructure of the samples in terms
of particles’ orientation, connectivity, fabric of the in-
teractions network, and interaction forces. Because of
the symmetry of our simple shear tests, we analyzed all
quantities and results in the xy plane. First, the particles’
orientation was defined as the orientation of the vector
mmm, which is normal to the particle face. The distribution
of particle orientations can be represented by the prob-
ability density function Pm(θ) of particles whose vector
mmm is oriented along a direction close to a angle θ . Then,
Pm(θ) can be approximated by its lowest order Fourier
expansion: 1/π[1 + am cos2(θ − θm)], where am is the
anisotropy of particle orientations and θm is the princi-
pal direction of Pm(θ). Figure 3 shows the anisotropy of
particle orientations am and the principal direction θm as
functions of the platyness η . We can see that am increases
almost linearly from 0 to approximately 0.6, showing
that, as the particles’ platyness increases, the number
of particles aligning their faces along a particular direc-
tion increases. Following an opposite trend, θm decreases
with η , approximately from 120◦ to 105◦, showing that,
as the particles’ platyness increases, the direction along
which these particles align gradually approaches the ver-
tical direction. Note that this kind of ordering appears
even in the samples made up of particles with very low
values of η (e.g., for η = 0.14), whose shape deviates
only slightly from that of a sphere.
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FIGURE 3. Anisotropy of particle orientations am as a func-
tion of the platyness η . The inset shows the principal direction
θm as a function of η .
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FIGURE 4. Coordination number Z as a function of the
platyness η . The inset shows the proportion χ of floating
particles as a function of η .

Figure 4 shows the coordination number Z as a func-
tion of the platyness η . Remark that Z is the mean num-
ber of interactions per particle, where an interaction can
comprise several contacts. We can see that Z increases
with η , approximately from 3.6 to 4.3, and stabilizes
for the larger values of η . This shows that, as the parti-
cles’ platyness increases, the material’s connectivity also
increases. This is a somehow a counterintuitive result,
since, as it was shown in the inset of Fig. 2, these very
connected samples are also the loosest ones. The inset on
Fig. 4 shows the proportion χ of floating particles as a
function of the platyness η . We can see that χ decreases
with η , approximately from 0.20 to 0.05. This shows
that, as the particles’ platyness increases, the number of
particles participating in the force carrying network also
increases. This explains the increase in coordination as a
function of platyness.

The fabric of the interactions network can be repre-
sented by the probability density functions Pn(θ) of in-
teractions whose normal nnn is oriented along a direction
close to a angle θ . Then, Pn(θ) can be approximated by
its lowest order Fourier expansion: 1/π[1+an cos2(θ −
θn)], where an is the anisotropy of interaction orienta-
tions and θn is the principal direction of Pn(θ). Figure 5
shows the anisotropy of interaction orientations an and
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FIGURE 5. Anisotropy of interaction orientations an as a
function of the platyness η . The inset shows the principal
direction θn as a function of η .

the principal direction θn as functions of the platyness
η . We can see that an increases almost linearly with
η , approximately from 0.3 to 1.2, showing that, as the
particles’ platyness increases, the number of interactions
aligning along a particular direction also increases. Then,
as observed for θm, θn decreases with η , approximately
from 135◦ to 110◦, showing that, as the particles’ platy-
ness increases, the direction along which these interac-
tions align gradually approaches the vertical direction.
These similarities between the parameters describing the
distributions Pm(θ) and Pn(θ) are to be expected, since,
by construction, the vectors mmm and nnn are correlated in
interactions involving the particles faces, and, as the par-
ticles platyness increases, the proportion of this kind of
interactions is expected to increase.

The interaction force FFF between two particles was cal-
culated by adding the forces fff exerted at each contact
point. As fff , FFF can be decomposed in the normal and
tangential directions: FFF = Fnnnn + Ftttt. The distributions
of interaction forces can be represented by 〈Fn〉(θ) and
〈Ft〉(θ), which are, respectively, the distributions of av-
erage interaction forces in the normal and tangential di-
rections. By construction, Fn is always positive, while
Ft can take positive or negative values. Then, 〈Fn〉(θ)
and 〈Ft〉(θ) can be approximated by their lowest or-
der Fourier expansions: 〈Fn〉(θ) = 〈Fn〉[1+a f n cos2(θ−
θ f n)] and 〈Ft〉(θ) = 〈Fn〉a f t sin2(θ−θ f t), where a f n and
a f t are, respectively, the anisotropies of normal and tan-
gential interaction forces, and θ f n ' θ f t are, respectively,
the principal directions of 〈Fn〉(θ) and 〈Ft〉(θ).

Figure 6 shows the anisotropies of normal and tan-
gential interaction forces, a f n and a f t respectively, as
well as the principal direction θ f n, as functions of the
platyness η . Firstly, we can see that a f n increases slowly
with η , approximately from 0.2 to 0.3. This shows that
the particles’ platyness has little effect on the magnitude
of the normal forces transmitted between particles. Sec-
ondly, we can see that a f t increases with η , approxi-
mately from 0.05 to 0.7. This shows that, as the parti-
cles’ platyness increases, the magnitude of the tangen-
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FIGURE 6. Color online. Anisotropies of normal (black) and
tangential (red) interaction forces, a f n and a f t respectively, as
functions of the platyness η . The inset shows the principal
direction θ f n as a function of η .
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FIGURE 7. Proportion of sliding interactions Ks as a func-
tion of η .

tial forces transmitted between particles also increases.
Thirdly, we can see that, as observed for θm, θn, and
θln, θ f n decreases with η , approximately from 130◦ to
115◦, showing that, as the particles’ platyness increases,
the direction along which the largest normal forces are
transmitted, gradually approaches the vertical direction;
the direction along which the largest tangential forces are
transmitted is shifted by approximately 45◦.

The slow increase of the anisotropy of normal inter-
action forces a f n and the fast increase of the anisotropy
of tangential interaction forces a f t with the platyness η

suggest that as the particles’ platyness increases the sta-
bility of the interactions depends more and more strongly
on friction forces. At the lowest order, this can be easily
quantified by considering the proportion Ks of “sliding”
interactions (i.e., those interactions in which Ft/Fn ' µ).
Figure 7 shows Ks as a function of η . It can be seen that
Ks increases with η , approximately from 0.1 to 0.4. This
shows that, as the particles’ platyness increases, the level
of friction mobilization, which reflects de dependence of
the mechanical stability of the material on friction forces,
also increases. The relationship between particle shape
and friction mobilization seems to be a robust feature of
granular materials made up of complex particles.

CONCLUSION

Firstly, we found that the mechanical behavior at the
macroscale is strongly dependent on the particle platy-
ness. On the one hand, the shear strength increases al-
most linearly with the platyness, and, on the other hand,
the packing fraction first increases to a peak and then de-
clines as the platyness further increases. Secondly, from
the micromechanical point of view, we found that the
principal phenomenon underlying the effects of the par-
ticles’ platyness is the alignment of particle faces along
a particular direction. In fact, all descriptors of the mi-
crostructure studied in this work are strongly influenced
by this ordering phenomenon, showing that platyness,
through this phenomenon, enhances the ability of the
system to generate anisotropic structures. A direct con-
sequence of this anisotropic structure is the large shear
strengths measured in the materials composed of very
platy particles.
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