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Abstract

We are concerned with the complexity reduction of a stochastic system of differential equations governing
the dynamics of a neuronal circuit describing a decision-making task. This reduction is based on the
slow-fast behavior of the problem and holds on the whole phase space and not only locally around the
spontaneous state. Macroscopic quantities, such as performance and reaction times, computed applying
this reduction are in agreement with previous works in which the complexity reduction is locally performed
at the spontaneous point by means of a Taylor expansion.

Author Summary

In recent years, the neuronal mechanisms governing binary decision-making have largely been studied.
In a wide range of experiments, the behavioral response can be described by means of stochastic sys-
tems. In particular, we are interested in the qualitative analysis of the performance and reaction times
corresponding to a decision-making problem. In order to perform the link between neuronal circuits and
stochastic systems, we consider here a mean-field reduction consisting of two interacting rate models.
This system of equations can be associated with a partial differential equation governing the probability
distribution of the activities of the different neuronal populations. However, the nonlinear nature of the
original equations hinders analytical progress in the partial differential framework and reduces its study
to numerical investigations having very large computational times. We propose here a complexity reduc-
tion of the stochastic system, based on its slow-fast characteristic, allowing us to define a solution on the
whole biological domain, rather than just on a neighborhood of the spontaneous state, as it is usually
done. Moreover, close to the bifurcation point, the qualitative behavior of the performance and reaction
times is the same as the one observed in previous works.

Introduction

Goal-oriented behavior involves the constant making of decisions between alternative choices. Hence, a
sorrow understanding of the mechanisms underlying decision-making is fundamental in behavioral neuro-
sciences. During the last years tremendous advances in neurophysiological and theoretical neurosciences
have started to reveal the neural mechanisms underlying decision-making. Most of these studies are fo-
cused on binary decision-making. In binary decision tasks, the subject is asked to make a choice between
two alternatives according to an experimentally defined criterion based on sensory input information.
The difficulty of the making of the decision can be manipulated by the level of uncertainty in the dis-
crimination of the sensory input information which can be influenced by regulating the signal to noise
ratio. For the same pattern of stimulation the decision of the subject from trial-to-trial is stochastic but
such that its trial-to-trial average is determined by the input.

In a wide range of such decision-making experiments, the behavioral response, i.e. performance and
reaction times, can be properly described by a simple stochastic diffusion model [1]. In the diffusion model
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evidences about one or the other choice is accumulated continuously over time until a decision boundary is
reached. Hence, it is plausible to think that the underlying neuronal system perform decision-making by
accumulation of evidences. Indeed, recent electrophysiological recordings from awake behaving monkeys
performing decision-making have shown that trial-averaged spiking activity of some neurons shows a
gradual, nearly linear increase shortly after stimulus onset until just before the response is made [2–6].
Let us consider for example the so-called random-dot task. The random-dot task is a two-choice visual
decision-making task. In this task, the subject is confronted with a visual stimulus consisting of a field of
randomly moving dots. On any one trial, a fixed fraction of the dots, determined by the experimentalist,
moves coherently in one of two directions. The subject must discriminate in which direction the majority
of dots are moving. Electrophysiological recordings from awake behaving monkeys performing this task
have shown that trial-averaged spiking activity of neurons in the lateral intraparietal cortex (LIP) reflects
the accumulation of information mentioned above [4–6]. In fact, LIP cells receive excitatory drive from
direction-selective cells of extrastriate visual area MT. The difference in the firing rates of MT cells
with opposing preferred directions is a likely measure of the available visual evidence for the direction
of coherent motion of the moving dot stimulus, further indicating that the LIP area is involved in this
decision-making task.

A computational model of the cortical circuit putatively underlying LIP cell activity has been proposed
and studied numerically [7–9]. This model was able to explain qualitatively the experimentally observed
trial-averaged spiking activity. The model consists of two populations of spiking neurons, within which
interactions are mediated by excitatory synapses and between which interactions occur principally through
an intermediary population of inhibitory interneurons. Sensory input may bias the competition in favor
of one of the populations, potentially resulting in a gradually developing decision in which neurons in the
chosen population exhibit increased activity while activity in the other population is inhibited. When
the activity of one of the two populations exceeds a pre-defined threshold then a behavioral response is
generated. There are two possible mechanisms by which the decision can be made which correspond to
two different dynamical working points. In one mechanism, the appearance of the stimulus destabilizes
the so-called spontaneous state, in which all neurons show low activity. In the other mechanism, even
after stimulus presentation, the network can still sustain low activity, but random fluctuations eventually
drive the collective activity of the network to an activated state, in which a fraction of the neurons fires
at a high rate. Let us remark that the behavioral performance of the model (i.e. the fraction of trials in
which the ’correct’ direction is chosen) and corresponding reaction time to make a decision match well
the behavioral data from both monkeys and humans performing the moving-dot task [10]. Therefore,
we conjecture, that it may be possible to establish a direct link between the neuronal and behavioral
correlates of decision-making. Here, we aim to establish this link between the underlying physiology and
the observed behavioral response in decision-making tasks by performing a 1D reduction of the dynamics
of the neuronal circuit in such a way that we derive from the underlying detailed neuronal dynamics a
valid ”nonlinear” diffusion model.

In order to perform the explicit link between a neuronal circuit processing decision-making and a dif-
fusion model able to describe the behavioral level, we consider a reduced model of the competitive cortical
circuit solving the decision-making problem. In particular, we consider a mean-field reduction consisting
of two competing rate models. This system of Langevin equations can be associated with a Fokker-
Planck equation for the probability distribution of the activities of the different neuronal populations.
The nonlinear nature of the original equations, however, hinders analytical progress in the Fokker-Planck
framework. For this reason, the main analysis of such noise driven probabilistic decision-making systems
remains based on numerical investigations, which are time consuming because of the need for sufficiently
many trials to generate statistically meaningful data.

One dimensional Fokker-Planck effective reductions near bifurcation points were obtained by Roxin
and Ledberg [10]. They propose to locally approximate the evolution on the slow manifold at the bi-
furcation point by Taylor expanding the nonlinearities with respect to the slow variable based on the
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different time scales. In this way, they obtained an effective potential of degree 4 for the one dimensional
Fokker-Planck dynamics on the slow manifold. We propose to build on this strategy by not performing
any Taylor expansion and rather approximate the slow manifold in terms of the nonlinearities defining the
evolution using the slow-fast character of the dynamical system, see [11]. Once, the slow manifold is ap-
proximated then we project the Fokker-Planck dynamics on it to obtain a one dimensional Fokker-Planck
reduction possibly valid beyond the local character of the expansion in [10]. More importantly, we recover
an approximated full reduced potential and an explicit formula for the stationary state distribution on
the slow manifold. This effective reduced potential covers the other two stable equilibrium points, and
not only the central equilibrium point changing its stability character as in [10]. For instance, in the case
of the subcritical Hopf bifurcation in Figure 1, we get an approximated potential as in Figure 5 while the
approach in [10] leads to a potential of degree 4 approximating an interval around the central equilibrium
point, see [10, Figure 2]. Our strategy is valid as long as the approximated slow manifold lies fully in
the relevant biological range of positive rates, this is the reason we restrict the range of the bifurcation
parameter w+ as explained in Figure 3.

Results

We showcase our strategy in a particular example of a neuronal population model with two pools with
self-excitation and cross-inhibition as in [12]. The firing rates ν1 and ν2 of the neuronal networks are
determined by the stochastic dynamical system:dν1 = [−ν1 + φ(λ1 + w+ν1 + wIν2)] dt+ β dW 1

t

dν2 = [−ν2 + φ(λ2 + wIν1 + w+ν2)] dt+ β dW 2
t

, (1)

with ν1, ν2 ≥ 0. Here the applied stimuli are, λ1 = 33, λ2 = λ1 −∆λ, with the bias ∆λ ∈ [0, 10−3], the
inhibitory connectivity coefficient is wI = 1.9, the standard deviation is β = 3 · 10−3, and the excitatory
connectivity coefficient w+ is the bifurcation parameter, its range of values will be discussed later on.
Moreover, the sigmoid (response) function φ(z) is given by:

φ(z) =
νc

1 + exp(−bz + α)
,

with νc = 15, b = 0.25, and α = 11.1.
In terms of w+ the underlying dynamical system without noise presents a subcritical Hopf bifurcation

whose bifurcation diagram is shown in Figure 1. For values of the excitatory coefficient around w+ = 1.4
the system pass from a single asymptotically stable equilibria to a situation in which there are three
stable (continuous lines) and two unstable equilibria (hashed lines). The second local bifurcation, where
the central asymptotic equilibria disappears, happens at around w+ = 2.5695 for ∆λ = 10−3.



4



















         























      



















         























      



















         























      

Figure 1. Bifurcation diagrams with respect to w+. From top to bottom the bias ∆λ takes the
following values 0, 10−4 and 10−3. The components of the spontaneous state are traced by the black
line. There are other two stable equilibria points which coordinates are represented by the blue and
light-blue lines. The red continuous and dashed lines correspond to the unstable equilibrium points.
The small picture is a zoom on the bifurcation point.
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We next need to find an approximation of the slow manifold joining the spontaneous S0 and the
decision states S1 and S2, as sketched in Figure 2. This curve is found by introducing the linearization
of the dynamical system around the spontaneous equilibria S0 as a new set of variables defined by
X = P−1(ν − S0), with X = (x, y)T , or equivalently ν = S0 + PX with ν = (ν1, ν2)T . Here, P is the
matrix diagonalizing the jacobian of the dynamical system (1) at the spontaneous state S0, see (2) in the
Materials and Methods section for more details, or [13].

This change of variables, sketched in Figure 2, is a natural way to introduce slow y and fast x variables
in the system determined by the eigenvalues of the linearization at the spontaneous state S0. By rewriting
the dynamical system above (1) in these new variables together with the new time variable τ = εt, we
have an evolution governed by 

ε
dx

dτ
= f(x, y)

dy

dt
= g(x, y)

,

where ε is a small parameter. Assuming that the scaling ratio is zero, ε = 0, we find the implicit relation
f(x, y) = 0 that determines the approximated slow manifold x∗(y). In Figure 3, we plot the curves x∗(y)
for different values of ω+ with ∆λ = 10−3. We remark that this restricts the validity of this particular
example since these curves exit the set of positive values for the rate variables. This comes from the
fact that there are some trajectories of the dynamical system without noise leading to negative values for
the rate variables. In this example the approximated curves lie on the positive quadrant for w+ ≥ 1.9
approximately.

0
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ν

2
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y

x

Figure 2. Change of variables. Position of the new coordinate system (x, y) with respect to the
initial one (ν1, ν2). The origin is taken at the central equilibrium point S0 which may stable or unstable
accordingly to the value of w+. S1 and S2 are two others equilibrium points. The dashed line represents
the slow manifold on which the reduced dynamics takes place, and it contains all the equilibrium points
of the system.
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Figure 3. Slow manifold. Variation of the approximated slow manifold represented on the (ν1, ν2)
plane for w+ = 2.0, . . . , 2.9 and for the biased case ∆λ = 10−3. For w+ < 1.9 the slow manifold crosses
the coordinate axes for small values of ν1 and ν2, becoming negative. The reduction theory is valid only
for ranges of w+ > 1.9.

Once we have found the slow manifold approximation x∗(y), we can restrict the dynamics in (1) to
a single effective Langevin equation. This equation is determined by a potential G(y) obtained from the
evaluation of the dynamics over the slow manifold approximation, leading to

dy = g (x∗(y), y) dt+ βy dW
2
t ,

with βy properly obtained in terms of β via the change of variables. The effective potential is determined
by the relation ∂yG(y) = −g(x∗(y), y). The 1D effective computed potential G(y) for the biased case
(∆λ = 10−3) with respect to the slow variable y is plotted in Figure 4 for w+ = 2.0, . . . , 2.9 (left), together
with a zoom at the spontaneous state (right). We note that increasing w+ beyond the second bifurcation
point, the spontaneous state pass from local minimum to local maximum. We remind that the effective
potential G(y) is given by formula (8) based on the approximated slow manifolds computed in Figure 3.
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Figure 4. The 1D potential. Variation of the approximated 1D potential traced along the y variable,
varying w+ = 2.0, . . . , 2.9 and for the biased case ∆λ = 10−3 (left). A zoom around the spontaneous
state (right). Increasing w+, the central equilibrium point passes from a minima to a maxima.

The 1D effective computed potentials G(y) both for the unbiased ∆λ = 0 and the biased case ∆λ =
10−4, 10−3 with respect to the slow variable y are plotted in Figure 5 for the three values of w+ close to
the second bifurcation point (w+ = 2.5685, w+ = 2.5695, w+ = 2.5705). We note the asymmetry of the
effective potential G(y) when increasing the bias ∆λ and the change in the nature of the spontaneous
state when increasing the excitatory coefficient w+.

This 1D effective potential can be considered as a good approximation of the equilibrium state of the
2D Fokker-Planck equation (associated to the system (1)) projected on the 1D-slow manifold which is
parameterized by the slow variable y, see Figure 3. We note that y > 0 is pointing toward S1 while y < 0
is pointing toward S2, see Figure 2. Therefore, the top left (respectively low right) well whose minimum
is attained at the stable decision state S1 (respectively S2) in the 2D ν-plane in Figure 2 corresponds to
the right (respectively left) well in Figure 5.

In Figure 6, we have computed the marginals along y of the 2D numerical computations of the Fokker-
Planck dynamics for t = 200 ms, compared with the solution of the 1D reduction Fokker-Planck evolution
equation (7) at t = 200 ms. We observe the errors committed by the 1D reductions and we also observe
that the slow-fast behavior is also present in the 1D reduced Fokker-Planck equation. However, since
the one dimensional reduction is easily solved by numerical methods, then we can achieve much larger
computational times and compute explicitly the approximated stationary state.

Concerning the comparison between the numerical solutions of the 2D complete Fokker-Planck and
those of the 1D reduction, we refer the reader to [13]. We just note here that since the standard deviation
is rather small (β = 3 · 10−3), the stable states tends to be Dirac masses and the computational costs
are unbearable to compute 2D solutions approaching the steady state. Note also that the 1D Fokker-
Planck reduction can be solved numerically applying an implicit in time scheme, drastically reducing
computational time costs.

Bifurcation: Reaction Time and Performance

Finally, once the 1D reduction is validated by the above arguments, the biologically interesting quantities
to compute are the performance Pa and the reaction times RT . The first one corresponds to the ratio
of good answers at equilibrium, and the second one to the smallest time needed to give an answer, no
matter wether it is good or wrong. The computations of the reaction time RT and performances Pa use
the formulas in the supplementary material in [10], which hold locally around the spontaneous point and
are based on the knowledge of the effective potential G(y).

In Figure 7 we plot the performance Pa and reaction time RT for β = 3 · 10−3 as a functions of
∆λ and w+. They are computed for the decision state with higher probability, the one for negative
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Figure 5. Potential at the bifurcation parameter w+ = 2.5696. Top left: ∆λ = 0, top right:
zoom for ∆λ = 0 around the spontaneous state, middle left: ∆λ = 10−4, bottom right: zoom for
∆λ = 10−4 around the spontaneous state, bottom left: ∆λ = 10−3, bottom right: zoom for ∆λ = 10−3

around the spontaneous state. For large bias ∆λ the potential becomes asymmetric, and for ∆λ = 10−3

the spontaneous state changes its nature from a minima to a maxima.

values of the y-variable in Figure 5, and over an interval [a−, a+] where a− and a+ correspond to the
y-coordinates to the left and right of the spontaneous state for which G(y) has a maximum. We observe
the same qualitative behavior as in the comparisons with experimental data performed in [10]. As the
bias increases, the potential gets tilted towards the preferred decision state, and thus the performance of
the solution gets higher. Accordingly, the reaction time decreases as the bias increases.

Discussion

Here, we have reinforced the link between the underlying physiology and the observed behavioral response
in decision-making tasks by developing a new strategy for the 1D reduction of the dynamics of the neuronal
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Figure 6. Distribution function comparison along y. The computed marginals of the 2D problem
(blue line) at time t = 200 ms and the corresponding solution of the 1D reduced problem (black line) at
the same time show a good agreement. In this test we have chosen the bifurcation parameter
w+ = 2.45, the standard deviation β = 0.3 and the bias ∆λ takes the values 0, 10−4 and 10−3.

circuit. In this way we have derived from the underlying detailed neuronal dynamics a ”nonlinear”
diffusion model valid for a wide range of the bifurcation parameter. We observe how our method recovers
the reduced one dimensional dynamics proposed by Roxin and Ledberg in [10] close to the bifurcation
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Figure 7. Performance and Reaction Times. Top: the performances (Pa) computed for three
values of the bifurcation parameter w+ close to the one of the spontaneous state and as a function of
the bias ∆λ. When w+ increases, the performance decreases, and it converges to 1 for large values of
the bias ∆λ. Bottom: the reaction times (RT ) computed for three values of the bifurcation parameter
w+ close to the one of the spontaneous state and as a function of the bias ∆λ. When w+ increases, the
reaction time decreases. In both pictures the standard deviation is β = 3 · 10−3. These behaviors are in
agreement with previous results and experimental data.

point since we keep the same qualitative behavior in terms of performance and reaction times. We have
also shown that our reconstructed effective potential leads to a good approximation of the stationary
state of the two dimensional dynamics projected on the slow manifold. This reduction allows for efficient
computations of the dynamics as soon as the approximated slow manifold is well-defined.

Materials and Methods

In this section, we give more details of the 1D reduction of system (1) presented above. Preliminary results
of this strategy were previously reported in [13] in the easier case of the supercritical Hopf bifurcation.
The slow-fast behavior of the system (1) with no noise, i.e. β = 0, can be characterized by the fact that
the jacobian of the linearized system at the unstable critical point S0 = (ν∗1 , ν

∗
2 )T has a large condition

number. More precisely, we write the deterministic part of the dynamical system (1) as ν̇ = F (ν), where
ν = (ν1, ν2)T is the rate vector and F (ν) = −ν + Φ(Λ +Wν) is the drift. The linearized jacobian matrix
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at any equilibrium point is given by:

JF (z1, z2) =

(
−1 + w11ϕ

′(z1) w12ϕ
′(z1)

w21ϕ
′(z2) −1 + w22ϕ

′(z2)

)
, (2)

where we have denoted by zi the values zi := λi + wi1ν1 + wi2ν2. Since S0 is a hyperbolic fixed point
(saddle point), the jacobian JF (S0) has two real eigenvalues, µ1 and µ2 of opposite signs. Let us denote
by µ1 the (large in magnitude) negative eigenvalue and by µ2 the (small) positive eigenvalue of JF (S0).
The small parameter ε << 1 responsible for the slow-fast behavior is determined by the ratio

ε = −µ2/µ1.

In order to reduce the system we need to introduce new variables based on the linearization of the problem.
We will denote by P the matrix containing the normalized eigenvectors of JF (S0) and by P−1 its inverse
matrix. Furthermore, using the Hartman-Groβman theorem [14], we know that the solutions of the
dynamical system are topologically conjugate with its linearization in the neighborhood of a hyperbolic
fixed point. Let us write it as follows

JF (S0) = PDP−1, (3)

where D = diag(µ1, µ2) is the associated diagonal matrix. We can describe the coordinates ν in the
eigenvector basis and centered on the saddle point S0 as follows:

ν = S0 + PX,

which gives the definition for the new variable X = (x, y)T , see also figure 2, X = P−1(ν − S0).
In these new coordinates x corresponds to the fast scale while y is the slow varying variable. We can

conclude that system (1) reads in the X phase space as Ẋ = H(X) where H(X) = (f(x, y), g(x, y)) is
the two dimensional vector defined by H(X) = P−1F (S0 + PX), and thus,

dx

dt
= f(x, y) := −x− (P−1S0)1 +

(
P−1Φ (Λ +W (S0 + PX))

)
1

dy

dt
= g(x, y) = −y − (P−1S0)2 +

(
P−1Φ (Λ +W (S0 + PX))

)
2

. (4)

Direct computations gives that JH(X) = P−1JF (S0 + PX)P , and using (3) and that X(S0) = 0, we
obtain that JH(0) = D. We can choose a new time scale for the fast variable τ = εt in such a way that
for t ' 1, then τ ' ε−1. Then, the fast character of the variable x is clarified and the system reads as

ε
dx

dτ
= f(x, y)

dy

dt
= g(x, y)

.

Our claim is that the curve of equation f(x, y) = 0 approximates well when ε � 1 the slow manifold,
that is the unstable manifold that joins the spontaneous point S0 to the other equilibrium points. We
refer the reader to the discussion in [11] on stochastic slow-fast dynamics. Due to the non-linearity of the
function f in (4), we cannot expect an explicit formula for the solution of this equation. Nevertheless,
since ∂xf(0, 0) 6= 0, the resolution in the neighborhood of the unstable equilibrium point (0, 0) is insured
by the implicit function theorem. Hence we can define a curve:

x = x∗(y), (5)

such that f (x∗(y), y) = 0 in a neighborhood of (0, 0). We note also that, by construction the approximated

slow manifold S0 + P (x∗(y), y)
T

, implicitly defined by (5), intersects the exact slow manifold at all



12

equilibrium points, i.e. where both f and g vanishes. Finally, we can conclude the slow-fast ansatz,
replacing the complete dynamics by the reduced dynamics on the approximated slow manifold, and
obtain the reduced one dimensional differential equation:

ẏ = g (x∗(y), y) .

A similar treatment can be done in the presence of the noise terms. By changing variables from ν to
X and since the new variables x and y are linear combination of ν1 and ν2, then it is standard to checkdx = f(x, y)dt+ β

√
a2

11 + a2
12 dW

1
t

dy = g(x, y)dt+ β
√
a2

21 + a2
22 dW

2
t

,

where (aij) are the elements of the matrix P−1 and W i
t are two independent normalized white noise.

Arguing as in the deterministic case, we can choose a fast time scale for the variable x and we note that
the noise term also changes since

√
εdW 1

t = dW 1
τ and εdt = dτ . Therefore, we can deduce again that the

reduced one dimensional model must read:

dy = g (x∗(y), y) dt+ βy dW
2
t , (6)

with βy = β
√
a2

21 + a2
22.

Finally, we can consider the Fokker-Planck or forward Kolmogorov equation associated to the 1D
stochastic differential equation (6). This gives the reduced dynamics for the probability density q(t, y) of
finding neurons with rate determined by the rate y ∈ [−ym,+ym] over the approximated slow manifold

S0 + P (x∗(y), y)
T

, for t ≥ 0. Actually, it must obey to the following 1D Fokker-Planck equation:

∂tq + ∂y

(
g (x∗(y), y) q − 1

2
β2
y∂yq

)
= 0, (7)

with no-flux boundary conditions on y = ±ym: g (x∗(y), y) q − 1
2β

2
y∂yq = 0, see [15] and [13]. The 1D

Fokker-Planck dynamics (7) are given for large times by the stationary solution given by the invariant
measure for the stochastic differential equation (6). We can easily find it by defining the associated
potential G(y) being the antiderivative of the flux term g (x∗(y), y). In other words, we can always define
the potential function:

G(y) = −
∫ y

0

g (x∗(z), z) dz. (8)

Then, the stationary probability density of the 1D Fokker-Planck dynamics (7) is given by

qs(y) =
1

Z
exp

(
−2G(y)/β2

y

)
,

where Z is the normalization constant. As explained also in [16], this stationary solutions are the
asymptotic equilibrium states for the solution of the Fokker-Planck equation. In other words, letting
time going to infinity, the solution q(t, y) to (7) must converge to qs(y). We have shown in [16] that
the decay to equilibrium for the two dimensional problem was exponential. This rate of convergence
is also true for the 1D reduction since the potential is a small perturbation of convex potentials, see
the well-know results in [17, 18]. We also recall that we are interested in the long time behavior of the
solutions and that the convergence in the slow manifold given by the variable y is slow. Hence it is
relevant to have a direct computation of their asymptotic behavior without need to solve the whole 1D
or 2D Fokker-Planck equation.
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We also remind that the solution of the system (1) is related to the 2D Fokker-Planck or forward
Kolmogorov equation:

∂tp+∇ ·
(
F p− β2

2
∇p
)

= 0 (9)

with boundary conditions
(
F p− β2

2 ∇p
)
· n = 0 on the boundary of the domain [0, νm]2, see [15]. Let

us remark that, once we know the stationary state of the 1D reduced Fokker-Planck equation (7), we
can approximate the long-time dynamics of all quantities of interest related to the system (1) and the
2D Fokker-Planck (9). More precisely, as ε → 0, p approaches a concentrated density along the the
curve ν(y) = S0 + P (x∗(y), y)T . Then, for any test function Ψ = Ψ((ν1, ν2)T ), the moment MΨ of the
stationary probability distribution function ps(ν1, ν2) as ε→ 0 can be approximated by

MΨ =

∫
Ω

Ψ(ν) ps dν1dν2 '
∫

Ψ
(
S0 + P (x∗(y), y)

T
)
qs(y) dy .

This formulae can be used to compute either classical moments of ps or marginals.
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