
HAL Id: hal-00842765
https://hal.science/hal-00842765

Submitted on 10 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Automated Deployment of Distributed
Adaptation Systems

Mohamed Zouari, Ismael Bouassida Rodriguez

To cite this version:
Mohamed Zouari, Ismael Bouassida Rodriguez. Towards Automated Deployment of Distributed Adap-
tation Systems. European Conference on Software Architecture (ECSA), Jul 2013, Montpellier,
France. 4p. �hal-00842765�

https://hal.science/hal-00842765
https://hal.archives-ouvertes.fr

Towards Automated Deployment of Distributed
Adaptation Systems

Mohamed Zouari1,2 and Ismael Bouassida Rodriguez1,2,3

1CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2Univ de Toulouse, LAAS, F-31400 Toulouse, France

3ReDCAD, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia
{mohamed.zouari,bouassida}@laas.fr

Abstract. The development of a single software product is inefficient
when groups of product are related since the development cost could be
high. In addition, some products need to be self-adaptive in order to
take into account the execution context changes. In this case, the imple-
mentation and management of the adaptation mechanisms variability is
challenging especially for distributed systems due to the distribution is-
sues. We address in this paper such issues by proposing a method for the
software engineering of distributed adaptation systems. We propose an
architectural model for distributed management of dynamic adaptation.
We define also a graph grammar based approach to automate the tasks
needed to construct and configure the adaptation system1.

Keywords: Distributed adaptation, Software architectural model, Au-
tomated deployment, Graph grammar

1 Introduction

Several applications running in fluctuating and heterogeneous environments re-
quire dynamic adaptation [1]. This is especially necessary when users may have
different and variable QoS requirements and resources are highly dynamic and
unpredictable. The adaptation approach enables to deal with the different fluc-
tuations in available resources, to meet new user requirements, and to improve
the application services.

In general, an adaptation engine monitors the execution context (resources
characteristics, user profile, terminal capabilities, etc) in order to trigger dynamic
adaptation whenever it detects significant variations. Then, it makes decisions
regarding the adaptation and controls the modification of the application in
order to achieve the appropriate configuration. When a decentralized application
is running in heterogeneous environments, distributed adaptation system may
be required in order to improve the adaptation mechanisms quality such as
efficiency, robustness, and scalability. The distributed management of adaptation
leads to the concurrent execution of multiple adaptation processes performed

1 This work is partially funded by the IMAGINE IP European project

2 Lecture Notes in Computer Science: Authors’ Instructions

by several engines. The customization and the deployment of the engines may
need to perform complex dedicated tasks and be time consuming. Facilitating
these tasks and reducing the development cost of distributed adaptation systems
is challenging. In fact, current approaches do not offer development facilities of
distributed adaptation systems where the activities of several adaptation engines
are coordinated without a central control entity.

In this paper, we propose an approach for easy customization and deploy-
ment of distributed adaptation systems.The aim of this approach is to provide
facilities for the elaboration of the system configuration and for its deployment in
automated way. Actually, we provide firstly an architectural model of distributed
adaptation systems. Secondly, we offer a tool called factory that performs the
deployment tasks. The factory processes the appropriate system configuration
using a graph grammar-based approach and then, it sets up the system. Our
case study concerns data management in medical environments for collaborative
remote care delivery. We enable to make self-adaptive data replication systems
in order to improve the data availability and response times for data requests.

The remainder of the paper is organized as follows. We present our method
to build distributed adaptation systems in Section 2. Then, we conclude and
discuss future work in Section 3.

2 Method to build self-adaptive applications

Our approach aims at facilitating the component-based development of dis-
tributed self-adaptive applications. We follow the separation of concerns prin-
ciple between the adaptation concerns and the business aspects. Moreover, we
externalize the mechanisms of adaptation control for reusability. Some appli-
cation components provide well defined control interfaces that define primitive
operations to observe and modify them (see Figure 1). The adaptation system
is connected to the application trough such interfaces to produce a self-adaptive
application.

We design the adaptation mechanisms in a modular way and we offer fa-
cilities for adaptation system building. In fact, we define an tool called factory
to facilitate the customization of the adaptation system according to the target
application and to ensure the automatic deployment of the system. As shown
in Figure 1, an architect provides a software architectural model of adaptation
systems and an expert in deployment provides a set of deployment strategies for
the set up of concrete systems. This architectural model specifies a set of com-
ponent types, the possible connections among them and several constraints that
must be meet when constructing a concrete system. Each deployment strategy
is a set of graph grammars processed to choose the distribution of the adap-
tation system according to targeted application to adapt and specific required
quality criteria of the adaptation system. The configuration manager determi-
nates the adaptation system architecture description that specifies the compo-
nents that compose the adaptation system, the connections among them, the
values of configuration parameters, and the connections with the application

Towards Automated Deployment of Distributed Adaptation Systems 3

Architect

define use

Adaptation

Expert

Policies

&

Deployment

Strategy ID

input
Configuration

Manager

use

Architectural

Model for

Adaptation

provide

Deployment

Manager

Deployment

output
Adaptation

System

modifyobserve

Architect

manage Deployment

Strategies

Repository

Expert
System

Architecture
Description

use

Execution

Environment

Deployment

Expert

Adaptation Systems Factory
Application

Fig. 1. Building a self-adaptive application

components. The architecture is expressed in the GraphML language which is
an XML dialect for representing graphs [2]. For that, the configuration man-
ager applies the grammars related to a chosen deployment strategy and verifies
that the constraints of the architectural model are well respected. The selection
of the suitable strategy is done by the adaptation expert. We use GMTE2 in
order to process the graph grammars. In addition, the configuration manager
uses a set of policies provided by the adaptation expert. These policies enable
the configuration manager to customize the behaviour of some adaptation sys-
tem components. Then, the deployment manager sets up the adaptation system
and connect it with the application according to the architecture description
provided by the configuration manager. The connections are realized through
the dedicated control interfaces provided by the application. The outcome is a
self-adaptive application deployed in a decentralized execution environment.

Our architectural model [3] specifies two component types ContextManager
and AdaptationManager to perform the adaptation steps. An adaptation system
is composed of several context managers and adaptation managers. A component
type ContextManager collects, interprets, and aggregates some contextual data.
A component type AdaptationManager determines which components of the
application must be adapted and the means to achieve it.

The factory allows several strategies for deploying the adaptation system.
The strategies are divided based on the expected load of the adaptation system,
the customization requirements of managers’ behaviour, and the distribution
requirements. We are currently evaluating the different strategies in order to

2 Graph Matching and Transformation Engine (GMTE), available at http://

homepages.laas.fr/khalil/GMTE

4 Lecture Notes in Computer Science: Authors’ Instructions

provide a guide that allows the adaptation expert to choose the appropriate
strategy based on many factors. We are particularly interested in the following
deployment strategies: (1) Centralized deployment : In this situation, a single
context manager and a single adaptation manager control the adaptation of
all the application components. (2) Location-based deployment : The difference
is the use of multiple context managers and adaptation managers. The distri-
bution is based on geographic location of the application components. Each
manager controls a group of components hosted by machines in a specific site
(organization, department, vehicle, etc). (3) Service centric deployment : This
deployment strategy is characterized by the consideration of the different ser-
vices provided by the application components. An adaptation manager (resp.,
context manager) is associated with a component or group of components that
offers specific service (the data consistency achievement, the replica placement,
etc). (4) Hybrid deployment : This strategy combines the two previous strate-
gies: location-based and service centric deployment. The goal is to combine the
best of both. (5)Distributed deployment : This strategy is characterized by a
fully distributed system where an adaptation manager (resp., context manager)
is associated with a single application component.

3 Conclusion

In this paper, we addressed how to manage effectively and in a structured way
variability in distributed adaptation systems. We enable variable configuration
for distributed adaptation systems in order to meet specific requirements regard-
ing the adaptation system QoS. We presented a systematic approach to model,
implant and manage the variability of such systems based on the architectural
model. Among the benefits of this model are reusability and the support of sev-
eral types of variations like the behaviour and the distribution of the system. Our
experience shows that our factory provides an effective and easy way to manage
variability that turns up during the construction of an adaptation system.

There are several possible directions for future work. We are interested in
facilitating more the customization process. Currently, human actor makes de-
cision related to the deployment strategy. It will possible to extend the factory
in order to allow choosing automatically the appropriate strategy. Moreover, we
are exploring the connection between the architectural model and the existing
components models. Our vision is to make the factory able to support several
components models and service oriented architectures.

References

1. Cheng, B.H., Lemos, R., Giese, H., Inverardi: Software engineering for self-adaptive
systems. Springer-Verlag, Berlin, Heidelberg (2009) 1–26

2. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: GraphML
Progress Report. In: Graph Drawing. (2001) 501–512

3. Zouari, M., Segarra, M.T., André, F., Thépaut, A.: An architectural model for
building distributed adaptation systems. In: IDC2011. (2011) 153–158

