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Abstract. In this paper, we explore the effect of particle shape angularity on the mechanical behavior of sheared granular
packings. A first series of contact dynamics simulations is performed in 2D with regular polygons with an increasing number of
sides ranging from 3 (triangles) to 60. Then, in order to approach “idealized” angular particles, a second series of simulations is
performed in 3D with irregular polyhedra with the number of faces ranging from 8 (octahedron-like) to 596. A counterintuitive
finding is that the shear strength increases with angularityup to a maximum value and saturates as the particles become more
angular (below 6 sides in 2D and 46 faces in 3D). A micromechanical analysis of force and contact orientations, all enhanced
by face-face and face-side contacts, reveals that this increase is due to an increase of both contact and force anisotropies,
and the saturation for higher angularities is a consequenceof a rapid fall-off of the contact and normal force anisotropies
compensated by an increase of the tangential force anisotropy.
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INTRODUCTION

The role of particle shape for the complex rheology
of granular materials is a vast topic, which has re-
cently been addressed both experimentally and numer-
ically [1, 2, 3, 4, 5]. The existing research results sug-
gest that the effect of shape parameters is often non-
linear and counterintuitive as in the case, for example,
of the unmonotonic relation between the elongation of
the particles and the packing fraction [6, 7]. Neverthe-
less, a systematic and quantitative investigation of shape-
dependence is still largely elusive since particle shape
characteristics such as elongation, angularity, slender-
ness or nonconvexity are described by distinct groups of
parameters, and the effect of each parameter is not easy
to isolate experimentally.

Among various shape characteristics mentioned
above, angular shape represents basically a property of
polygonal particles in 2D and polyhedral particles in 3D
[8, 9, 10]. By comparing numerically the shear behavior
and microstructure of granular materials composed of
pentagonal/polyhedral particles with respect to packings
composed of circular/spherical particles, it has been
shown that angular particles have higher shear stress and
dilatancy [11, 10]. The origin of these enhanced proper-
ties of the angular packings was traced back to the fabric
properties in terms of branch vectors and contact forces.
In particular, the face-face contacts capture strong force
chains leading to a higher force anisotropy.

In this paper, we report on a systematic investigation
of the effect of shape angularity by simulating different

packings of regular polygons in 2D and irregular polyhe-
dral particles in 3D with different numbers of faces but
similar values of their other characteristics. Numerically,
the passage from 2D to 3D involves numerical handling
of particles of polyhedral shape and a higher numerical
efficiency for 3D simulations, but it is necessary in order
to approach the behavior of “real” granular media.

NUMERICAL PROCEDURES

In 2D with regular polygons, the angularity is simply
given byα = 2π/ns wherens is the number of sides of
the polygons. In contrast, in 3D a strict procedure need
to be defined in order to isolate and control precisely the
shape. First, a set ofnv vertices are randomly generated
on a unit sphere. The convex hull of these points is cre-
ated by associating three vertices for each face. This con-
dition implies that the numbernf of faces is simply given
by nf = 2nv−4. Secondly, to control the eccentricity of
the particles, the degree of distortionη from a perfectly
spherical shape is taken into account. The parameterη
is defined as the ratio of the difference of the radii of
circumscribed and inscribed spheres on the radius of the
circumscribed sphere [12]. For nearly spherical particles
we haveη < 0.1. In the generation of the verices, the
first step is iterated until this condition is satisfied. We
define thus the mean angularity〈α〉 of a particle as the
mean angle between all its adjacent faces. In this simple
way, for a given value ofη , we can control the angularity
of the particles with a single continuously-variable shape
parameter depending only on the number of facesnf .
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FIGURE 1. Snapshot of a portion of the 2D and 3D packings
at the end of isotropic compression for polygons withns = 7(a)
and polyhedra withnf = 20 (b).

We prepared 13 different packings composed of 10000
regular polygons with the same number of sidesns ∈
[3, ...,11,17,30,40,60] as well as 7 packings composed
of 40000 irregular polyhedra with the same number of
facesnf ∈ [8,20,30,46,96,176,596]. Additionally, we
build one more packing composed of the same number
of disks and spheres respectively. In order to avoid long-
range ordering, we introduce a size polydispersity by
varying the circumradius of the particles in the range
[dmin,2dmin], wheredmin is the minimum radius with a
uniform distribution by volume fractions.

By means of contact dynamic simulations (CD) [13,
14, 15] the particles are first compacted by isotropic com-
pression inside a box. The gravity is set to 0 and fric-
tion coefficientµ and µw between particles and with
the walls, respectively, are set to 0.4 and 0 in order to
get homogeneous and isotropic packings. Figure 1 dis-
plays snapshots of the packings forns = 7 (a) in 2D and
nf = 20 (b) in 3D at the end of isotropic compaction.
These samples are then used as initial configuration for
biaxial, respectively triaxial, compression tests. A down-
ward velocity vy is imposed on the upper wall while
keeping a constant confining stress on the lateral walls.
The strain ratevy/H is low so that the evolution can be
considered as quasi-static.
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FIGURE 2. Normalized steady state shear stress(q/p)∗ as a
function of particle angularity from raw simulation data (black
symbol) and as predicted by Eq.2 (empty symbol) both for 2D
and 3D (inset) simulations. The error bars indicate the standard
deviation of stress fluctuations in the steady state.

MACROSCOPIC SHEAR STRENGTH

The stress tensorσ can be evaluated from the simu-
lation data as an average over all the contacts of the
dyadic product of contact forcefc and branch vectorℓc:
σαβ = nc〈 f c

αℓc
β 〉c [16], wherenc is the number density

of contactsc and the average〈...〉c runs over all con-
tacts in a control volume. In 3D with axial symmetry
we define the stress deviatorq = (σ1 − σ3)/3 and the
mean stressp = (σ1 + σ2 + σ3)/3, whereσ1,2,3 are the
principal stress values. In 2D, we setq = (σ1 − σ2)/2
and p = (σ1 + σ2)/2. For our system of perfectly rigid
particles, the stress state is characterized by the mean
stressp and the normalized shear stressq/p [17]. Dur-
ing shear, the shear stress jumps initially to a high value
before decreasing to a nearly constant value in the steady
state. The steady-state shear stress(q/p)∗ characterizes
the shear strength of the material.

Figure 2 shows the evolution of(q/p)∗ as a function
of angularityα of the particles. The shear strength first
increases withα from 0.29 in 2D and 0.21 in 3D and then
saturates for particles having a less number of sides (or
faces in 3D) for which(q/p)∗ ≃ 0.47 in 2D and 0.43 in
3D. The data are well fit to an exponential function (red
dashed line). The fast increase of(q/p)∗ with α and its
saturation is rather unexpected as it indicates that small
deviations of the shape from disk or sphere have stronger
effect on the value of(q/p)∗ than the larger variations of
angularity for low numbers of sides (or faces).

TEXTURE AND FORCE ANISOTROPIES

Figure 3 shows a typical map of normal forces in our 2D
and 3D configurations. The force chains are clearly inho-
mogeneous forming anisotropic structures with a “zig-
zag” shape. The most basic descriptor of anisotropy is
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FIGURE 3. Snapshots of normal forces in packings com-
posed of polygons withns = 5(a) and polyhedra withnf =
30(b) in the steady state.

the probability distributionP(n) of the contact normals,
which is generically nonuniform. The unit vectorn is de-
scribed by a single angleθ in 2D and by azimuthal and
longitudinal angles(θ ,φ) in 3D. Assuming axial sym-
metry for 3D simulations, which is the case for our tri-
axial test, the probability densityP(θ ) of contact ori-
entationsθ provides the required statistical information
about the contact network.

A local frame(n, t) can be attached to each contact,
wheret is an orthonormal unit vector. The local geometry
associated with the two contact neighbors is character-
ized by the branch vectorℓ joining the particle centers. It
can be projected in the local contact frameℓ = ℓnn+ ℓtt.
Note that, in contrast to circular particles, for which
ℓt = 0, in a packing of polygonal or polyhedral particles
this component is nonzero. In the same way, the contact
force f can be expressed in terms of its normal and tan-
gential components:f = fnn+ ftt.

Along with P(θ ), the anisotropy of the packing can
be further characterized by the angular averages of the
components of the branch vectors and contact forces as
a function of the orientationθ : 〈ℓn〉(θ ), 〈ℓt〉(θ ), 〈 fn〉(θ )
and〈 ft 〉(θ ). These functions describe the general state of
anisotropy, and both experiments and simulations show
that, under shearing, the packing self-organizes into a
state where a simple approximation based on spherical
harmonics at leading terms captures their anisotropies
[18, 10]:

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


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
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



Pθ (θ ) = 1
4π {1+ac[3cos2(θ −θc)−1]},

〈ℓn〉(θ ) = 1
4π {1+aℓn[3cos2(θ −θℓn)−1]},

〈 ft 〉(θ ) = 〈ℓn〉aℓt sin2(θ −θℓt)
〈 fn〉(θ ) = 〈 fn〉{1+af n[3cos2(θ −θ f n)−1]}
〈 ft 〉(θ ) = 〈 fn〉af t sin2(θ −θ f t),

(1)
whereac is the contact orientation anisotropy,aℓn andaℓt
are the normal and tangential branch anisotropies,af n
andaf t are the normal and tangential force anisotropies.
The anglesθc, θℓn, θℓt , θ f n, andθ f t are the corresponding
privileged directions. These directions can all be differ-
ent, but they coincide with the principal stress direction
θσ in a sheared granular material [18, 10, 7]. A simi-
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FIGURE 4. Evolution of the anisotropy parametersac, aℓn,
aℓt , af n and af t as a functions of the particle shape angular-
ity for 2D(a) and 3D(b) simulations. Error bars represent the
standard deviation in the steady state.

lar relation is obtained in 2D by replacing the function
3cos2(θ )−1 bycos(2θ ) and 1/(4π) by 1/(2π).

The anisotropiesac, aℓn, aℓt , af n and af t are inter-
esting descriptors of granular microstructure and force
transmission properties because they underlie the differ-
ent microscopic origins of shear strength. Indeed, it can
be shown that the general expression of the stress tensor
leads to the following simple relation [18, 10]:

q
p
≃







1
2(ac +aℓn+aℓt +af n+af t) 2D

5
2(ac +aℓn+aℓt +af n+af t) 3D.

(2)

where the cross products between the anisotropy parame-
ters have been neglected. The predicted values of(q/p)∗

by this equation are shown in Fig. 2 (empty symbol) to-
gether with the measured values as a function ofα. We
see that Eq. 2 approximates well the shear strength for all
values ofα both in 2D and 3D.

The evolution of the five anisotropies withα is shown
in Fig. 4. The normal and tangential branch anisotropies,
aℓn and aℓt , are negligible in comparison to the other
anisotropy parameters. This is due to the absence of
shape eccentricity of the particles [7] and to the low span
in the particle size distribution [19].

The other anisotropies,ac, af n, and af t , grow asα
increases from zero (for the disk/sphere packing) up to
α ≃ 1.25 in 2D and 0.8 in 3D. This increase of all
anisotropies underlies the observed increase of the shear
strength in this range. The increase of the anisotropies re-
flects the increasing number of side-side contacts (face-
face and face-side in 3D), which capture the strong force
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FIGURE 5. Snapshot of radial forces in packing fornf =
176(a) andnf = 20(b) in the steady state. Line thickness is
proportional to the radial force. In red, the force whereft = µ fn

chains and form column-like structures, which can be
stable without sidewise support [11, 10, 20].

Then, at higher level of angularity a rapid decrease
of ac (andan for 2D) occurs whereasaf t grows at the
same time. As it is observed in Fig. 4, this increase of
af t is large enough to compensate additively (See Eq.
(2)) the decrease ofac (andaf n in 2D), so that the shear
strength remains nearly constant, as observed in Fig. 2.
This happens because very angular particles also have
very few faces, so that it becomes difficult to orient these
faces perpendicularly to the direction in which the forces
are being transmitted. This causes the anisotropiesac to
decrease. In addition,af t increases, since the stability
of such contacts relies on a strong activation of friction
forces [11, 10, 20]. This is well illustrated in Fig. 5 where
a map of mobilized forces (ieft = µ fn) is shown in red
for nf = 176(a) andnf = 20(b).

CONCLUSIONS

In this paper, we investigated the effect of particle shape
angularity in2D and 3D for the quasistatic behavior of
sheared granular materials by means of contact dynam-
ics simulations. We considered a first series of packings
composed of regular polygons as an “idealized" material.
In order to approach the behavior of “real” angular ma-
terials a second series of simulations were performed in
3D with irregular polyhedral particles. The macroscopic
and microstructural properties of several packings com-
posed of a large number of particles were analyzed as a
function of the angularity of the particles in the steady
state.

It was shown that the shear strength first increases with
the angularity and then remains nearly constant at larger
angularity. Interestingly, we evidenced that the increase
of all anisotropies underlies the observed increase of the
shear strength whereas the plateau of shear strength re-
sults from a decrease of the contact anisotropies compen-
sated by an increase of the tangential force anisotropy.
This transition results from a geometric effect that be-
comes dominant for very angular particles (a few num-
ber of faces along the stress direction) and that implies

that the stability of the packing relies strongly on friction
forces.

Nevertheless, much more work is needed in order
to understand the mechanical role of each contact type
on the stress transmission. An idea is to isolate the
contribution of each contact on the texture and forces
anisotropies. Another well known feature of idealized
granular media is that the contacts can be classified into
strong and weak networks with distinct mechanical roles.
It would be interesting to revisit this concept for packings
composed of angular particles.

We acknowledge financial support from the Ecos-
Nord program (Grant No. C12PU01).
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