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ABSTRACT: Single junction III-V heterostructures based devices could overtake the Shockley-Queisser limit if 

thermalisation of photogenerated carriers can be strongly limited as in the hot carrier solar cell concept [1]. Previous 
modelling [2] and experiments [3] have shown the interest of Multiple Quantum Wells heterostructures in the 

antimonide system and the importance of very thin structures [3,4]. In this paper we report new data on the 

thermalisation rates in antimonide and phosphide heterostructures measured at ambient temperature. For the first time 

electrical control of hot carrier population is performed on hot carrier heterostructures devices. 
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1 HCSC : SLOW THE THERMALISATION 

 

Classical PN junctions at optimum Shockley-Queisser 
limit already presents 30% thermalisation loss. The 

strategy proposed by Ross and Nozik is to effectively 

collect the solar spectrum by (i) reducing the absorber 

gap and (ii) by limiting the thermalisation process 
consisting in carriers-phonons inelastic interactions [3]. 

The proposed hot carrier solar cell (HCSC) requires high 

extraction regime to the terminals and a significant 

reduction of thermalisation rate thanks to phonon 
engineering.  

Low temperature optical studies have pointed out MQWs 

as a good candidate for HCSC absorber. A 80 W/K/cm² 

thermalisation rate was extracted from MQWs III-V 
structures and has shown a 4-fold improvement compared 

to bulk materials [5]. Such a value would lead to a 4% 

efficiency increase compared to the Shockley-Queisser 

limit [6]. 
In this study, our objectives are to evidence similar 

measurements at room temperature under a CW 

excitation and attempt a first electrical control of the 

steady-state hot population. 
 

 

2 METHOD AND EXPERIMENTS 

  
 Current-voltage I(V) and biased photoluminescence 

PL(V) measurements are performed simultaneously at 

room temperature. Samples are excited by a 975 nm cw 

laser at different excitation powers. The laser spot 
diameter is around 10 µm. The two samples are lattice 

matched on either a GaSb or InP substrates. Undoped 

GaInAsSb/GaSb or GaInAsP/InP MQWs are embedded 

in n and p doped high energy gap claddings to confine 
hot carriers. The laser excitation energy is higher than 

QWs barriers and lower than the claddings. 

 

 
3 RESULTS AND DISCUSSIONS 

  

3.1 I(V) measurements 

 
Figure 1: GaSb-sub/GaInAsSb I(V) curves at different 
absorbed powers 

 

 The two samples show effective carriers extraction at 

reverse bias under different excitation powers (Fig. 1, 
Fig. 2).  

In the GaSb case (Fig. 1), current injection is strongly 

limited above the open circuit voltage. This effect comes 

from a high energy gap difference between QWs barriers 

and the claddings (ΔEg=0.6eV). It induces an 

accumulation of carriers close to the claddings. Although 

the structure is complex, SCAPS simulation software can 

be used to gain insight into the electrical behavior (red 
curve). 

 In the InP based structure (Fig. 2), the barrier is much 

more lower (ΔEg=0.3eV), this implies a classical 

behaviour above the open circuit voltage even though the 
structure presents important shunt and series resistances.



 
Figure 2: InP-sub/GaInAsP I(V) curves at different 

absorbed powers 

 

3.2 T(V) measurements 
 As we acquire simultaneously a photoluminescence 

spectrum at each bias, we could extract the carrier 

temperature using the generalized Planck’s law [1]. 

For the two different samples, at a given absorbed power, 
we observe a temperature decrease from open circuit to 

short circuit (Fig. 3, Fig. 4). This effect seems to be 

directly correlated with the carrier density in the MQWs: 

extracting carriers decreases the carrier temperature.  
 

 

 
  Figure 3: GaSb-sub/GaInAsSb, T(V) curves at different 

absorbed powers 
 

 In the InP case (Fig. 4), we observe a temperature 

decrease while injecting carriers (i.e. increasing the 

electrical bias above the open circuit voltage). We 
supposed a hot carriers cooling induced by carrier’s 

injection from the cold reservoirs.  

 As we have seen in the GaSb structure I(V) curve, the 

injection of carriers is limited. Therefore the measured 
temperature does not change as we increase the electrical 

bias above Voc (Fig. 3). 

 

 
  Figure 4: InP-sub/GaInAsP, T(V) curves at different 

absorbed powers. 

 

3.3 Thermalisation rates at 300K 

The thermalisation rate can be extracted from PL(V) 
curves. As we consider the Klemens process as the 

principal decomposition phonon mode, the thermalisation 

rate can be written as : 

 

  
   

    
      

   

   
  

 

where Pth is the thermalised power in the absorber, The 

carrier temperature, T the lattice temperature, Elo the LO 
phonon energy and k the Boltzmann constant.  

 Applying the detailed balance, we get : 

 

                  
 

where Pabs is the power absorbed by the cell and Pext the 

electrical power extracted. As the emission power can be 

neglected compared to the thermalised power in III-V 
materials and the electrical power is equal to zero at open 

circuit, the thermalisation rate becomes : 

 

  
    
    

      
   

   
  

 

 From the PL(V) measurements at open circuit, 
thermalisation rates can be deduced from equation above 

and are equal to 230 and 50W/K/cm² for GaSb and InP 

structures respectively. Therefore, the InP heterostructure 
seems promising compared to previous measurements. 

 

 

4 CONCLUSION 
 

 We have shown I(V) and PL(V) measurements under 

a continuous wave laser on MQWs samples.  The 

experimental results show evident hot carrier population 
with a temperature increase higher than 150K at room 

temperature. The measurements were done under 

illumination powers of around 10000 suns. As a first 

attempt, we can explain the temperature changes as 
function of injection/extraction regimes. The low 

thermalisation rate found on InP based sample is 

promising for the HCSC concept. 
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