A proximal approach for signal recovery based on information measures - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

A proximal approach for signal recovery based on information measures

Résumé

Recently, methods based on Non-Local Total Variation (NLTV) minimization have become popular in image processing. They play a prominent role in a variety of applications such as denoising, compressive sensing, and inverse problems in general. In this work, we extend the NLTV framework by using some information divergences to build new sparsity measures for signal recovery. This leads to a general convex formulation of optimization problems involving information divergences. We address these problems by means of fast parallel proximal algorithms. In denoising and deconvolution examples, our approach is compared with '2- NLTV based approaches. The proposed approach applies to a variety of other inverse problems.
Fichier principal
Vignette du fichier
EUSIPCO_2013.pdf (461.43 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00842713 , version 1 (09-07-2013)

Identifiants

  • HAL Id : hal-00842713 , version 1

Citer

Mireille El Gheche, Anna Jezierska, Jean-Christophe Pesquet, Joumana Farah. A proximal approach for signal recovery based on information measures. EUSIPCO 2013, Sep 2013, Marrakech, Morocco. pp.xx-xx. ⟨hal-00842713⟩
185 Consultations
218 Téléchargements

Partager

More