HAL
open science

Polar [3+2] cycloaddition of ketones with electrophilically activated carbonyl ylides. Synthesis of spirocyclic dioxolane indolinones.

Ghenia Bentabed-Ababsa, Aicha Derdour, Thierry Roisnel, Jose A Sáez, Luis R Domingo, Florence Mongin

To cite this version:

Ghenia Bentabed-Ababsa, Aicha Derdour, Thierry Roisnel, Jose A Sáez, Luis R Domingo, et al.. Polar $[3+2]$ cycloaddition of ketones with electrophilically activated carbonyl ylides. Synthesis of spirocyclic dioxolane indolinones.. Organic \& Biomolecular Chemistry, 2008, 6 (17), pp.3144-57. 10.1039/b804856h . hal-00842706

HAL Id: hal-00842706

https://hal.science/hal-00842706

Submitted on 6 Jun 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Polar [3+2] cycloaddition of ketones with electrophilically activated carbonyl ylides. Synthesis of spirocyclic dioxolane indolinones.

Ghenia Bentabed-Ababsa, ${ }^{a, b}$ Aicha Derdour, ${ }^{b}$ Thierry Roisnel, ${ }^{c}$ Jose A. Sáez, ${ }^{d}$ Luis R. Domingo ${ }^{* d}$ and Florence Mongin* ${ }^{\text {a }}$

${ }_{5}$ Received (in XXX, XXX) 1st January 2007, Accepted 1st January 2007
First published on the web 1st January 2007
DOI: 10.1039/b000000x

The [3+2] cycloaddition reaction between carbonyl ylides generated from epoxides and ketones (ethyl pyruvate, ethyl phenylglyoxylate, isatin, N-methylisatin and 5-chloroisatin) to give 10 substituted dioxolanes and spirocyclic dioxolane indolinones was investigated. The effect of microwave irradiation on the outcome of the reaction was studied. The thermal reaction between 2,2-dicyano-3-phenyloxirane and N-methylisatin was theoretically studied using DFT methods. This reaction is a domino process that comprises two steps. The first is the thermal ring opening of the epoxide to yield a carbonyl ylide intermediate, whereas the second step is a polar [3+2] 15 cycloaddition to yield the final spiro cycloadducts. The cycloaddition presents a low stereoselectivy and a large regio- and chemoselectivity. Analysis of the electrophilicity values and the Fukui functions at the reagents involved in the cycloaddition step allowed to explain the chemical outcome.

Introduction

${ }_{20}$ Cycloaddition reactions are one of the most important synthetic processes, with both synthetic and mechanistic interest in organic chemistry. Current understanding of the underlying principles in reactions such as 1,3-dipolar cycloaddition has grown from a fruitful interplay between
25 theory and experiment. ${ }^{1}$ 1,3-Dipolar cycloadditions, whose general concept was introduced by Huisgen and co-workers in 1960 s, ${ }^{2}$ are versatile tools for building five-membered heterocycles. ${ }^{1}$ Carbonyl ylides, generated by thermal electrocyclic ring opening of epoxides, are known to react ${ }_{30}$ with π-bonds of alkynes, ${ }^{3}$ alkenes, ${ }^{3 a, b, 4}$ imines, ${ }^{5}$ aldehydes ${ }^{6}$ and thioketones, ${ }^{7}$ affording highly substituted dihydrofurans, tetrahydrofurans, oxazolidines, dioxolanes and oxathiolanes, respectively.

Spiro-oxindole system occupies a special place in 35 heterocyclic chemistry because it is the core structure of many pharmacological agents and natural alkaloids. ${ }^{8}$ The dioxolane

[^0]moiety represents another important skeleton present in molecules endowed with biological activities, ${ }^{9}$ notably when substituted by an aryl group at the 2 position, and both an aryl
40 or alkyl group and an ester function at the 4 position. ${ }^{10}$ Due to the importance of these two structural frameworks, synthesis of molecular architectures containing both spiro-oxindole and dioxolane moities could be of biological interest. We focused on spiro[1,3-dioxolane-4,3'-indolin- 2 '-ones], which are very 45 rare, and have only been synthesized by Nair and co-workers using cycloadditions of carbonyl ylides generated from diazo ketones in the presence $\mathrm{Rh}_{2}(\mathrm{OAc})_{4} .{ }^{11}$

To the best of our knowledge, we report here the first cycloadditions between carbonyl ylides, thermically generated ${ }_{50}$ from epoxides, and ketones. The mechanism of these reactions was studied using DFT calculations.

Results and discussion

Synthetic Aspects

Reactions were first carried out between 2,2-dicyano-3-(4${ }_{55}$ substituted)phenyloxiranes 1a-c ${ }^{12}$ and ethyl pyruvate (2a) (2 molar equivalent). The conversion to the corresponding ethyl 5,5-dicyano-4-methyl-2-phenyl-1,3-dioxolane-4-carboxylates 3-5 monitored by NMR showed that the reactions carried out in refluxing toluene were complete after $27 \mathrm{~h}(\mathrm{R}=\mathrm{H}), 29 \mathrm{~h}(\mathrm{R}$ $\left.{ }_{60}=\mathrm{Cl}\right)$ and $14 \mathrm{~h}(\mathrm{R}=\mathrm{OMe})($ Table 1, Entries 1-3).

The cis products $\mathbf{3 a - 5 a}$ were isolated from the crude mixture by column chromatography over silica gel in yields ranging from 53 to 56% and identified by NMR. NOESY, HMBC and HMQC sequences performed on a CDCl_{3} solution ${ }_{65}$ of the racemic 4a allowed the assignments of all the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals. In addition, the NOESY experiment clearly showed the relationship between H2 (see Table 1, a) at 6.27 ppm and the methyl group at C 4 at 1.96 ppm . Cis $\mathbf{4 a}$ was then identified unequivocally by X-ray structure analysis. Suitable
colorless crystals were obtained by slowly evaporating a CDCl_{3} solution of $\mathbf{4 a}$ (Fig. 1). \dagger The trans compounds $\mathbf{3 b} \mathbf{- 5 b}$ were identified using ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of enriched fractions.

Fig. 1 ORTEP diagram (30% probability) of racemic 4a (most of hydrogen atoms are omitted for clarity).

5 The diastereoisomeric ratios were determined from ${ }^{1} \mathrm{H}$ NMR spectra of the crude mixtures. When $\mathrm{R}=\mathrm{H}$ and OMe , the cis products 3a and 5a, respectively, only slightly predominate over the trans products $\mathbf{3 b}$ and $\mathbf{5 b}$ (respective ratios of $60 / 40$ and $59 / 41$). When $\mathrm{R}=\mathrm{Cl}$, the formation of cis ${ }_{10} \mathbf{4 a}$ is slightly more favored over trans $\mathbf{4 b}$ (64/36).

A rising number of articles have advocated the use of microwave technology in organic synthesis. Harsh conditions such as high temperatures and long reaction times often required for cycloaddition reactions could generally be ${ }_{15}$ reduced using this technique. ${ }^{13}$ Syntheses of tetrahydrofurans, dioxolanes and oxazolidines using cycloaddition reactions of alkenes, aldehydes or imines with carbonyl ylides generated from epoxides were recently reported using microwave irradiation. ${ }^{14}$
20 Thus, in order to shorten the reaction times, several experiments were performed at various powers and under different conditions using microwave irradiation. ${ }^{15}$ The best conversions were obtained without solvent (power: 285 W), with significant reduction of reaction times in comparison to ${ }_{25}$ reaction in toluene at reflux ($55 \mathrm{~min}(\mathrm{R}=\mathrm{H}$) against $27 \mathrm{~h}, 50$ $\min (\mathrm{R}=\mathrm{Cl})$ against 29 h , and $30 \mathrm{~min}(\mathrm{R}=\mathrm{OMe})$ against 14 h). Recourse to classical heating was nevertheless preferred since the formation of the cis products, easier to isolate from the crude mixtures than the trans, was disfavored using 30 microwave heating mode (a:b ratios of 57/43, 59/41 and 41/59 for compounds 3-5, against 60/40, 64/36 and 59/41 in toluene at reflux) (Table 1, Entries 1-3).

For these reasons, reactions between 2,2-dicyano-3-(4substituted) phenyloxiranes $\mathbf{1 a}-\mathbf{c}^{12}$ and ethyl phenylglyoxylate 35 (2b) (1 molar equivalent) were next carried out in refluxing toluene. Replacing ethyl methylglyoxylate by ethyl phenylglyoxylate slightly disfavored the formation of the cis compounds 6a-8a over the trans $\mathbf{6 b}-\mathbf{8 b}$ (a:b ratios of 54/46, 60/40 and 38/62 for compounds 6-8, against 60/40, 64/36 and ${ }_{40} 59 / 41$ for compounds 3-5) (Table 1, Entries 4-6).

Whereas neither cis $\mathbf{6 a}$ nor trans $\mathbf{6 b}$ could be isolated as pure from the diastereoisomeric mixture but only identified using ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of enriched fractions, the cis product $7 \mathbf{a}$ and the trans products $\mathbf{7 b}-\mathbf{8 b}$ were isolated from 45 the crude mixture by column chromatography over silica gel followed by crystallization from petrol $/ \mathrm{Et}_{2} \mathrm{O} 4: 1$ in moderate to medium yields. Trans $\mathbf{8 b}$ was identified by NMR 2D experiments. A NOESY sequence performed on a $\mathrm{C}_{6} \mathrm{D}_{6}$ solution revealed the absence of relationship between H 2 (see
${ }_{50}$ Table 1, b) at 6.62 ppm and the unsubstituted phenyl ortho hydrogens H2" and H6" at 7.27 ppm. The structure of trans 7b was elucidated by X-ray analysis of colorless crystals obtained by slowly evaporating a solution in acetone (Fig. 2). \dagger

Fig. 2 ORTEP diagram (30% probability) of racemic 7b (most of hydrogen atoms are omitted for clarity).

55 In order to reach spirocyclic dioxolane structures, reactions were performed with three different isatins. When carried out between 2,2-dicyano-3-phenyloxiranes $\mathbf{1 a}-\mathbf{c}^{12}$ and isatin (9a) (1 molar equivalent), the reactions were completed in refluxing toluene after reaction times of $32 \mathrm{~h}(\mathrm{R}=\mathrm{H}), 24 \mathrm{~h}(\mathrm{R}$ $\left.{ }_{60}=\mathrm{Cl}\right)$ and $14 \mathrm{~h}(\mathrm{R}=\mathrm{OMe})$ to afford 5,5-dicyano-2-

Table 1 Cycloaddition reaction of epoxides 1 and ethyl glyoxylates 2

[^1]phenylspiro[1,3-dioxolane-4,3'-indolin-2'-ones] 10-12 (Table 2, Entries 1-3).

The cis products 10a-12a were isolated from the crude mixture by column chromatography over silica gel in yields 5 ranging from 42 to 66%, and identified by NMR. NOESY, HMBC and HMQC sequences performed on the racemic 12a allowed the assignments of all the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals. In addition, the proximity between H 2 (see Table 2, a) at 6.41 ppm and H^{\prime} at 7.52 ppm was shown by conducting the ${ }_{10}$ NOESY experiment in $\mathrm{C}_{6} \mathrm{D}_{6}$. Cis 11a and 12a were then identified unequivocally by their crystal structures. Colorless

Fig. 3 ORTEP diagrams of racemic 11a (50\% probability) and 12a (20\% probability) (most of hydrogen atoms are omitted for clarity).
crystals suitable for X-ray structure analysis were obtained by slowly evaporating an acetone solution of 11a and a dibutyl 15 ether solution of 12a (Fig. 3). \dagger

After identification of the trans compounds 10b-12b using ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of enriched fractions, the diastereoisomeric ratios were calculated from the ${ }^{1} \mathrm{H}$ NMR spectra integration of the crude mixtures. When $\mathrm{R}=\mathrm{H}$ and ${ }_{20} \mathrm{OMe}$, the cis products $\mathbf{1 0 a}$ and 12a, respectively, only slightly predominate over the trans products 10b and 12b (respective ratios of $57 / 43$ and 55/45). In contrast, when $\mathrm{R}=\mathrm{Cl}$, the formation of cis 11a is clearly favored over trans 11b (75/25).

If recourse to microwave irradiation could reduce the ${ }_{25}$ reaction times as previously noted, it was again discarded, the formation of the trans products, more difficult to isolate for the crude mixtures than the cis, being similarly favored using this heating mode (Table 2, Entries 1-3).

The reactions carried out between 2,2-dicyano-3${ }_{30}$ phenyloxiranes $\mathbf{1 a}-\mathbf{c}^{12}$ and N-methylisatin (9b) (0.7 molar equivalent) in refluxing toluene show that the methyl group on isatin helps in favoring the formation of the cis products. Indeed, diastereoisomeric ratios of 73/27, 74/26 and 63/37 were respectively obtained for compounds 13-15 against ${ }_{35} 57 / 43,75 / 25$ and $55 / 45$ for compounds 10-12 (Table 2, Entries 4-6).

The cis products 13a and 14a were isolated from the crude mixture by fractional crystallization from petrol/ $\mathrm{Et}_{2} \mathrm{O} 5: 1$ in satisfying yields. Cis 13a was identified from its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ ${ }^{0}$ NMR spectra. After complete assignments of all the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals using NOESY, HMBC and HMQC sequences performed on 14a, the proximity between H 2 (see Table 2, a, 6.98 ppm) and H^{\prime} (7.86 ppm) was evidenced using the NOESY spectrum. The structures of $\mathbf{1 3 a}$ and $\mathbf{1 4 a}$ were 45 confirmed by X-ray analysis of colorless crystals obtained by slowly evaporating an acetone solution (Fig. 4). \dagger

Cis 15a could not be purified, but trans $\mathbf{1 5 b}$ was isolated in 30% yield, and its structure elucidated by X-ray analysis. Single crystals of trans $\mathbf{1 4 b}$ suitable for X-ray diffraction

Table 2 1,3-Dipolar cycloaddition reaction of epoxides $\mathbf{1}$ and isatins 9.

 1				\rightarrow		
entry	R (1)	$\mathrm{R}^{1}, \mathrm{R}^{2}$ (9)	a:b	a:b ratio ${ }^{\text {a,b }}$	a:b ratio ${ }^{\text {a,c }}$	isolated product(s), yield(s)
1	H (1a)	H, H (9a)	10a:10b	57/43	55/45	10a, $42 \%{ }^{\text {b }}$
2	Cl (1b)	H, H (9a)	11a:11b	75/25	54/46	11a, $66 \%{ }^{\text {b }}$
3	OMe (1c)	H, H (9a)	12a:12b	55/45	35/65	12a, $49 \%{ }^{\text {b }}$
4	H (1a)	$\mathrm{Me}, \mathrm{H}(9 \mathrm{~b})$	13a:13b	73/27	-	13a, 72%
5	Cl (1b)	$\mathrm{Me}, \mathrm{H}(\mathbf{9 b})$	14a:14b	74/26	-	14a, 73\%
6	OMe (18)	$\mathrm{Me}, \mathrm{H}(\mathbf{9 b})$	15a:15b	63/37	-	15b, 30\%
7	H (1a)	H, Cl (9c)	16a:16b	59/41	-	16a, 52\%; 16b, 28\%
8	Cl (1b)	H, Cl (9c)	17a:17b	71/29	-	17a, 59\%; 17b, 25\%
9	OMe (1c)	H, $\mathrm{Cl}(9 \mathrm{c})$	18a:18b	58/42	-	18a, 49\%

${ }^{a}$ Determined from the ${ }^{1} \mathrm{H}$ NMR spectra of the crude mixture. ${ }^{b}$ Reactions performed in refluxing anhydrous toluene under Ar. ${ }^{c}$ Reactions performed without solvent in a microwave oven $\left(285 \mathrm{~W}, 180^{\circ} \mathrm{C}\right)$.
analysis were collected too (Fig. 5). \dagger The products 15a and 13b were identified using ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of enriched fractions.

Fig. 4 ORTEP diagrams (30% probability) of racemic 13a and 14a (most of hydrogen atoms are omitted for clarity).

The presence of a chloro group at the 5-position of isatin 5 does not greatly affect the diastereoisomeric ratios. Indeed, when 5 -chloroisatin (9c) (0.7 molar equiv) was similarly involved in the reactions with 2,2-dicyano-3-phenyloxiranes $\mathbf{1 a - c},{ }^{12} \mathbf{a}: \mathbf{b}$ ratios of 59/41, $71 / 29$ and $58 / 42$ were respectively obtained for compounds 16-18, against 57/43, 75/25 and ${ }_{10}$ 55/45 using isatin (9a) (Table 2, Entries 7-9).

Fig. 6 ORTEP diagrams of racemic 16a, 17a, 17b (50% probability) and $\mathbf{1 8 b}$ (30% probability) (most of hydrogen atoms are omitted for clarity).

C bond to yield the carbonyl ylide intermediate $\mathbf{C Y}$, and ii) a [3+2] cycloaddition reaction between $\mathbf{C Y}$ and the isatin $\mathbf{9 b}$. In order to obtain mechanistic details as well as the stereo-, regio- and chemoselectivity of the formation of the spirocyclic 5 dioxolane indolinones 13a,b (see Schemes 1 and 2), the two steps involved in these domino reactions were studied using DFT calculations at the B3LYP/6-31G* level.

Scheme 1 Thermal ring opening of the epoxide 1a.

Scheme 2 Cycloaddition reaction between CY and the isatin $\mathbf{9 b}$.
Study of the thermal ring opening of the epoxide $\mathbf{1 a}$.
The first step of this domino reaction is the thermal ring 10 opening of the epoxide 1a through the breaking of the C1-C3 bond of the oxirane to yield the carbonyl ylide intermediate CY. An exhaustive exploration of the reaction path of this step allowed to find a transition structure, TS1, and the
subsequent carbonyl ylide CY (see Scheme 1).
15 In gas phase, the activation energy associated to the breaking of the C1-C3 bond of the epoxide $1 \mathbf{1 a}$ is 26.9 kcal mol^{-1}; the carbonyl ylide $\mathbf{C Y}$ is located $11.7 \mathrm{kcal} \mathrm{mol}^{-1}$ above the epoxide 1a (see Table 3). These highly unfavorable energies are in reasonable agreement with the high 20 temperature required for the reaction (toluene at reflux).

The geometry of TS1 is given in Fig. 7. The length of the C1-C3 breaking bond at TS1 is $2.124 \AA$. Analysis of the atomic movement associated to the unique imaginary frequency of TS1, $112.9 \mathrm{i} \mathrm{cm}^{-1}$, shows that this TS is mainly 25 associated to the C1-C3 breaking bond and to the disrotatory movement of the substituents present at these carbon atoms, as a consequence of the change in the hybridization of C 1 and C 3 carbon atoms from sp^{3} in $\mathbf{1 a}$ to sp^{2} in $\mathbf{C Y}$. The carbonyl ylide CY presents a planar rearrangement that allows the ${ }_{30}$ maximum stabilization by charge delocalization at the corresponding zwitterionic structure. The $\mathrm{C} 1-\mathrm{O} 2$ bond length in CY is very short, $1.294 \AA$, as a consequence of the delocalization of the O 2 oxygen lone pair over the C 1 carbon. On the other hand, both C3-CN bond lengths at CY, $1.400 \AA$, 35 are shorter than those at the epoxide 1a, $1.455 \AA$, as a consequence of the delocalization of the negative charge present on C3 towards the two electron-withdrawing CN groups.

TS1

CY

Fig. 7 Geometry of TS1 and the carbonyl ylide CY. The bond lengths are given in angstroms.

The extent of bond formation and bond rupture along the ${ }_{40}$ reaction pathway is provided by the concept of bond order (BO). ${ }^{16}$ At TS1, the BO value of the C1-C3 breaking bond is 0.31. This low value indicates that, at the TS, the breaking bond process is very advanced. This fact is in clear agreement with the endothermic character of the process. ${ }^{17}$ At the 45 carbonyl ylide CY, the C1-O2 BO value, 1.24 , points out its π character as a consequence of some delocalization of the O 2 oxygen lone pair over the C 1 carbon. The $\mathrm{C} 1-\mathrm{C}(\mathrm{Ar})$ bond order value, 1.22 , indicates the participation of the π aromatic ring in the stabilization of the carbonyl ylide. On the other ${ }_{50}$ hand, the BO value of both $\mathrm{C} 3-\mathrm{C}(\mathrm{CN})$ bonds, 1.17 , points out their π character as a consequence of the delocalization of the negative charge developed over the C3 carbon atom over the two electron-withdrawing CN groups.

Study of the [3+2] cycloaddition reaction of the carbonyl ylide ${ }_{55} \boldsymbol{C Y}$ with the isatin $\mathbf{9 b}$.

Due to the existence of two $\mathrm{C}=\mathrm{O}$ reactive centers at the isatin 9b, a carbonyl C5-O4 and an amide carboxyl C7-O6 double bond, and the asymmetry of both reagents, this cycloaddition reaction can yield up to eight isomeric spiro-cycloadducts.

The formation of these cycloadducts can be related to the chemo-, regio- and stereoselectivity of this cycloaddition reaction. The experimental results indicate that these cycloaddition reactions take place with a total 5 chemoselectivity, with the unique participation of the carbonyl C5-O4 double bond, with total regioselectivity, with the unique formation of the regioisomers associated to the C1O4 and C3-C5 bond formation, and with a low stereoselectivity due to the formation of the two possible ${ }_{10}$ stereoisomers. In order to explain the experimental results, the chemo-, regio- and stereoselectivity associated to these cycloadditions were studied. For this purpose we studied: the two stereoselective channels associated to the approach of the carbonyl ylide O 2 oxygen atom to the plane containing the ${ }_{15} \mathrm{C}=\mathrm{O} \pi$ bond, named as a and b; those regioisomeric channels associated to the approach of carbonyl ylide CY to the carbonyl C5-O4 double bond of $\mathbf{9 b}$, named as channels rgl and rg2, and finally, the more favorable regioisomeric approach modes of CY to the carboxyl C7-O6 double bond of ${ }_{20} 9 \mathbf{9}$, named as channels chl, allowed us to study the chemoselectivity in these cycloaddition reactions. Therefore, six reactive channels were studied (see Scheme 2). An exhaustive exploration of the potential energy surface of these cycloadditions allowed us to find a series of molecular ${ }_{25}$ complexes (MCs) that open the cycloaddition pathways. In these MCs, the two reagents are separated by $2.8 \AA$. From these MCs we selected the more favorable one, MC. MC is located $-7.1 \mathrm{kcal} \mathrm{mol}^{-1}$ below reagents, $\mathbf{C Y}+\mathbf{9 b}$. Analysis of the stationary points involved in these cycloaddition reactions 30 indicates that they present concerted mechanisms. Hence, six TS, TSrg1a, TSrg1b, TSrg2a, TSrg2b, TSch1a, and TSch1b, and the corresponding spiro-cycloadducts were located and characterized.

The energy results are summarized in Table 3. The most ${ }_{35}$ favorable reactive channels correspond to the formation of the stereoisomeric spiro-cycloadducts 13a and 13b, via TSrg1a and TSrg1b, respectively. From MC, the activation energies associated to the formation of the spiro-cycloadducts 13a and 13b are 5.5 (TSrg1a) and 6.5 (TSrg1b) $\mathrm{kcal} \mathrm{mol}^{-1}$. The low

Table 3 Total (E , in au) and relative ${ }^{\mathrm{a}}$ ($\Delta \mathrm{E}$, in $\mathrm{kcal} \mathrm{mol}^{-1}$) energies, and total $\left(\mathrm{G}_{\text {sol }}\right.$, in au) and relative ${ }^{\mathrm{a}}\left(\Delta \mathrm{G}_{\mathrm{sol}}\right.$, in $\left.\mathrm{kcal} \mathrm{mol}^{-1}\right)$ free energies in toluene at 383.95 K , of the stationary points involved in the cycloaddition reaction between the carbonyl ylide $\mathbf{1 a}$ and the isatin $\mathbf{9 b}$.

	E	$\Delta \mathrm{E}$	$\mathrm{G}_{\text {sol }}$	$\Delta \mathrm{G}_{\text {sol }}$
1a	-569.307603		-569.238018	
9b	-552.378472		-552.296654	
TS1	-569.264771	26.9	-569.200802	23.4
CY	-569.289033	11.7	-569.224206	8.7
CM	-1121.678679	4.6	-1121.504526	18.9
TSrg1a	-1121.670024	10.1	-1121.486682	30.1
TSrg1b	-1121.668391	11.1		
TSrg2a	-1121.651633	21.6	-1121.468107	41.8
TSrg2b	-1121.652029	21.4		
TSch1a	-1121.665334	13.0	-1121.482218	32.9
TSch1b	-1121.663287	14.3		
13a	-1121.716275	-19.0	-1121.527140	4.7
13b	-1121.718022	-20.0		
19a	-1121.714572	-17.9	-1121.526722	5.0
19b	-1121.713157	-17.0		
20a	-1121.698900	-8.0	-1121.512390	14.0
20b	-1121.697709	-7.3		
${ }^{a}$ Energies relative to 1a $\mathbf{1 a}$ + 9b.				

${ }_{40}$ energy difference between TSrg1a and TSrg1b, $\Delta \Delta \mathrm{E}=1.0$ kcal mol^{-1}, agrees with the low stereoselectivity experimentally observed. Note that major stereoisomer 13a has the cis stereochemistry. TSrg2a and TSrg2b, are located $c a .10 \mathrm{kcal} \mathrm{mol}^{-1}$ above TSrg1a. This large energy difference ${ }_{45}$ prevents the formation of the regioisomeric cycloadducts $\mathbf{1 9 a}$ and 19b, fact that is consistent with the experimental results. Finally, the formation of the spiro-cycloadduct 20a, via TSch1a, is $2.9 \mathrm{kcal} \mathrm{mol}^{-1}$ more unfavorable than the formation of 13a. This energy result is in reasonable ${ }_{50}$ agreement with the chemoselectivity experimentally observed (attack to the carbonyl C5-O4 double bond against the attack to the carboxyl C7-O6 one). The chemoselectivity can be explained by a larger nucleophilic character of the carbonyl O6 oxygen than the carboxyl O6 oxygen (see later). All these 55 cycloaddition reactions are strongly exothermic: between -29 and $-32 \mathrm{kcal} \mathrm{mol}^{-1}$ for the rgl and rg 2 regioisomeric channels and between -19 and $-20 \mathrm{kcal} \mathrm{mol}^{-1}$ for the ch 1 regioisomeric channels.

The geometries of the TSs involved in these cycloadditions ${ }_{60}$ are given in Fig. 8. The lengths of the forming bonds at the TSs are: $1.966 \AA(\mathrm{C} 1-\mathrm{O} 4)$ and $2.425 \AA(\mathrm{C} 3-\mathrm{C} 5)$ at TSrg1a, $2.007 \AA(\mathrm{C} 1-\mathrm{O} 4)$ and $2.614 \AA(\mathrm{C} 3-\mathrm{C} 5)$ at TSrg1b, $2.036 \AA$ (C3-O4) and $2.209 \AA(\mathrm{C} 1-\mathrm{C} 5)$ at TSrg2a, $2.061 \AA$ (C3-O4) and $2.176 \AA(\mathrm{C} 1-\mathrm{C} 5)$ at TSrg2b, $1.913 \AA(\mathrm{C} 1-\mathrm{O} 6)$ and 2.687 © (C3-C7) at TSch1a and $1.801 \AA(\mathrm{C} 1-\mathrm{O} 6)$ and $2.551 \AA$ (C3C7) at TSch1b. Some conclusions can be drawn from these values: i) at all TSs, the length of the O-C forming bond is shorter that the $\mathrm{C}-\mathrm{C}$ one, and ii) the more favorable regioisomeric TSs, rgl, are more asynchronous than the ${ }_{70}$ regioisomeric rg2 ones. Note that the ch1 channels are equivalent to the rgl ones.

Fig. 8 Geometry of the TSs involved in the cycloaddition reactions between the carbonyl ylide CY and the isatin $\mathbf{9 a}$. The bond lengths are given in angstroms.

The BO values of the forming bonds at these TSs are: 0.34 (C1-O4) and 0.22 (C3-C5) at TSrg1a, 0.31 (C1-O4) and 0.17 (C3-C5) at TSrg1b, 0.32 (C3-O4) and 0.34 (C1-C5) at TSrg2a, 0.31 (C3-O4) and 0.34 (C1-C5) at TSrg2b, 0.37 (C1${ }_{5}$ O6) and 0.12 (C3-C7) at TSch1a, and 0.46 (C1-O6) and 0.16 (C3-C7) at TSch1b. These BO values indicate that both regioisomeric series of TSs present a different behavior. While the TSs associated to the rgl channel, including the chl one, correspond to asynchronous bond-formation processes 10 where the formation of the C-O bond is more advanced than the $\mathrm{C}-\mathrm{C}$ one, the more unfavorable TSs associated to the rg2 channel correspond to synchronous bond-formation processes where the $\mathrm{C}-\mathrm{C}$ bond formation is slightly more advanced than the $\mathrm{C}-\mathrm{O}$ one.
15 The natural population analysis (NPA) allows us to evaluate the charge separation at the TSs, that is the polar character of the cycloaddition. The natural charges at the TSs appear shared between the carbonyl ylide CY, and the isatin $\mathbf{9 b}$. The net charge at the isatin 9 b framework at the TSs are: ${ }_{20} 0.09$ e at TSrg1a, -0.13 e at TSrg1b, -0.26 e at TSrg2a, 0.25 e at TSrg2b, 0.0 e at TSch1a and -0.01 e at TSch1b. These values indicate that at the TSs associated to the attack of the carbonyl C5-O4 double bond there is some charge separation, and that it is larger at the more unfavorable ${ }_{25}$ regioisomeric TSs. At the TSs associated to the attack of the carboxyl C7-O6 double bond, the charge separation is unappreciable.
Thermodynamic analysis of the domino reaction between $1 \mathbf{1}$ and $9 b$.

30 As the two reactions involved in this domino process present different molecularity: the ring-opening process is unimolecular and the cycloaddition reaction is bimolecular, the free energies of the stationary points associated to the stereoisomeric channels \boldsymbol{a} were computed at 383.95 K . ${ }_{35}$ Solvent effects of toluene on the energies were considered at the thermodynamic calculations (see computational methods). The energy results are summarized in Table 3, while a schematic representation of the free energy profiles is depicted in Fig. 9.

Fig. 9 Free energy profiles, in $\mathrm{kcal} \mathrm{mol}^{-1}$, for the domino reaction between the epoxide 1a and the isatin $\mathbf{9 b}$.

40 The activation free energy (considering the solvent effects) associated to the ring-opening process is $23.4 \mathrm{kcal} \mathrm{mol}^{-1}$. Formation of the carbonyl ylide $\mathbf{C Y}$ is an endergonic process in $8.7 \mathrm{kcal} \mathrm{mol}^{-1}$. Two factors are responsible of the decrease of these unfavorable energies respect to the gas-phase results:
${ }_{45}$ i) solvent effects stabilize more efficiently the TS1 and the carbonyl ylide CY than the epoxide 1a as a consequence of the zwitterionic character of the formers, and ii) an increase of the entropy of the system along the ring opening process.

The inclusion of solvent effects and thermal corrections to ${ }_{50}$ the energies and the entropies rises the relative free energies of the stationary points involved in the [3+2] cycloaddition reactions as a consequence of the bimolecular character of the reactions. Now MC is located 10.2 kcal above reagents, CY + 9b. Therefore, in spite of the exothermic character of the 55 formation of MC, its existence on the free energy surface is irrelevant. The free activation energy associated to TSrg1a is $20.0 \mathrm{kcal} \mathrm{mol}^{-1}$ (relative to $\mathbf{C Y}+\mathbf{9 b}$). TSrg2a remains 11.7 kcal mol^{-1} above TSrg1a, so this regioisomeric channel is clearly unfavorable. Although the chemoselectivity, measured ${ }_{60}$ as $\Delta \Delta \mathrm{G}^{\#}$, decreases slightly to $2.8 \mathrm{kcal} \mathrm{mol}^{-1}$, the formation of 13a is exergonic in $-3.9 \mathrm{kcal} \mathrm{mol}^{-1}$ and the formation of $20 \mathbf{a}$ is endergonic in $5.3 \mathrm{kcal} \mathrm{mol}^{-1}$.

Both ring opening and cycloaddition reactions have similar activation energies but, due to the endergonic character of the ${ }_{65}$ formation of CY, TSrg1a is located $6.8 \mathrm{kcal} \mathrm{mol}^{-1}$ above TS1 and, therefore, the cycloaddition reaction becomes the ratedetermining step of this domino process. In addition, the overall process is endergonic in $4.7 \mathrm{kcal} \mathrm{mol}^{-1}$.

Analysis based in the reactivity indexes.

${ }_{70}$ Recent studies carried out on cycloaddition reactions ${ }^{18}$ have shown that the reactivity indexes ${ }^{19}$ are powerful tools to study the reactivity. In Table 4, the static global properties (electronic chemical potential, μ, chemical hardness, η, and global electrophilicity, ω) of the carbonyl ylides $\mathbf{C Y}(\mathrm{R}=\mathrm{H})$ 75 and $\mathbf{C Y}(\mathrm{R}=\mathrm{OMe})$, and isatins $\mathbf{9 a}, \mathbf{b}$, are presented.

Table 4 Electronic chemical potential, μ in au, chemical hardness, η in au, and global electrophilicity, ω in eV , for the carbonyl ylides $\mathbf{C Y}$ and $\mathbf{C Y}$ ' and the isatins $9 \mathbf{a}, \mathbf{b}$.

	$\mu(\mathrm{au})$	$\eta(\mathrm{au})$	$\omega(\mathrm{eV})$
$\mathbf{C Y}(\mathrm{R}=\mathrm{H})$	-0.1693	0.0908	4.29
$\mathbf{C Y}{ }^{\prime}(\mathrm{R}=\mathrm{OMe})$	-0.1576	0.0890	3.79
9a $\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}\right)$	-0.1691	0.1433	2.71
$\mathbf{9 b}\left(\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}\right)$	-0.1646	0.1385	2.66

The electronic chemical potential of the carbonyl ylides CY and CY', -0.1693 and -0.1576 au , are close to those of the isatins $9 \mathbf{9}, \mathbf{b},-0.1691$ and -0.1646 au. The presence of electron-releasing substituents, methyl or methoxy, increases
${ }_{80}$ the value of the electronic chemical potential of these molecules. The similar values found in these reagents do not allow to predict clearly the direction of the charge transfer along these polar cycloadditions.

The carbonyl ylides present a very large electrophilicity 85 value, 4.29 (CY) and 3.79 ($\mathbf{C Y}{ }^{\prime}$) eV, being classified as strong electrophiles within the electrophilicity scale. ${ }^{18}$ The inclusion of an electron-releasing methoxy group on the aryl substituent decreases slightly the electrophilicity of the
carbonyl ylide. The electrophilicity value of the isatin $9 \mathbf{a}\left(\mathrm{R}^{1}\right.$ $=\mathrm{R}^{2}=\mathrm{H}$) is 2.71 eV , being also classified also as a strong electrophile. Inclusion of an electron-releasing methyl group on the amide nitrogen atom decreases slightly the 5 electrophilicity value of isatin $9 b\left(R^{1}=M e, R^{2}=H\right)$ to 2.66 eV . This decrease with the electron-releasing substitution, which can be related with an increase of the nucleophilicity of this compound, is in agreement with the reduction of the reaction time for isatin $9 \mathbf{b}$ relative to that for isatin $9 \mathbf{a}$.
10 The larger electrophilicity values of the carbonyl ylides $\mathbf{C Y}$ and CY' respect to the isatins $\mathbf{9 a}, \mathbf{b}$ indicate that, along a polar cycloaddition, the carbonyl ylides CY and CY' will behave as electrophiles whereas the isatins $\mathbf{9 a , b}$ will behave as nucleophiles. ${ }^{20}$
15 Analysis of the Fukui functions at the carbonyl ylide CY indicates that the C1 carbon corresponds to the most electrophilic center of this intermediate, while its C3 carbon is the most nucleophilic center. This picture agrees with a heterolytic $\mathrm{C}-\mathrm{C}$ bond breaking along the ring-opening process, 20 where the negative charge on the C3 carbon is delocalized over the two adjacent electron-withdrawing cyano groups, while the positive charge developed on the C 1 carbon is stabilized by the O 2 oxygen and the nearby conjugated phenyl substituent. On the other hand, at the isatin 9b, while the
${ }_{25}$ carbonyl C5 carbon atom is the most electrophilic center, the carbonyl O 4 oxygen atom is the most nucleophilic one. In a polar cycloaddition, the more favorable electronic interaction takes place between the most electrophilic center of the electrophile reagent and the most nucleophilic center of the 30 nucleophile reagent. This favorable electronic interaction controls both the asynchronicity of the bond formation and the regioselectivity of the reaction. Therefore, both the asynchronicity found at the TSs as well as the regioselectivity of the reactions are in agreement with the ${ }_{35}$ electrophile/nucleophile interaction predicted by the analysis of the Fukui functions.

Conclusions

In conclusion, we have shown that first ethyl 4-phenyl or 4-methyl-2-phenyl-1,3-dioxolane-4-carboxylate and then 2-
40 phenylspiro[1,3-dioxolane-4,3'-indolin-2'-ones] can be easily prepared by a regioselective cycloaddition between ethyl glyoxylates or isatins, and carbonyl ylides, thermically generated from epoxides. It is relevant to mention that trans spiro[1,3-dioxolane-4,3'-indolin-2'-ones] have been 45 synthesized by Nair and co-workers using carbonyl ylides generated from diazo ketones in the presence of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4},{ }^{11}$ whereas our method rather favors the formation of cis products, which are unknown.

The cycloaddition reaction between 2,2-dicyano-3${ }_{50}$ phenyloxirane and N-methylisatin to yield spiro-cycloadducts has been theoretically studied using DFT methods at the B3LYP/6-31G* level. The reaction is a domino process that comprises two steps. The first one is the thermal cleavage of the oxirane ring to yield a carbonyl ylide intermediate, 55 whereas the second step is a [3+2] polar cycloaddition initialized by the nucleophilic attack of N-methylisatin to the carbonyl ylide to yield final spiro-cycloadducts. Spite of the
large activation energy associated to the oxirane cleavage and the low activation energy associated to the subsequent ${ }_{60}$ nucleophilic attack, thermodynamic calculations in toluene indicate that the cycloaddition reaction is the rate-determining step. The cycloaddition presents a low stereoselectivy and a large regio- and chemoselectivity. The more favorable channels are associated to the nucleophilic attack of the isatin ${ }_{65}$ carbonyl oxygen atom to the phenyl substituted carbon atom of the carbonyl ylide.

Analysis of the reactivity indexes of the reagents indicates that while the large electrophilicity of the carbonyl ylide accounts for the nucleophilic attack of isatin to ylide, analysis 70 of the Fukui functions allows to explain the regio- and chemoselectivity experimentally observed. The more favorable electronic interaction takes place between the carbonyl oxygen atom of isatin, the more nucleophilic center, and the phenyl substituted carbon atom of the carbonyl ylide, 75 the more electrophilic one.

Experimental

Syntheses: general methods

Melting points were measured on a Kofler apparatus. NMR spectra were recorded with a Bruker ARX 200P, a Bruker 80 Avance 300P or a Bruker Avance 300 M spectrometer (${ }^{1} \mathrm{H}$ at 200 or 300 MHz , and ${ }^{13} \mathrm{C}$ at 50 or 75 MHz). Assignments of protons and carbons could be made on the basis of bidimensional techniques (NOESY, HMQC and HMBC experiments). Mass spectra (HRMS) were recorded with a ${ }_{85}$ Varian MAT 311 spectrometer, and microanalyses were performed on a Flash EA1112 Thermo Electron. Microwave reactions were performed in open glass containers (Prolabo Synthewave ${ }^{\circledR} 402$) with accurate control of power (maximum power: 300 W) and temperature (infrared detection).
90 Oxiranes were prepared according to described procedures. ${ }^{12}$ Toluene was dried before use. Reactions were performed under dry argon. Petrol refers to petroleum ether (bp $40-60^{\circ} \mathrm{C}$).

General procedure 1. A mixture of epoxide (3 mmol) and ${ }_{95}$ ketone (amount given in the product description) in anhydrous toluene (30 mL) was heated at reflux under Ar. The mixture was then evaporated to dryness and purified as specified in the product description.

General procedure 2. A mixture of epoxide (3 mmol) and 100 ketone (amount given in the product description) was heated in a microwave oven (power, temperature and time are given in the product description). The residue was purified as specified in the product description.

Diastereoisomers of ethyl 5,5-dicyano-4-methyl-2-phenyl-1,3${ }_{105}$ dioxolane-4-carboxylate (3). The general procedure 1 (reflux of 27 h), using 3-phenyloxirane-2,2-dicarbonitrile ($\mathbf{1 a}, 0.51 \mathrm{~g}$) and ethyl pyruvate ($\mathbf{2 a}, 0.70 \mathrm{~g}, 0.66 \mathrm{~mL}, 6.0 \mathrm{mmol}$), gave a $60 / 40$ mixture from which the major diastereoisomer 3a was isolated by column chromatography over silica gel (eluent: petrol/AcOEt $11070: 30)$ in $54 \%(0.46 \mathrm{~g})$ yield as a greenish oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 1.41\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.37-4.47(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2), 7.42-7.57(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}\right): \delta 14.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 19.5\left(\mathrm{CH}_{3}\right), 63.9\left(\mathrm{CH}_{2}\right), 70.3(\mathrm{C} 5)$, $88.8(\mathrm{C} 4), 107.5(\mathrm{C} 2), 110.8(\mathrm{CN}), 112.0(\mathrm{CN}), 127.4$ and 129.0 (C^{\prime} ', C3', C5' and C6'), 131.2 (C4'), 132.7 (C1'), 166.1 ($\mathrm{C}=\mathrm{O}$); HRMS, $m / z: 286.0961$ and 213.0666 found (calcd for ${ }_{5} \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{M}^{+\cdot}$, and $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}$, $\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}\right]^{+\bullet}$, requires: 286.09536 and 213.06640, respectively). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 62.93; H, 4.93; N, 9.79. Found: C, 63.15; H, 5.09 ; N, 9.68%. The minor diastereoisomer 3b was identified by NMR: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.42\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.98(\mathrm{~s}$, $\left.{ }_{10} 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.42\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2), 7.43-$ $7.58(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 13.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 21.5$ $\left(\mathrm{CH}_{3}\right), 63.8\left(\mathrm{CH}_{2}\right), 71.4(\mathrm{C} 5), 88.4(\mathrm{C} 4), 108.5(\mathrm{C} 2), 110.9(\mathrm{CN})$, $111.1(\mathrm{CN}), 127.1$ and 128.8 ($\mathrm{C}^{\prime}, \mathrm{C}^{\prime}$, C^{\prime} ' and C^{\prime}), 131.1 ($\mathrm{C} 4{ }^{\prime}$), 132.9 ($\mathrm{C} 1^{\prime}$), $167.1(\mathrm{C}=\mathrm{O})$. The general procedure $2(285 \mathrm{~W}, 15$ ${ }_{15} \mathrm{~min}$ to reach $180^{\circ} \mathrm{C}$ and 55 min at $180^{\circ} \mathrm{C}$), using 3-phenyloxirane-2,2-dicarbonitrile ($\mathbf{1 a}, 0.51 \mathrm{~g}$) and ethyl pyruvate ($\mathbf{2 a}, 0.46 \mathrm{~g}, 0.44 \mathrm{~mL}, 4.0 \mathrm{mmol}$), gave a $57 / 43$ mixture from which the major diastereoisomer 3a was isolated by column chromatography over silica gel (eluent: petrol/AcOEt 70:30) in ${ }_{20} 52 \% ~(0.45 \mathrm{~g})$ yield.

Diastereoisomers of ethyl 2-(4-chlorophenyl)-5,5-dicyano-4-methyl-1,3-dioxolane-4-carboxylate (4). The general procedure 1 (reflux of 29 h), using 3-(4-chlorophenyl)oxirane-2,2-dicarbonitrile ($\mathbf{1 b}, 0.61 \mathrm{~g}$) and ethyl pyruvate $(\mathbf{2 a}, 0.70 \mathrm{~g}$, ${ }_{25} 0.67 \mathrm{~mL}, 6.0 \mathrm{mmol}$), gave a $64 / 36$ mixture from which the major diastereoisomer $4 \mathbf{a}$ was isolated by column chromatography over silica gel (eluent: petrol/AcOEt 50:50) in $56 \%(0.54 \mathrm{~g})$ yield as a pale yellow glitter: $\mathrm{mp} 86^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.40\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.96(\mathrm{~s}, 3 \mathrm{H}$, ${ }_{30} \mathrm{CH}_{3}$), 4.39-4.47 (m, 2H, CH2), $6.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2), 7.43(\mathrm{~d}, 2 \mathrm{H}$, $J=8.5 \mathrm{~Hz}, \mathrm{H}^{\prime}$ and H5'), $7.50\left(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{H}^{\prime}\right.$ and H6'); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 13.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 19.1\left(\mathrm{CH}_{3}\right), 63.7\left(\mathrm{CH}_{2}\right)$, 70.0 (C5), 88.7 (C4), 106.4 (C2), 110.5 (CN), 111.8 (CN), 128.6 (C2' and C6'), 129.0 (C^{\prime} 'and C^{\prime} '), 131.2 (C^{\prime} '), 137.0
${ }_{35}\left(\mathrm{C}^{\prime}\right), 165.8(\mathrm{C}=\mathrm{O})$; HRMS, $m / z: 320.0557$ and 247.0265 found (calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{35} \mathrm{Cl}, \mathrm{M}^{+}$, and $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{35} \mathrm{Cl}$, $\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}\right]^{+\bullet}$, requires: 320.05638 and 247.02743, respectively). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{4}$: $\mathrm{C}, 56.17 ; \mathrm{H}$, 4.09; N, 8.73. Found: C, 56.35 ; H, 4.17 ; N, 8.63%. The minor ${ }_{40}$ diastereoisomer $\mathbf{4 b}$ was identified by NMR: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.42\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $4.42\left(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2), 7.44(\mathrm{~s}, 4 \mathrm{H}$, $\mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right), 64.0$ $\left(\mathrm{CH}_{2}\right), 71.4(\mathrm{C} 5), 88.5(\mathrm{C} 4), 107.8(\mathrm{C} 2), 110.8(\mathrm{CN}), 111.0$
$45(\mathrm{CN}), 128.5$ and 129.3 ($\mathrm{C}^{\prime}, \mathrm{C}^{\prime}, \mathrm{C}^{\prime}{ }^{\prime}$ and C^{\prime}), 131.5 ($\left.\mathrm{Cl}^{\prime}\right)$, $\left.137.2(\mathrm{C} 4)^{\prime}\right), 167.0(\mathrm{C}=\mathrm{O})$. The general procedure $2(285 \mathrm{~W}$, 15 min to reach $180^{\circ} \mathrm{C}$, and 50 min at $180^{\circ} \mathrm{C}$), using 3-(4-chlorophenyl)oxirane-2,2-dicarbonitrile ($\mathbf{1 b}, 0.61 \mathrm{~g}$) and ethyl pyruvate ($\mathbf{2 a}, 0.46 \mathrm{~g}, 0.44 \mathrm{~mL}, 4.0 \mathrm{mmol}$), gave a $59 / 41$ ${ }_{50}$ mixture from which the major diastereoisomer $\mathbf{4 a}$ was isolated by column chromatography over silica gel (eluent: petrol/AcOEt 50:50) in $50 \%(0.48 \mathrm{~g})$ yield.
Diastereoisomers of ethyl 5,5-dicyano-2-(4-methoxyphenyl)-4-methyl-1,3-dioxolane-4-carboxylate (5).
${ }_{55}$ The general procedure 1 (reflux of 14 h), using 3-(4-methoxyphenyl)oxirane-2,2-dicarbonitrile ($\mathbf{1 c}, 0.60 \mathrm{~g}$) and ethyl pyruvate ($\mathbf{2 a}, 0.69 \mathrm{~g}, 0.67 \mathrm{~mL}, 6.0 \mathrm{mmol}$), gave a $59 / 41$
mixture from which the major diastereoisomer 5a was isolated by column chromatography over silica gel (eluent: ${ }_{60}$ petrol/AcOEt 70:30) in $53 \%(0.50 \mathrm{~g})$ yield as a yellowish oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.40\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.94(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.37-4.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.24(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{H}_{2}\right), 6.94(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.48(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 13.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 19.4\left(\mathrm{CH}_{3}\right)$, $55.5\left(\mathrm{OCH}_{3}\right)$, $6563.8\left(\mathrm{CH}_{2}\right), 70.2(\mathrm{C} 5), 88.6(\mathrm{C} 4), 107.6(\mathrm{C} 2), 111.0(\mathrm{CN})$, 112.1 (CN), 114.3 (C3' and C5'), 129.2 (C2' and C6'), 124.7 (C_{1}), 161.9 (C 4 '), 166.2 (C=O); HRMS, $m / z: 316.1064$ found (calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{M}^{+\cdot}$ requires: 316.10592). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, $60.75 ; \mathrm{H}, 5.10 ; \mathrm{N}, 8.86$. Found: C, 60.44 ; ${ }_{70} \mathrm{H}, 5.06 ; \mathrm{N}, 8.53 \%$. The minor diastereoisomer $\mathbf{5 b}$ was identified by NMR: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.41(\mathrm{t}, 3 \mathrm{H}, J=7.1$ $\mathrm{Hz}, \mathrm{CH}_{3}$), $1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.42(\mathrm{t}, 2 \mathrm{H}$, $\left.J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2), 6.95(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.43$ $(\mathrm{d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 21.6$ $75\left(\mathrm{CH}_{3}\right), 55.5\left(\mathrm{OCH}_{3}\right), 63.8\left(\mathrm{CH}_{2}\right), 71.3(\mathrm{C} 5), 88.2(\mathrm{C} 4), 108.7$ $(\mathrm{C} 2), 111.0(\mathrm{CN}), 111.3(\mathrm{CN}), 114.3\left(\mathrm{C}^{\prime}\right.$ and $\left.\mathrm{C}^{\prime}\right)$), $128.9\left(\mathrm{C}^{\prime}\right.$ and C^{\prime}), 124.8 (C^{\prime}), 161.8 (C^{\prime}), 167.2 ($\mathrm{C}=\mathrm{O}$). The general procedure $2\left(285 \mathrm{~W}, 7 \mathrm{~min}\right.$ to reach $180^{\circ} \mathrm{C}$ and 30 min at $180^{\circ} \mathrm{C}$), using 3-(4-methoxyphenyl)oxirane-2,2-dicarbonitrile ${ }_{80}(\mathbf{1 c}, 0.60 \mathrm{~g})$ and ethyl pyruvate $(0.35 \mathrm{~g}, 0.33 \mathrm{~mL}, 3.0 \mathrm{mmol})$, gave a $41 / 59$ mixture from which the minor diastereoisomer 5a was isolated by column chromatography over silica gel (eluent: petrol/AcOEt 70:30) in 38% (0.36 g) yield.
Diastereoisomers of ethyl 5,5-dicyano-2,4-diphenyl-1,3${ }_{85}$ dioxolane-4-carboxylate (6). The general procedure 1 (reflux of 80 h), using 3-phenyloxirane-2,2-dicarbonitrile ($\mathbf{1 a}, 0.51 \mathrm{~g}$) and ethyl phenylglyoxylate ($\mathbf{2 b}, 0.53 \mathrm{~g}, 0.48 \mathrm{~mL}, 3.0 \mathrm{mmol}$), gave a $54 / 46$ mixture. The major diastereoisomer 6 a was identified by NMR: ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 1.32(\mathrm{t}, 3 \mathrm{H}, J=7.1$
${ }_{90} \mathrm{~Hz}, \mathrm{CH}_{3}$), $4.42\left(\mathrm{q}, 2 \mathrm{H}, J=7.0, \mathrm{CH}_{2}\right), 6.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2), 7.54-$ $7.83(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 14.0\left(\mathrm{CH}_{3}\right), 64.9$ $\left(\mathrm{CH}_{2}\right), 72.7$ (C5), 92.1 (C4), 108.8 (C2), 111.7 (CN), 113.1 (CN), 126.2 ($\mathrm{C}^{\prime \prime}$ " and C6"), 128.3, 129.8 and 130.2 (C2', C3', C5', C6', C3" and C5"), 131.6 (C4"), 132.0 (C1'), 132.0 (C1"), ${ }_{95} 134.1$ (C 4 '), $166.3(\mathrm{C}=\mathrm{O})$. The minor diastereoisomer $\mathbf{6 b}$ was identified by NMR: ${ }^{1} \mathrm{H}$ NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$: $\delta 1.18(\mathrm{t}, 3 \mathrm{H}, J=7.1$ $\mathrm{Hz}, \mathrm{CH}_{3}$), 4.27 (q, $2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}$), $6.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2)$, 7.54-7.83 (m, 10H); ${ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 13.9\left(\mathrm{CH}_{3}\right), 64.3$ $\left(\mathrm{CH}_{2}\right), 73.7$ (C5), 91.2 (C4), 108.4 (C2), $111.4(\mathrm{CN}), 112.0$ 100 (CN), 126.6 (C2" and C6"), 127.9, 129.5 and 130.0 (C2', C3', C5', C6', C3" and C5"), 131.5 (C4"), 131.6 (C4'), 132.1 (C1'), 134.2 (C 1 "), 166.8 ($\mathrm{C}=\mathrm{O}$). HRMS, $m / z: 275.0819$ found (calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}$, $\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}\right]^{+}$requires: 275.0820) (mixture of 6a and 6b). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 68.96; H, 4.63; N, 105 8.04. Found: C, $69.21 ;$ H, $4.62 ;$ N, 8.41% (mixture of $\mathbf{6 a}$ and 6b).

Diastereoisomers of ethyl 2-(4-chlorophenyl)-5,5-dicyano-4-phenyl-1,3-dioxolane-4-carboxylate (7). The general procedure 1 (reflux of 72 h), using 3-(4-chlorophenyl)oxirane${ }_{110}$ 2,2-dicarbonitrile ($\mathbf{1 b}, 0.61 \mathrm{~g}$) and ethyl phenylglyoxylate ($\mathbf{2 b}$, $0.53 \mathrm{~g}, 0.48 \mathrm{~mL}, 3.0 \mathrm{mmol}$), gave a $60 / 40$ mixture from which the major diastereoisomer 7a was isolated by column chromatography over silica gel (eluent: heptane/ $\mathrm{Et}_{2} \mathrm{O} 70: 30$) followed by crystallization from petrol/Et $\mathrm{t}_{2} \mathrm{O} 4: 1$ in 52% (0.60
g) yield as a white powder: $\mathrm{mp} 109{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$: $\delta 1.32\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.42\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, 6.75 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 2$), 7.61-7.64 (m, 5H), 7.73-7.81 (m, 4H); ${ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 14.1\left(\mathrm{CH}_{3}\right), 65.0\left(\mathrm{CH}_{2}\right), 72.7(\mathrm{C} 5), 92.2$ $5(\mathrm{C} 4), 108.0(\mathrm{C} 2), 111.6(\mathrm{CN}), 113.1(\mathrm{CN}), 126.3(\mathrm{C} 2 "$ and C6"), 129.9, 130.1 and 130.3 (C2', C3', C5', C6', C3" and C5"), 131.8 (C4"), 132.0 ($\left.\mathrm{C1}^{\prime}\right)$, 133.2 ($\left.\mathrm{C} 1{ }^{\prime \prime}\right)$, 137.6 ($\left.\mathrm{C}^{\prime}\right)$), 166.3 ($\mathrm{C}=\mathrm{O}$); HRMS, $m / z: 309.0435$ found (calcd for $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{35} \mathrm{Cl}$, [M-CO 2 Et$]^{+\cdot}$ requires: 309.0431). Anal. ${ }_{10}$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{4}$: C, 62.75; H, 3.95; N, 7.32. Found: $\mathrm{C}, 62.68 ; \mathrm{H}, 4.02 ; \mathrm{N}, 7.23 \%$. The minor diastereoisomer 7b was isolated similarly in $18 \%(0.21 \mathrm{~g})$ yield as a white powder: mp $78{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 1.20(\mathrm{t}, 3 \mathrm{H}, J=7.1$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 4.28\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2)$, ${ }_{15} 7.57-7.62(\mathrm{~m}, 5 \mathrm{H}), 7.75\left(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}^{\prime}\right.$ and $\left.\mathrm{H}^{\prime}\right)$, 7.80-7.84 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 13.9\left(\mathrm{CH}_{3}\right), 64.6$ $\left(\mathrm{CH}_{2}\right), 73.8(\mathrm{C} 5), 91.4(\mathrm{C} 4), 107.8(\mathrm{C} 2), 111.4(\mathrm{CN}), 111.9$ (CN), 126.8 ($\mathrm{C}^{\prime \prime}$ " and $\mathrm{C}^{\prime \prime}$), 129.8, 129.9 and 130.2 (C2', C3', C5', C6', C3" and C5"), 131.7 (C4"), 132.1 (C1'), 133.3 (C1"), 20137.2 (C4'), 166.8 (C=O).

Diastereoisomers of ethyl 5,5-dicyano-2-(4-methoxyphenyl)-4-phenyl-1,3-dioxolane-4-carboxylate (8). The general procedure 1 (reflux of 60 h), using 3-(4-methoxyphenyl)oxirane-2,2-dicarbonitrile ($\mathbf{1 c}, 0.60 \mathrm{~g}$) and 25 ethyl phenylglyoxylate ($\mathbf{2 b}, 0.53 \mathrm{~g}, 0.48 \mathrm{~mL}, 3.0 \mathrm{mmol}$), gave a 38/62 mixture from which the minor diastereoisomer 8a was identified by NMR: ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 1.31(\mathrm{t}, 3 \mathrm{H}, J=7.1$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.42(\mathrm{qd}, 2 \mathrm{H}, J=7.1$ and 1.1 $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 6.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2), 7.10(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{l}$ and $\left.{ }_{30} \mathrm{H} 5 '\right), \quad 7.60-7.68(\mathrm{~m}, 5 \mathrm{H}), 7.77-7.81(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 14.1\left(\mathrm{CH}_{3}\right), 55.9\left(\mathrm{OCH}_{3}\right), 64.9\left(\mathrm{CH}_{2}\right), 72.7$ (C5), 92.0 (C4), 109.1 (C2), 111.9 (CN), 113.4 (CN), 115.2 (C3' and C5'), 126.0 (C1'), 126.3 (C2" and C6"), 130.2 and 130.3 (C2', C6', C3" and C5"), 131.7 (C4"), 132.3 (C1"), ${ }_{35} 163.0$ (C 4 '), 166.5 ($\mathrm{C}=\mathrm{O}$). The major diastereoisomer $\mathbf{8 b}$ was isolated by column chromatography over silica gel (eluent: heptane $/ \mathrm{Et}_{2} \mathrm{O}$ 70:30) followed by crystallization from petrol $/ \mathrm{Et}_{2} \mathrm{O} 4: 1$ in $48 \%(0.54 \mathrm{~g})$ yield as a pale green powder: $\mathrm{mp} 95{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 1.24(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}$, ${ }_{40} \mathrm{CH}_{3}$), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.33(\mathrm{qd}, 2 \mathrm{H}, J=7.1$ and 2.3 Hz , $\left.\mathrm{CH}_{2}\right), 6.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2), 7.09(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.59-7.68(\mathrm{~m}$, $5 \mathrm{H}), 7.77-7.81(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 14.0\left(\mathrm{CH}_{3}\right)$, $55.9\left(\mathrm{OCH}_{3}\right), 64.5\left(\mathrm{CH}_{2}\right), 73.8(\mathrm{C} 5), 91.2(\mathrm{C} 4), 108.9(\mathrm{C} 2)$, $111.6(\mathrm{CN}), 112.3(\mathrm{CN}), 115.0\left(\mathrm{C}^{\prime}\right.$ and C^{\prime} '), 130.0 and 130.2
45 (C2', C6', C3" and C5"), 131.6 (C4"), 132.5 (C1"), 162.8 (C^{\prime}), $167.1(\mathrm{C}=\mathrm{O})$; HRMS, $m / z: 378.1212$ found (calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$, $\mathrm{M}^{+\cdot}$ requires: 378.1216). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 66.66; H, 4.79; N, 7.40. Found: C, 66.38; H, 4.73; N, 7.25\%.
${ }_{50}$ Diastereoisomers of 5,5-dicyano-2-phenylspiro[1,3-dioxolane-4,3'-indolin-2'-one] (10). The general procedure 1 (reflux of 32 h), using 3-phenyloxirane-2,2-dicarbonitrile (1a, $0.51 \mathrm{~g})$ and isatin ($9 \mathbf{a}, 0.44 \mathrm{~g}, 3.0 \mathrm{mmol}$), gave a $57 / 43$ mixture from which the major diastereoisomer 10a was 55 isolated by column chromatography over silica gel (eluent: petrol/AcOEt $60: 40$) in 42% yield as a white powder: mp $160^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 6.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2), 7.15(\mathrm{~d}, 1 \mathrm{H}$,
$J=7.9 \mathrm{~Hz}, \mathrm{H} 7$ '), 7.25 (t, 1H, $\left.J=7.6 \mathrm{~Hz}, \mathrm{H} 5{ }^{\prime}\right), 7.55-7.59$ (m, 4H, H6' and Ph), 7.84-7.90 (m, 3H, H4' and Ph), 10.2 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$); ${ }_{60}{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 72.0(\mathrm{C} 5), 86.5(\mathrm{C} 4), 109.5(\mathrm{C} 2)$, 111.5 (CN), 111.6 (CN), 112.3 (C7'), 122.2 (C8'), 124.0 (C5'), 127.7 (C4'), 129.0 ($\mathrm{C}^{\prime \prime}$ " and C 5 "), 129.5 ($\mathrm{C}^{\prime \prime}$ " and $\mathrm{C} 6 "$), 132.0 (C4"), 133.9 (C6'), 134.4 (C1"), 143.8 (C9'), 170.6 (C=O); HRMS, m/z: 317.0815 found (calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}, \mathrm{M}^{+\cdot}$ ${ }_{65}$ requires: 317.08004). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 68.14; H, 3.49; N, 13.24. Found: C, 68.38; H, 3.53; N, 12.96\%. The minor diastereoisomer 10b was identified by NMR: ${ }^{1} \mathrm{H}$ NMR (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 7.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2), 7.15\left(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{H} 7{ }^{\prime}\right)$, 7.29 (t, 1H, J=7.6 Hz, H5'), 7.55-7.59 (m, 4H, H6' and Ph), ${ }_{70} 7.75-7.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\prime}\right.$ 'and Ph$), 10.3(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 70.2(\mathrm{C} 5), 88.0(\mathrm{C} 4), 109.3(\mathrm{C} 2), 112.0(\mathrm{CN})$, 112.3 (C7'), 113.0 (CN), 119.1 (C8'), 124.2 (C5'), 127.8 (C4'), 128.3 (C3" and C5"), 129.8 (C2" and C6"), 132.1 (C4"), 133.9 (C^{\prime}), 134.0 ($\mathrm{C} 1^{\prime \prime}$), 144.4 (C^{\prime}), 172.5 ($\mathrm{C}=\mathrm{O}$). The general ${ }_{75}$ procedure $2\left(285 \mathrm{~W}, 15 \mathrm{~min}\right.$ to reach $180^{\circ} \mathrm{C}$ and 60 min at $180^{\circ} \mathrm{C}$), using 3-phenyloxirane-2,2-dicarbonitrile ($1 \mathrm{a}, 0.51 \mathrm{~g}$) and isatin ($9 \mathrm{a}, 0.29 \mathrm{~g}, 2.0 \mathrm{mmol}$), gave a $55 / 45$ mixture.

Diastereoisomers of 2-(4-chlorophenyl)-5,5-dicyanospiro[1,3-dioxolane-4,3'-indolin-2'-one] (11). The ${ }_{80}$ general procedure 1 (reflux of 24 h), using 3-(4-chlorophenyl)oxirane-2,2-dicarbonitrile ($\mathbf{1 b}, 0.61 \mathrm{~g}$) and isatin ($9 \mathbf{a}, 0.44 \mathrm{~g}, 3.0 \mathrm{mmol}$), gave a $75 / 25$ mixture from which the major diastereoisomer 11a was isolated by column chromatography over silica gel (eluent: petrol/AcOEt 60:40) ${ }_{85}$ in $66 \%(0.70 \mathrm{~g})$ yield as a white powder: $\mathrm{mp} 198^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 6.97$ ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 2\right), 7.15$ (d, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H} 7$ '), $7.25\left(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 7.54(\mathrm{td}, 1 \mathrm{H}, J=7.8$ and 1.1 Hz , H6'), 7.58 (d, 2H, $J=8.5 \mathrm{~Hz}, \mathrm{H} 3 "$ and H5"), 7.83 (d, 1H, $J=7.6$ $\mathrm{Hz}, \mathrm{H} 4$ '), 7.91 (d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H} 2^{\prime \prime}$ and H6"), 10.2 (s, 1 H , $\left.{ }_{90} \mathrm{NH}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 72.0$ (C5), 86.5 (C4), 108.6 (C2), 111.3 (CN), 111.4 (CN), 112.3 (C7'), 121.8 (C8'), 124.0 (C5'), 127.7 (C^{\prime}), 129.7 ($\mathrm{C}^{\prime \prime}$ " and C5"), 130.8 ($\mathrm{C}^{\prime \prime}$ " and C6"), 132.8 (C1"), 133.9 (C6'), 137.5 (C4"), 143.8 (C9'), 170.7 ($\mathrm{C}=\mathrm{O}$); HRMS, m / z : 351.0405 found (calcd for ${ }_{95} \mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{35} \mathrm{Cl}, \mathrm{M}^{+\bullet}$ requires: 351.04107). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{3}$: C, 61.46; H, 2.87; N, 11.95. Found: C, 61.33; $\mathrm{H}, 2.86 ; \mathrm{N}, 11.70 \%$. The minor diastereoisomer 11b was identified by NMR: ${ }^{1} \mathrm{H}$ NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 7.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2)$, 7.16 (d, 1H, J=8.0 Hz, H7'), 7.29 (t, 1H, $J=7.1 \mathrm{~Hz}, \mathrm{H}^{\prime}$ '), $7.56-$ $1007.64\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\prime}\right.$ ', H3" and H5"), 7.79-7.85 (m, 3H, H4', H2" and $\mathrm{H} 6 "), 10.3(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 71.1$ (C5), 88.0 (C4), 108.4 (C2), $112.0(\mathrm{CN}), 112.4$ (C7'), 112.9 (CN), 119.1 (C8'), 124.2 (C5'), 127.8 (C4'), 130.0 and 130.1 (C2", C3", C5" and C6"), 132.9 (C1"), 134.5 (C6'), 137.5 105 (C4"), $144.4\left(\mathrm{C}^{\prime}\right), 172.3(\mathrm{C}=\mathrm{O})$. The general procedure 2 ($285 \mathrm{~W}, 15 \mathrm{~min}$ to reach $180^{\circ} \mathrm{C}$ and 50 min at $180^{\circ} \mathrm{C}$), using 3-(4-chlorophenyl)oxirane-2,2-dicarbonitrile ($\mathbf{1 b}, 0.61 \mathrm{~g}$) and isatin ($9 \mathbf{a}, 0.29 \mathrm{~g}, 2.0 \mathrm{mmol}$), gave a $54 / 46$ mixture.

Diastereoisomers of 5,5-dicyano-2-(4110 methoxyphenyl)spiro[1,3-dioxolane-4,3'-indolin-2'-one]

(12). The general procedure 1 (reflux of 14 h), using 3-(4-methoxyphenyl)oxirane-2,2-dicarbonitrile ($\mathbf{1 c}, 0.60 \mathrm{~g}$) and isatin $(9 \mathrm{a}, 0.44 \mathrm{~g}, 3.0 \mathrm{mmol})$, gave a $55 / 45$ mixture from which the major diastereoisomer 12a was isolated by column
chromatography over silica gel (eluent: petrol/AcOEt 70:30) in $49 \%(0.51 \mathrm{~g})$ yield as a white powder: $\mathrm{mp} 188^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2), 7.06(\mathrm{~d}$, $2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H} 3 "$ and H5"), 7.15 (d, $\left.1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H} 7{ }^{\prime}\right)$, ${ }_{5} 7.25$ (t, 1H, $\left.J=7.0 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 7.54(\mathrm{t}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{H} 6 '), 7.83$ (m, 3H, H4', H2" and H6"), 10.2 (s, 1H, NH); ${ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 55.7\left(\mathrm{OCH}_{3}\right), 71.9(\mathrm{C} 5), 86.3(\mathrm{C} 4), 109.7(\mathrm{C} 2)$, $111.6(\mathrm{CN}), 111.8(\mathrm{CN}), 112.3\left(\mathrm{C}^{\prime}\right), 114.9\left(\mathrm{C}^{\prime \prime}\right.$ and $\left.\mathrm{C} 5{ }^{\prime \prime}\right)$, 122.3 (C8'), 124.0 (C5'), 125.7 (C1"), 127.7 (C4'), 130.8 (C2" 10 and C6"), 133.8 (C6'), 143.8 (C9'), 162.9 (C4"), 170.9 (C=O); HRMS, $m / z: 347.0913$ found (calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}, \mathrm{M}^{+\cdot}$ requires: 347.09061). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 65.70; H, 3.77; N, 12.10. Found: C, 65.35; H, 3.75; N, 11.78\%. The minor diastereoisomer 12b was identified by NMR: ${ }^{1} \mathrm{H}$ NMR ${ }_{15}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.04-7.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 2, \mathrm{H} 7{ }^{\prime}\right.$, H3" and H5"), 7.55-7.88 (m, 5H, H4', H5', H6', H2" and H6"); ${ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 55.6\left(\mathrm{OCH}_{3}\right), 69.9(\mathrm{C} 5), 87.6(\mathrm{C} 4)$, 109.5 (C2), 112.1 (CN), 112.3 (C7'), 112.9 (CN), 115.1 (C3" and C5"), 118.9 (C8'), 124.2 (C5'), 125.5 (C1"), 127.8 (C4'), 20130.1 (C2" and C6"), 134.1 (C6'), 144.2 (C9'), 162.7 (C4"), $172.4(\mathrm{C}=\mathrm{O})$. The general procedure $2(285 \mathrm{~W}, 5 \mathrm{~min}$ to reach $180^{\circ} \mathrm{C}$ and 30 min at $180^{\circ} \mathrm{C}$), 3-(4-methoxyphenyl)oxirane-2,2-dicarbonitrile ($\mathbf{1 c}, 0.60 \mathrm{~g}$) and isatin ($9 \mathrm{a}, 0.29 \mathrm{~g}, 2.0$ mmol), gave a $35 / 65$ mixture.
${ }_{25}$ Diastereoisomers of 5,5-dicyano-1'-methyl-2-phenylspiro[1,3-dioxolane-4,3'-indolin-2'-one] (13). The general procedure 1 (reflux of 25 h), using 3 -phenyloxirane-2,2-dicarbonitrile ($\mathbf{1 a}, 0.51 \mathrm{~g}$) and N-methylisatin ($\mathbf{9 b}, 0.32 \mathrm{~g}$, 2.0 mmol), gave a $73 / 27$ mixture from which the major ${ }_{30}$ diastereoisomer 13a was isolated by fractional crystallization from petrol $/ \mathrm{Et}_{2} \mathrm{O} 5: 1$ in $72 \%(0.48 \mathrm{~g})$ yield as a beige powder: $\mathrm{mp} 130^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.96(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H} 2), 7.24$ (d, 1H, $\left.J=7.9 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 7.30$ (td, $1 \mathrm{H}, J=7.7$ and $\left.0.79 \mathrm{~Hz}, \mathrm{H} 5^{\prime}\right), 7.52-7.59(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.63(\mathrm{td}, 1 \mathrm{H}, J=7.9$ and $\left.{ }_{35} 1.1 \mathrm{~Hz}, \mathrm{H} 6 '\right), ~ 7.87-7.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 4{ }^{\prime}, \mathrm{Ph}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 27.3\left(\mathrm{CH}_{3}\right), 72.0(\mathrm{C} 5), 86.2(\mathrm{C} 4), 109.6(\mathrm{C} 2)$, 111.0 (C7'), 111.6 (CN), 111.8 (CN), 122.0 (C8'), 124.4 (C5'), 127.3 (C4'), 129.1 (C3" and C5"), 129.6 (C2" and C6"), 132.2 (C4"), 134.0 (C6'), 134.0 (C1"), 145.8 (C9'), 169.2 (C=O); ${ }_{40}$ HRMS, $m / z: 331.0962$ found (calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}, \mathrm{M}^{+}$ requires: 331.09569). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 68.88; H, 3.95; N, 12.68. Found: C, 68.69; H, 4.01 ; N, 12.34%. The minor diastereoisomer 13b was identified by NMR: ${ }^{1} \mathrm{H}$ NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2), 7.25(\mathrm{~d}$, $\left.{ }_{45} 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 7.33\left(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{H} 5^{\prime}\right), 7.54-7.89(\mathrm{~m}$, $7 \mathrm{H}, \mathrm{Ph}, \mathrm{H} 6{ }^{\prime}$ and $\left.\mathrm{H} 4{ }^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 27.0\left(\mathrm{CH}_{3}\right)$, 72.1 (C5), 86.3 (C4), 109.5 (C2), 111.2 (C7'), 112.1 (CN), 113.2 (CN), 121.9 (C8'), 124.8 (C5'), 127.6 (C4'), 128.5 (C3" and C 5 "), 130.0 (C2" and C6"), 132.3 (C4"), 134.1 (C1"), ${ }_{50} 134.6$ (C^{\prime}), 146.4 (C^{\prime}), 171.0 ($\mathrm{C}=\mathrm{O}$).
Diastereoisomers of 2-(4-chlorophenyl)-5,5-dicyano-1'-methylspiro[1,3-dioxolane-4,3'-indolin-2'-one] (14). The general procedure 1 (reflux of 26 h), using 3-(4-chlorophenyl)oxirane-2,2-dicarbonitrile ($\mathbf{1 b}, 0.61 \mathrm{~g}$) and N ${ }_{55}$ methylisatin ($9 \mathbf{b}, 0.32 \mathrm{~g}, 2.0 \mathrm{mmol}$), gave a $74 / 26$ mixture from which the major diastereoisomer 14a was isolated by fractional crystallization from petrol/ $\mathrm{Et}_{2} \mathrm{O} 5: 1$ in $73 \%(0.53 \mathrm{~g})$
yield as a beige powder: $\mathrm{mp} 146{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta$ 3.33 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 6.98 (s, $1 \mathrm{H}, \mathrm{H} 2$), $7.25(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}$, ${ }_{60} \mathrm{H}^{\prime}$), 7.30 (td, $1 \mathrm{H}, J=7.7$ and $0.74 \mathrm{~Hz}, \mathrm{H} 5$ '), 7.60 (d, 2H, $J=8.5$ $\mathrm{Hz}, \mathrm{H} 3 "$ and $\mathrm{H} 5 "), 7.63\left(\mathrm{td}, 1 \mathrm{H}, J=7.9\right.$ and $\left.1.1 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 7.86$ (d, $\left.1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{H} 4{ }^{\prime}\right), 7.90\left(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H} 2{ }^{\prime \prime}\right.$ and H6"); ${ }^{13} \mathrm{C}$ NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 27.3\left(\mathrm{CH}_{3}\right), 72.1$ (C5), 86.5 (C4), 108.7 (C2), 111.1 (C7'), 111.4 (CN), 111.7 (CN), 121.7 (C8'), 65124.4 (C5'), 127.3 (C4'), 129.9 (C3" and C5"), 130.9 (C2" and C6"), 133.0 (C1"), 134.1 (C6'), 137.7 (C4"), 145.9 (C9'), 169.4 (C=O); HRMS, m/z: 365.0559 found (calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{35} \mathrm{Cl}, \mathrm{M}^{+\cdot}$ requires: 365.05672). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{3}$: C, 62.39; H, 3.31; N, 11.49. Found: C, 62.02; ${ }_{70} \mathrm{H}, 3.25 ; \mathrm{N}, 11.17 \%$. The minor diastereoisomer 14b was identified by NMR: ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 3.34$ (s, 3 H , CH_{3}), 7.14 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 2$), 7.25 (d, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H} 7$ '), 7.33 (td, $1 \mathrm{H}, J=7.7$ and $0.66 \mathrm{~Hz}, \mathrm{H} 5$ '), 7.61 (d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{H} 3 "$ and H5"), 7.67 (td, $1 \mathrm{H}, J=7.8$ and $1.2 \mathrm{~Hz}, \mathrm{H}^{\prime}$), 7.80 (d, $2 \mathrm{H}, J=8.5$ ${ }_{75} \mathrm{~Hz}, \mathrm{H} 2 "$ and H6"), $7.85(\mathrm{dd}, 1 \mathrm{H}, J=7.6$ and $0.45 \mathrm{~Hz}, \mathrm{H} 4 \mathrm{\prime}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 27.0\left(\mathrm{CH}_{3}\right), 70.5(\mathrm{C} 5), 88.0(\mathrm{C} 4), 108.5$ (C2), 111.2 (C7'), 111.9 (CN), $113.0(\mathrm{CN}), 118.8$ (C8'), 124.7 (C5'), 127.5 (C4'), 130.1 and 130.2 (C2", C3", C5" and C6"), 133.0 (C1"), 134.6 (C6'), 137.7 (C4"), 146.4 (C9'), 171.0 $80(\mathrm{C}=\mathrm{O})$.

Diastereoisomers of 5,5-dicyano-2-(4-methoxyphenyl)-1'-

 methylspiro[1,3-dioxolane-4,3'-indolin-2'-one] (15). The general procedure 1 (reflux of 20 h), using 3-(4-methoxyphenyl)oxirane-2,2-dicarbonitrile ($\mathbf{1 c}, 0.60 \mathrm{~g}$) and N ${ }_{85}$ methylisatin ($9 \mathbf{b}, 0.32 \mathrm{~g}, 2.0 \mathrm{mmol}$), gave a $63 / 37$ mixture from which the major diastereoisomer 15a was identified by NMR: ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.88(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2), 7.07(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{H} 3 "$ and H5"), 7.21-7.31 (m, 2H, H5' and H7'), 7.59-7.71 (m, 2H, H4' 90 and H6'), $7.82\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H} 2{ }^{\prime \prime}\right.$ and H6"); ${ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 27.2\left(\mathrm{NCH}_{3}\right), 55.8\left(\mathrm{OCH}_{3}\right), 71.2(\mathrm{C} 5), 85.9$ (C4), 109.7 (C2), 111.0 (C7'), 111.6 (CN), 111.9 (CN), 115.0 (C3" and C5"), 122.1 (C8'), 124.3 (C5'), 125.8 (C1"), 127.3 (C4'), 130.9 (C2" and C6"), 133.9 (C6'), 145.8 (C9'), 163.0 95 (C4"), $169.5(\mathrm{C}=\mathrm{O})$. The minor diastereoisomer 15b was isolated by fractional crystallization from petrol $/ \mathrm{Et}_{2} \mathrm{O} 5: 1$ in $30 \%(0.22 \mathrm{~g})$ yield as a white powder: $\mathrm{mp} 163^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.08$ (s, 1H, H2), 7.09 (d, 2H, J=8.6 Hz, H3" and H5"), 7.25 (d, 1 H , $\left.{ }_{100} J=7.9 \mathrm{~Hz}, \mathrm{H} 7 '\right), 7.33\left(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{H} 5^{\prime}\right), 7.66(\mathrm{t}, 1 \mathrm{H}, J=7.9$ $\left.\mathrm{Hz}, \mathrm{H}^{\prime}\right), 7.69$ (d, 2H, J=8.6 Hz, H2" and H6"), 7.85 (d, 1 H , $J=7.4 \mathrm{~Hz}, \mathrm{H} 4 ') ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 27.0\left(\mathrm{NCH}_{3}\right), 55.9$ $\left(\mathrm{OCH}_{3}\right), 70.4(\mathrm{C} 5), 87.8(\mathrm{C} 4), 109.7(\mathrm{C} 2), 111.1\left(\mathrm{C}^{\prime}\right), 112.1$ (CN), $113.3(\mathrm{CN}), 115.2$ (C3" and C5"), 119.1 (C8'), 124.7 ${ }_{105}$ (C5'), 125.8 (C1"), 127.5 (C4'), 130.2 (C2" and C6"), 134.5 (C6'), 146.3 (C9'), 163.1 (C4"), 171.2 (C=O); HRMS, m/z: 281.1057 found (calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}$, $\quad\left[\mathrm{M}-\mathrm{CO}(\mathrm{CN})_{2}\right]^{+}$ requires: 281.10519). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 66.48; H, 4.18; N, 11.63. Found: C, 66.22; H, 4.10; N, 11.24\%.${ }_{110}$ Diastereoisomers of $\mathbf{5 , 5}$-dicyano-2-phenylspiro[1,3-dioxolane-4,3'-(5'-chloroindolin-2'-one)] (16). The general procedure 1 (reflux of 28 h), using 3-phenyloxirane-2,2dicarbonitrile ($\mathbf{1 a}, 0.51 \mathrm{~g}$) and 5-chloroisatin ($9 \mathbf{c}, 0.36 \mathrm{~g}, 2.0$ mmol), gave a $59 / 41$ mixture from which the major
diastereoisomer 16a was isolated by fractional crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $52 \%(0.37 \mathrm{~g})$ yield as a beige powder: mp $234{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 7.03$ (s, 1H, H2), 7.18 (d, 1 H , $J=8.4 \mathrm{~Hz}, \mathrm{H} 7 '), 7.53-7.58$ (m, 4H, H6', Ph), 7.86-7.94 (m, 3H, ${ }_{5} \mathrm{H} 4$ ', Ph), 10.3 (s, $\left.1 \mathrm{H}, \mathrm{NH}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 72.0$ (C5), 86.3 (C4), 109.6 (C2), 111.3 (CN), 111.6 (CN), 113.8 (C7'), 124.2 (C8'), 127.8 (C4'), 128.7 (C5'), 129.0 (C3" and C5"), 129.6 (C2" and C6"), 132.1 (C4"), 133.7 (C6'), 133.7 (C1"), 142.7 (C9'), 170.4 (C=O); HRMS, m/z: 351.0426 found 10 (calcd for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{35} \mathrm{Cl}, \mathrm{M}^{+\cdot}$ requires: 351.04107). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{3}$: C, 61.46; H, 2.87; N, 11.95. Found: C, $61.31 ; \mathrm{H}, 2.85 ; \mathrm{N}, 11.82 \%$. The minor diastereoisomer 16b was isolated similarly in $28 \%(0.20 \mathrm{~g})$ yield as yellow needles: mp $154^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 7.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2)$, 157.19 (d, 1H, J=8.4 Hz, H7'), 7.54-7.60 (m, 4H, H6', Ph), 7.787.85 (m, 3H, H4', Ph), 10.4 (s, 1H, NH); ${ }^{13} \mathrm{C}$ NMR (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 70.3$ (C5), 87.7 (C4), 109.6 (C2), 111.9 (CN), 112.9 (CN), 113.9 (C7'), 121.2 (C8'), 127.9 (C4'), 128.5 (C3" and C5"), 129.0 (C5'), 129.8 (C2" and C6"), 132.2 (C4"), 20133.7 (C6'), 134.3 (C1"), 143.3 (C9'), 172.2 (C=O). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{3}: \mathrm{C}, 61.46 ; \mathrm{H}, 2.87 ; \mathrm{N}, 11.95$. Found: C, 61.75; H, 2.94; N, 11.92\%.

Diastereoisomers of 2-(4-chlorophenyl)-5,5-dicyanospiro[1,3-dioxolane-4,3'-(5'-chloroindolin-2'-one)]

25 (17). The general procedure 1 (reflux of 24 h), using 3-(4-chlorophenyl)oxirane-2,2-dicarbonitrile ($\mathbf{1 b}, 0.61 \mathrm{~g}$) and 5chloroisatin ($9 \mathbf{c}, 0.36 \mathrm{~g}, 2.0 \mathrm{mmol}$), gave a $71 / 29$ mixture from which the major diastereoisomer $\mathbf{1 7 a}$ was isolated by fractional crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in 59% (0.46 g) yield as ${ }_{30}$ a beige powder: $\mathrm{mp} 259^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$: $\delta 7.05$ (s, $1 \mathrm{H}, \mathrm{H} 2), 7.18$ (d, 1H, J=8.4 Hz, H7'), 7.55-7.61 (m, 3H, H3", H5" and H6'), 7.87-7.91 (m, 3H, H2", H6" and H4'), 10.3 (s, $1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 72.0$ (C5), 86.3 (C4), 108.7 (C2), 111.1 (CN), 111.4 (CN), 113.8 (C7'), 123.9 (C8'), 127.8 35 (C4'), 128.7 (C5'), 129.8 (C3" and C5"), 130.8 (C2" and C6"), 132.6 (C1"), 133.8 (C6'), 137.7 (C4"), 142.8 (C9'), 170.5 ($\mathrm{C}=\mathrm{O}$); HRMS, m/z: 385.0029 found (calcd for $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{35} \mathrm{Cl}_{2}, \mathrm{M}^{+\cdot}$ requires: 385.0021). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, $55.98 ; \mathrm{H}, 2.35 ; \mathrm{N}, 10.88$. Found: C, 56.27;
${ }_{40} \mathrm{H}, 2.48$; $\mathrm{N}, 10.55 \%$. The minor diastereoisomer $\mathbf{1 7 b}$ was isolated in $25 \%(0.19 \mathrm{~g})$ yield as a white powder: $\mathrm{mp} 229^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 7.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2), 7.19(\mathrm{~d}, 1 \mathrm{H}, J=8.4$ Hz, H7'), 7.59-7.62 (m, 3H, H3", H5" and H6'), 7.82-7.87 (m, $3 \mathrm{H}, \mathrm{H} 2 ", \mathrm{H} 6^{\prime \prime}$ and H 4 H$), 10.4(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ${ }_{45}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 70.3$ (C5), $87.7(\mathrm{C} 4), 108.6(\mathrm{C} 2), 111.7(\mathrm{CN})$, 112.8 (CN), 114.0 (C7'), 121.1 (C8'), 127.9 (C4'), 129.0 (C5'), 130.0 and 130.3 (C2", C3", C5" and C6"), 132.6 (C1"), 134.4 (C6'), 137.7 (C4"), 143.3 (C9'), 172.1 (C=O).

Diastereoisomers of 5,5-dicyano-2-(4-

${ }_{50}$ methoxyphenyl)spiro[1,3-dioxolane-4,3'-(5'-chloroindolin-
2'-one)] (18). The general procedure 1 (reflux of 17 h), using 3-(4-methoxyphenyl)oxirane-2,2-dicarbonitrile (1c, 0.60 g) and 5 -chloroisatin ($9 \mathbf{c}, 0.36 \mathrm{~g}, 2.0 \mathrm{mmol}$), gave a $58 / 42$ mixture from which the major diastereoisomer 18a was 55 isolated by fractional crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in 49% $(0.37 \mathrm{~g})$ yield as a beige powder: $\mathrm{mp} 216^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2), 7.06-7.19$
(m, 3H, H3", H5" and H7'), 7.57 (dd, 1H, J=8.6 and 2.1 Hz , H6'), 7.71-7.91 (m, 3H, H2", H6" and 4'), 10.3 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$); ${ }_{60}{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 55.8\left(\mathrm{OCH}_{3}\right), 70.2(\mathrm{C} 5), 87.5(\mathrm{C} 4)$, 109.8 (C2), 112.0 (CN), 113.1 (CN), 113.9 (C7'), 115.2 (C3" and C5"), 121.4 (C8'), 125.5 (C1"), 127.9 (C4'), 128.9 (C5'), 130.3 (C2" and C6"), 134.3 (C6'), 143.3 (C9'), 163.1 (C4"), 172.3 ($\mathrm{C}=\mathrm{O}$); HRMS, m/z: 383.0474 found (calcd for ${ }_{65} \mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{37} \mathrm{Cl}, \mathrm{M}^{+\cdot}$ requires: 383.04868). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{4}$: C, $59.78 ; \mathrm{H}, 3.17$; N, 11.01. Found: C, 59.40; $\mathrm{H}, 3.11 ; \mathrm{N}, 10.65 \%$. The minor diastereoisomer $\mathbf{1 8 b}$ was identified by NMR: ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 3.87$ (s, 3 H , OCH_{3}), $7.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2), 7.06-7.10\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 3{ }^{\prime \prime}, \mathrm{H} "^{\prime \prime}\right.$ and ${ }_{70} \mathrm{H} 2$), 7.57 (d, $\left.1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 7.60\left(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{H}^{\prime}\right)$, $7.81(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H} 2 "$ and H6"), $7.88(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}$, H 4 '), $10.3(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 55.7\left(\mathrm{OCH}_{3}\right)$, 71.8 (C5), 86.0 (C4), 109.8 (C2), 111.4 (CN), 111.7 (CN), 113.7 (C7'), 114.9 (C3" and C5"), 124.2 (C8'), 125.4 (C1"),
75127.8 (C4'), 128.6 (C5'), 130.7 (C2" and C6"), 133.6 (C6'), 142.7 (C9'), 162.9 (C4"), 170.6 (C=O).

Crystallography

Single crystals suitable for X-ray diffraction were grown after slow evaporation (several days at room temperature) of ${ }_{80}$ solutions of $\mathbf{4 a}$ in CDCl_{3}, 12a in dibutyl ether, and 7b, 11a, 13a, 14a, 14b, 15b, 16a, 17a, 17b and 18b in acetone.

The samples were studied with graphite monochromatized $\mathrm{Mo}_{\mathrm{K} \alpha}$ radiation $(\lambda=0.71073 \AA)$. Except for 12a, X-ray diffraction data were collected at $T=100$ (2) K using APEXII ${ }_{85}$ Bruker-AXS diffractometer. The structure was solved by direct methods using the SIR97 program, ${ }^{21}$ and then refined with full-matrix least-square methods based on F^{2} (SHELX$97)^{22}$ with the aid of the WINGX program. ${ }^{23}$ All nonhydrogen atoms were refined with anisotropic thermal ${ }_{90}$ parameters. H atoms were finally included in their calculated positions. Except N -linked hydrogen that was introduced in the structural model through Fourier difference maps analysis, H atoms were finally included in their calculated positions. Molecular diagrams were generated by ORTEP-3 (version $\left.{ }_{95} 1.08\right) .{ }^{24}$

Crystal data for 4a: $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{4}, M_{\mathrm{r}}=320.72$, triclinic, space group $P-1, a=7.5107(5), b=10.4161(8), c=$ 10.9534(7) Å, $\alpha=111.597(3), \beta=96.849(3), \gamma=103.339(3)^{\circ}$, $V=755.25(9) \AA^{3}, Z=2, \rho_{\text {calcd }}=1.41 \mathrm{~g} . \mathrm{cm}^{-3}, \mu=0.272 \mathrm{~mm}^{-1}$. ${ }_{100}$ A final refinement on F^{2} with 3361 unique intensities and 199 parameters converged at $\omega \mathrm{R}\left(\mathrm{F}^{2}\right)=0.1162(\mathrm{R}(\mathrm{F})=0.0493)$ for 3060 observed reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$.

Crystal data for 7b: $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{4}, \quad M_{\mathrm{r}}=382.79$, monoclinic, $P 2_{1} / a, a=8.5421(6), b=26.3062(18), c=$ ${ }_{105} 8.6602(6) \AA, \beta=111.132(3)^{\circ}, V=1815.2(2) \AA^{3}, Z=4, \rho_{\text {calcd }}$ $=1.401 \mathrm{~g} . \mathrm{cm}^{-3}, \mu=0.239 \mathrm{~mm}^{-1}$. A final refinement on F^{2} with 4140 unique intensities and 245 parameters converged at $\omega R\left(F^{2}\right)=0.0916(\mathrm{R}(\mathrm{F})=0.0394)$ for 3483 observed reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$.

10 Crystal data for 11a: $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{3}, \quad M_{\mathrm{r}}=351.74$, monoclinic, $P 2_{1} / c, a=11.4743(11), b=10.6042(12), c=$ $13.0970(14) \AA, \beta=98.668(5)^{\circ}, V=1575.4(3) \AA^{3}, Z=4, \rho_{\text {calcd }}$
$=1.483 \mathrm{~g} . \mathrm{cm}^{-3}, \mu=0.266 \mathrm{~mm}^{-1}$. A final refinement on F^{2} with 3596 unique intensities and 229 parameters converged at $\omega R\left(F^{2}\right)=0.0873(\mathrm{R}(\mathrm{F})=0.0371)$ for 3325 observed reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$.

5 Crystal data for 13a: $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}, M_{\mathrm{r}}=331.32$, monoclinic, $P 2_{1} / c, a=9.1376(6), b=9.8479(6), c=17.8528(13) \AA, \beta=$ $98.305(4)^{\circ}, V=1589.66(18) \AA^{3}, Z=4, \rho_{\text {calcd }}=1.384 \mathrm{~g} . \mathrm{cm}^{-3}, \mu$ $=0.096 \mathrm{~mm}^{-1}$. A final refinement on F^{2} with 3640 unique intensities and 226 parameters converged at $\omega R\left(F^{2}\right)=0.11$ $10(\mathrm{R}(\mathrm{F})=0.0443)$ for 2892 observed reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$.

Crystal data for 14a: $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{3}, M_{\mathrm{r}}=365.77$, monoclinic, $C 2 / c, a=21.887(2), b=6.6306(8), c=23.230$ (2) $\AA, \beta=90.527(5)^{\circ}, V=3371.1(6) \AA^{3}, Z=8, \rho_{\text {calcd }}=1.441$ g.cm ${ }^{-3}, \mu=0.252 \mathrm{~mm}^{-1}$. A final refinement on F^{2} with 3840 15 unique intensities and 235 parameters converged at $\omega \mathrm{R}\left(\mathrm{F}^{2}\right)=$ $0.1118(\mathrm{R}(\mathrm{F})=0.0451)$ for 3284 observed reflections with $\mathrm{I}>$ $2 \sigma(\mathrm{I})$.

Crystal data for 14b: $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{3}, M_{\mathrm{r}}=365.77$, triclinic, $P-1, a=9.1044(8), b=9.8097(8), c=10.3197(9) \AA, \alpha=$ ${ }_{20} 76.326(5), \beta=69.235(4), \gamma=87.179(4)^{\circ}, V=836.76(12) \AA^{3}$, $Z=2, \rho_{\text {calcd }}=1.452 \mathrm{~g} . \mathrm{cm}^{-3}, \mu=0.253 \mathrm{~mm}^{-1}$. A final refinement on F^{2} with 3795 unique intensities and 235 parameters converged at $\omega R\left(F^{2}\right)=0.1141(R(F)=0.0415)$ for 3188 observed reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$.

25 Crystal data for 15b: $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}, M_{\mathrm{r}}=361.35$, triclinic, $P-$ $1, a=9.0017(12), b=9.2015(12), c=11.8723(16) \AA, \alpha=$ 84.823(7), $\beta=69.598(7), \gamma=70.128(6)^{\circ}, V=866.4(2) \AA^{3}, Z=$ $2, \rho_{\text {calcd }}=1.385 \mathrm{~g} . \mathrm{cm}^{-3}, \mu=0.099 \mathrm{~mm}^{-1}$. A final refinement on F^{2} with 3934 unique intensities and 244 parameters converged ${ }_{30}$ at $\omega \mathrm{R}\left(\mathrm{F}^{2}\right)=0.13(\mathrm{R}(\mathrm{F})=0.0519)$ for 3213 observed reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$.

Crystal data for 16a: $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{3}, M_{\mathrm{r}}=351.74$, triclinic, $P-1, a=7.4444(5), b=8.6287(6), c=12.8065(8) \AA, \alpha=$ 71.202(3), $\beta=87.399(3), \gamma=83.872(3)^{\circ}, V=774.25(9) \AA^{3}, Z$ $35=2, \rho_{\text {calcd }}=1.509 \mathrm{g.cm}^{-3}, \mu=0.271 \mathrm{~mm}^{-1}$. A final refinement on F^{2} with 3524 unique intensities and 229 parameters converged at $\omega R\left(F^{2}\right)=0.0917(R(F)=0.038)$ for 3302 observed reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$.

Crystal data for 17a: $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}, M_{\mathrm{r}}=386.18$, triclinic, ${ }_{40} P-1, a=7.2738(8), b=9.1406(9), c=12.8097(14) \AA$ A,$\alpha=$ 72.904(4), $\beta=87.391(4), \gamma=83.669(4)^{\circ}, V=809.00(15) \AA^{3}$, $Z=2, \rho_{\text {calcd }}=1.585 \mathrm{~g} . \mathrm{cm}^{-3}, \mu=0.426 \mathrm{~mm}^{-1}$. A final refinement on F^{2} with 3529 unique intensities and 238 parameters converged at $\omega \mathrm{R}\left(\mathrm{F}^{2}\right)=0.0691(\mathrm{R}(\mathrm{F})=0.0282)$ for ${ }_{45} 3146$ observed reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$.

Crystal data for 17b: $\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}, \quad M_{\mathrm{r}}=444.26$, monoclinic, $P 2_{1} / n, a=13.2556(6), b=6.9193(3), c=$ 22.4721(10) $\AA, \beta=95.608(2)^{\circ}, V=2051.26(16) \AA^{3}, Z=4$, $\rho_{\text {calcd }}=1.439 \mathrm{g.cm}^{-3}, \mu=0.35 \mathrm{~mm}^{-1}$. A final refinement on F^{2} ${ }_{50}$ with 4692 unique intensities and 276 parameters converged at $\omega R\left(F^{2}\right)=0.0784(\mathrm{R}(\mathrm{F})=0.0349)$ for 4579 observed reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$.

Crystal data for 18b: $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{4}, \quad M_{\mathrm{r}}=381.77$, monoclinic, $P 2_{1} / n, a=7.1149(11), b=18.630(3), c=$
${ }_{55} 13.388(2) \AA, \beta=98.387(6)^{\circ}, V=1755.6(5) \AA^{3}, Z=4, \rho_{\text {calcd }}=$ $1.444 \mathrm{g.cm}^{-3}, \mu=0.249 \mathrm{~mm}^{-1}$. A final refinement on F^{2} with 4026 unique intensities and 248 parameters converged at $\omega R\left(\mathrm{~F}^{2}\right)=0.1876(\mathrm{R}(\mathrm{F})=0.0682)$ for 3013 observed reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$.
${ }_{60}$ X-ray diffraction data of 12a $(0.32 * 0.15 * 0.07 \mathrm{~mm})$ were collected at $T=295(1) \mathrm{K}$ using Oxford Diffraction Xcalibur Saphir 3 diffractometer. $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}, \quad M_{\mathrm{r}}=347.32$, monoclinic, $P 2_{1} / c, a=11.989(2), b=10.720(1), c=13.132(1)$ $\AA, \beta=98.847(9)^{\circ}, V=1667.6(3) \AA^{3}, Z=4, \rho_{\text {calcd }}=1.383$ ${ }_{65} \mathrm{~g} . \mathrm{cm}^{-3}, \mu=1.00 \mathrm{~cm}^{-1}, \mathrm{~F}(000)=720$. The data collection gave 13272 reflections, and 4892 independent reflections from which 1178 with $\mathrm{I}>2 \sigma(\mathrm{I})$.

Computational methods

DFT calculations were carried out using the B3LYP ${ }^{25}$ 70 exchange-correlation functionals, together with the standard $6-31 G^{*}$ basis set. ${ }^{26}$ This level of theory has been shown suitable to provide enough good performance in the analysis of both geometric and electronic properties in cycloaddition reactions. ${ }^{19 b}$ The optimizations were carried out using the ${ }_{5}$ Berny analytical gradient optimization method. ${ }^{27}$ Free energies were calculated with the standard statistical thermodynamics ${ }^{26}$ at 383.95 K and 1 atm , and were scaled by a factor of 0.96 . Solvent effects, toluene, were considered at the thermodynamic calculations using a self-consistent ${ }_{80}$ reaction field (SCRF) ${ }^{28}$ based on the polarizable continuum model (PCM) of the Tomasi's group. ${ }^{29}$ The electronic structures of stationary points were analyzed by the NBO method. ${ }^{30}$ All calculations were carried out with the Gaussian 03 suite of programs. ${ }^{31}$
${ }_{85}$ The ω index ${ }^{32}$ is given by the following expression, $\omega=\mu^{2} /(2 \eta)$, in terms of the electronic chemical potential μ and the chemical hardness $\eta \cdot{ }^{33}$ Both quantities may be approached in terms of the HOMO and LUMO energies as $\mu \approx\left(\varepsilon_{\mathrm{H}}+\varepsilon_{\mathrm{L}}\right) / 2$ and $\eta \approx\left(\varepsilon_{\mathrm{L}}-\varepsilon_{\mathrm{H}}\right) .{ }^{33}$ Fukui functions ${ }^{34}$ condensed to atoms have ${ }^{0}$ been evaluated from single point calculations performed at the ground state of molecules at the same level of theory, using a method described elsewhere. ${ }^{35}$

Acknowledgment

We are grateful to the Spanish Government (project CTQ200614297/BQU), and to MESRS (Algeria) for PROFAS financial support to GB. We thank Jean Pierre Bazureau for generous microwave access. We thank Sourisak Sinbandhit and Loïc Toupet for their contribution to this study. We thank CRMPO for HRMS analysis and microanalysis.

${ }^{n}$ Notes and references

1 (a) A. Padwa, in 1,3-Dipolar Cycloaddition Chemistry, WileyInterscience: New York, 1984; vols. 1-2; (b) K. V. Gothelf and K. A. Jorgenson, Chem. Rev., 1998, 98, 863.
2 R. Huisgen, R. Grashey and J. Sauer, in The Chemistry of Alkenes, 105 Interscience: New York, 1964.

3 (a) A. Robert, J. J. Pommeret and A. Foucaud, C. R. Acad. Sci. Paris, Ser. C, 1970, 270, 1739; (b) J. J. Pommeret and A. Foucaud, Tetrahedron, 1971, 27, 2977; (c) S. G. Ruf, J. Dietz and M. Regitz, Tetrahedron, 2000, 56, 6259.

4 (a) P. Clawson, P. M. Lunn and D. A. Whiting, J. Chem. Soc., Perkin Trans. 1, 1990, 159; (b) C. Yoakim, N. Goudreau, G. A. McGibbon, J. O'Meara, P. W. White and W. W. Ogilvie, Helv. Chim. Acta, 2003, 86, 3427; (c) G.-W. Wang, H.-T. Yang, P. Wu, C.-B. Miao and Y.
$5 \quad \mathrm{Xu}$, J. Org. Chem., 2006, 71, 4346.
5 (a) J. J. Pommeret and A. Robert, C. R. Acad. Sci. Paris, Ser. C, 1971, 272, 333; (b) A. Robert, J. J. Pommeret, E. Marchand and A. Foucaud, Tetrahedron, 1973, 29, 463.
6 (a) A. Robert, J. J. Pommeret and A. Foucaud, Tetrahedron Lett., 1971, 12, 231; (b) A. Robert, J. J. Pommeret and A. Foucaud, Tetrahedron, 1972, 28, 2085.
7 K.-R. Meier, A. Linden, G. Mlostoñ and H. Heimgartner, Helv. Chim. Acta, 1997, 80, 1190.
8 See for example: (a) M. J. Kornet and A. P. Thio, J. Med. Chem.,
15 1976, 19, 892; (b) D. M. James, H. B. Kunze and D. J. Faulkner, J. Nat. Prod., 1991, 54, 1137.
9 See for example: (a) P. A. Wender and V. A. Verma, Org. Lett., 2006, 8, 1893; (b) Y. Liang, J. Narayanasamy, R. F. Schinazi, C. K. Chu, Bioorg. Med. Chem., 2006, 14, 2178.
2010 See for example: C.-D. Lu, Z.-Y. Chen, H. Liu, W.-H. Hu and A.-Q. Mi, Org. Lett., 2004, 6, 3071.
11 V. Nair, S. Mathai, S. C. Mathew, N. P. Rath, Tetrahedron, 2005, 61, 2849.

12 M. Baudy, A. Robert, A. Foucaud, J. Org. Chem., 1978, 43, 3732.
2513 (a) A. de la Hoz, A. Díaz-Ortiz and F. Langa, in Microwave in Organic Synthesis, ed.: A. Loupy, Wiley-VCH: Weinhein, 1st edn, 2002, ch. 9; (b) K. Bougrin, M. Soufiaoui and G. Bashiardes, in Microwave in Organic Synthesis, ed.: A. Loupy, Wiley-VCH: Weinhein, 2nd edn, vol. 1, 2006; ch. 11.
3014 (a) G. Bentabed, A. Derdour and H. Benhaoua, Synth. Commun., 2003, 33, 1861; (b) G. Bentabed, M. Rahmouni, F. Mongin, A. Derdour, J. Hamelin and J. P. Bazureau, Synth. Commun., 2007, 37, 2935.

15 Using a monomode reactor (Prolabo Synthewave ${ }^{\circledR}$ 402) with accurate control of power and temperature (infrared detection).
16 K. B. Wiberg, Tetrahedron, 1968, 24, 1083.
17 G. S. Hammond, J. Am. Chem. Soc., 1955, 77, 334.
18 (a) L. R. Domingo, M. J. Aurell, P. Pérez and R. Contreras, Tetrahedron, 2002, 58, 4417. (b) P. Pérez, L. R. Domingo, M. J.
40 Aurell and R. Contreras, Tetrahedron, 2003, 59, 3117. (c) P. Pérez, L. R. Domingo, A. Aizman and R. Contreras, in Theoretical Aspects of Chemical Reactivity, ed.: A. Toro-Labbé, Elsevier Science, 2006, vol. 19, pp 167-238.
19 (a) P. Geerlings, F. De Proft and W. Langenaeker, Chem. Rev., 2003,
45 103, 1793. (b) D. H. Ess, G. O. Jones and K. N. Houk, Adv. Synth. Catal., 2006, 348, 2337.
20 (a) L. R. Domingo, Eur. J. Org. Chem., 2004, 4788. (b) L. R. Domingo, E. Chamorro and P. Pérez, J. Phys. Chem. A, 2008, 112, 4046.

5021 A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr., 1999, 32, 115.
22 SHELX97, release 97-2 (Programs for Crystal Structure Analysis). G. M. Sheldrick, Institüt für Anorganische Chemie der Universität,

55 Tammanstrasse 4, D-3400 Göttingen, Germany, 1998.
23 L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837.
24 L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565.
25 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648. (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
6026 W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, in Ab initio Molecular Orbital Theory, Wiley: New York, 1986.
27 (a) H. B. Schlegel, J. Comput. Chem., 1982, 3, 214. (b) H. B. Schlegel, Geometry Optimization on Potential Energy Surface, in Modern Electronic Structure Theory, ed.: D. R. Yarkony, World Scientific Publishing: Singapore, 1994.
28 a) J. Tomasi and M. Persico, Chem. Rev., 1994, 94, 2027. (b) B.Y. Simkin and I. Sheikhet, in Quantum Chemical and Statistical Theory of Solutions-A Computational Approach, Ellis Horwood: Chichester, 1995.

7029 (a) E. Cances, B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 107, 3032. (b) M. Cossi, V. Barone, R. Cammi and J. Tomasi, Chem.

Phys. Lett., 1996, 255, 327. (c) V. Barone, M. Cossi and J. Tomasi, J. Comput. Chem., 1998, 19, 404.
30 (a) A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., $751985,83,735$. (b) A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899.
31 M. J. Frisch et al, Gaussian 03 (Revision D.01), Gaussian, Inc., Wallingford CT, 2004.
32 R. G. Parr, L. von Szentpaly and S. Liu, J. Am. Chem. Soc., 1999, 121, 1922.
33 (a) R. G. Parr and W. Yang, in Density Functional Theory of Atoms and Molecules, Oxford University Press: New York, 1989. (b) R. G. Parr and R. G. Pearson, J. Am. Chem. Soc., 1983, 105, 7512.
34 R. G. Parr and W. Yang, J. Am. Chem. Soc., 1984, 106, 4049.
8535 (a) R. Contreras, P. Fuentealba, M. Galván and P. Pérez, Chem. Phys. Lett., 1999, 304, 405. (b) P. Fuentealba, P. Pérez, R. Contreras, J. Chem. Phys., 2000, 113, 2544.

90

95
Graphical and textual abstract for the contents pages.

100 The [3+2] polar cycloaddition reaction between electrophilically activated carbonyl ylides and isatins was investigated. The molecular mechanism was studied using DFT calculations.

[^0]: ${ }^{a}$ Chimie et Photonique Moléculaires, UMR 6510 CNRS, Université de Rennes 1, Bâtiment 10A, Case 1003, Campus Scientifique de Beaulieu, F35042 Rennes Cedex, France. Fax: +33-2-23-23-69-55; Tel: +33-2-23-23-69-31; E-mail: florence.mongin@univ-rennes1.fr
 ${ }^{b}$ Laboratoire de Synthèse Organique Appliquée, Faculté des Sciences de l'Université, BP 1524 Es-Senia, Oran 31000, Algeria.
 ${ }^{c}$ Centre de Diffractométrie X, Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Bâtiment 10B, Campus Scientifique de Beaulieu, F-35042 Rennes Cedex, France.
 ${ }^{d}$ Departamento de Química Orgánica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain. Fax: +34-9-63-54-43-28; Tel: +34-9-63-54-31-06; E-mail: domingo@utopia.uv.es
 \dagger Electronic supplementary information (ESI) available: CIF files of 4a (CCDC 654056), 7b (CCDC 654065), 11a (CCDC 654064), 12a (CCDC 633367), 13a (CCDC 654057), 14a (CCDC 654059), 14b (CCDC 654058), 15b (CCDC 654060), 16a (CCDC 654061), 17a (CCDC 654062), 17b (CCDC 654063) and 18b (CCDC 654456). See http://dx.doi.org/10.1039/b000000x/

[^1]: ${ }^{a}$ Determined from the ${ }^{1} \mathrm{H}$ NMR spectra of the crude mixture. ${ }^{b}$ Reactions performed in refluxing anhydrous toluene under Ar. ${ }^{c}$ Reactions performed without solvent in a microwave oven $\left(285 \mathrm{~W}, 180^{\circ} \mathrm{C}\right)$.

