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ABSTRACT technique was proposed in [4], where both the data fidelity

Convex optimization problems involving information mea- :/er]eﬁzg tr_:_ige%glé‘lgﬁt\'l\(l);s t]% rrrr?\uellgtaegeif\es s(i)r?ﬂlt:remKaLn:el-r
sures have been extensively investigated in source and cha}ﬂ [95] wﬁereaspin [6. 7. 8, 9] more general forms of the
nel coding. These measures can also be successfully used’in*™" o 9

inverse problems encountered in signal and image proces%eé%ﬂli”ﬁ‘gﬁps Ezngtlgnz agfe C?gj':;ergdan Ir;ogf::;lghﬁtitn
ing. The related optimization problems are often challeggi P [7, 8, 9] 9 P piting

due to their large size. In this paper, we derive Closed_fomllnethods. These proximal tools were recently shown to offer

expressions of the proximity operators of Kullback-Leible EIOt?\ e:]ﬁ(z]enttznd I\I\?X;(blr?]iriiorLuigotri]Sr:O ? g\fdri class oflgos?];
and Jeffreys-Kullback divergences. Building upon these re y nonsmooth conve ation problems (see [10] a

sults, we develop an efficient primal-dual proximal apploac references therein). Not_e that, in all of the aforemgn'n_ebne
This allows us to address a wide range of convex optimizaworks’ one of the two variables of the KL divergence is fixed.
tion problems whose objective function expression in(:sludeAS the KL. d"’efgenc.e IS a 5regman distance, optimization
one of these divergences. An image registration applilctatio.prObIemS |nvolv_|ng th!s.fu_nctpn can also be addresseq by us
serves as an example for illustrating the good performanhce {:g the alternating minimization approach proposed in [11]

owever, the required optimization steps may be difficult

th d method. . . ;
© proposed metho to implement and the convergence of the algorithm is only
Index Terms— Divergences, inverse problems, convexguaranteed under restrictive conditions.
optimization, proximity operator, parallel algorithms. Moreover, a Kullback-proximal algorithm generalizing the
1. INTRODUCTION EM algorithm was investigated in_[l?]. The KL divergen_ce is
. ) then used as a metric for the maximization of a log-likelithoo
Kullback-Leibler (KL) and Jeffreys-Kullback (JK) diver-  gnction, rather than being one of the terms of the objective
gences are often used as discrete measures in signal PkQnction.
cessing problems. They serve as dissimilarity functions in, this paper, we consider the following generic form of the
many information theoretic models (e.g. in source and Charbptimization problem:
nel coding), data recovery tasks (e.g. image restoratidn an
reconstruction), machine learning (pattern recognitiod a Problem 1.1

clustering),.... Their popularity stems from their intirma s
connections with information theory concepts such as the oL i
entropy and the mutual information. m%%ze D(Az +u, Bz +v) + z;l Bo(Tox) (1)

The KL divergence is known to play a prominent role in the

computation of channel capacity and rate-distortion funcwhnereD is the KL or JK divergence defined ove¥’ x R”,
tions. One can address these problems with the celebratgdand v are two vectors ifR”. In addition, for everys €
alternating minimization algorithm proposed by Blahut and(y . 5} R,: R: —]— o0, +00] is a convex function and
Arimoto [1, 2]. However, other approaches based on geometr, 5 matrix inR%=* .

ric programming [3] may provide more efficient numerical

solutions. In applications to inverse problemB, with s € {1,...,S}

The generalized KL divergence is also known as the Imay be some regularization function serving to enforce the
divergence. It plays an important role in inverse problemsmoothness of the sought solution or to model some addi-
for recovering the signal of interest in the presence of$twis tional prior information, e.g. the sparsity ().

noise. In such a case, the I-divergence is usually employelote that a special case of interest in information theory is
as a data fidelity term. For instance, an alternating prigject whenu =v =0, N = 2P, A =[Ip 0],andB = [0 Ip],



wherel » denotes thé® x P identity matrix. By decomposing proxp (7, ) = (proxd( ¥ q(”)) : (5)
the vectorz asz = [p' ¢']T, where(p, q) € (RF)?, and by lsisP
setting(Vs € {1,...,5}) Ty = [Us V4], whereU, andV;

i ] 5 — ¥ We shall now look more closely at the form pfox,; for KL
are matrices iR *”, (1) simplifies to

and JK divergences.
s

minimize D (p, q) +ZR (Usp + Vsq). (2)  2.2. Proximity operators
pER 7(1€R s=1

The fact that the variablgsandg usually correspond to prob- Kullback-Leibler divergence. In this case, functionl is

ability masses can then be imposed by choosing 2, U; = defined as
Vo = Ip andV; = U, = 0, and by setting?;, andR; to the I B 0 )
indicator function of the unit simplex: v n( ) +E—v if (v,6) € ]0,+o0]
. d: (v,§) = ¢ if v = 0 andé¢ € [0, +o0]
C = {(7r(1)7 ... ,W(P))T e [0, +oo[P ’ Zﬂ.(i) — 1}. (3) 400 otherwise.

(6)
Proposition 2.1 The proximity operator ofd with~y > 0 is
The outline of the paper is as follows. In Section 2, Wegjyen by:(v(v, £) € R?), prox. 4(7,€) =

derive expressions of the proximity operators of KL and JK
divergences. These proximity operators constitute thielbui — - ~1 : — _—1F

ing blocks of the primal-dual algorithm which is proposed in {(U TG e+(C 1)) It exp(®/y) >1-77¢

Section 3. In Section 4, an image registration problem is for

mulated under the form of Problem 1.1. Simulation results @)
show the validity of the proposed method for the joint estima "here. in the first case, is the unique minimizer on

tion of depth information and illumination variation. ] exp(—0/7), +oo| of the function) given by:

(0,0) otherwise

2. PROXIMITY OPERATORS OF KULLBACK (V¢ < 10, +OC;D

DIVERGENCES ¥(C) = (g_l) Inctt ( _%)<2+(1_7—1E)§.
2.1. Convex analysis background (8)
Definitions  Let# be a real Hilbert space endowed with the jeffreys-Kullback divergence The corresponding function
norm|| - || In the following,I'o(#) denotes the class of con- ¢ is the symmetrized form of the one in (6):
vex functions defined o, which are lower-semicontinuous,
proper (i.e. with a nonempty domain), and which take their (v— g)(lnv —In¢) if (v,€) €0, +oo[2
values in—oo, +-o00]. Let f € T'o(H). Foreveryr € H,there ;. (0,6) = 20 fo=¢=0

exists a unigue minimizer of the functight 1| - —z[|2. This
minimizer is called the proximity operator ¢f at z and is (9)
denoted byprox ;7. The proximity operator has played a key Proposition 2.2 The proximity operator ofid with > 0 is:
role in recent developments in convex optimization, sirice |(v< E) € R2), prox. ,(T,€) =

provides a natural extension of the notion of projectior].[10 vd

Indeed, ifC is a nonempty closed convex subsettof and

400 otherwise.

o Fac_1) f_ -1
tc is the indicator function of” (equal to0 on C and+oo (U +7(ln< +_< 1)’15 _1( In¢ ) ¢ _j 1))
otherwise), theprox, , reduces to the projectidhc ontoC. if W™ ")W(e' ¢ <1 (10)
(0,0) otherwise

Separability In this paper, we are mainly interested in Kull-

back divergences. One of their properties is that they gre sewhere, in tlhe first CaS@ is the unique minimizer on
arable, i.e.(Vp = (pV)1<i<p € RY) (Vg = (¢W)1<i<p €  [W(e! ™7 7), +oo[ of the function) defined as
RY)

Poo (V¢ € 10, 400))  9(Q) =
q) = Z d(p(l)v q(l)) (4) CQ <-3 3 _
= (2+<—1)1nc+—+2(—6—5)42—7—1&.
whered is a scalar divergence measure belonging¢@R x (11)

R). Hence, the proximity operator of the divergeregecalcu-
lated at pointg = (pV)1<;<p € R¥ andg = (¢)1<;<p €  andW is the Lambert W function [13].
RP, reads



Due to some strictly convex properties of the above funstionof the proximity operators.
1), the existence (ﬁis guaranteed, and it can be computed byif the set of solutions to Problem 1.1 is nonempty, then any se
standard one-dimensional search techniques which areimplquencez, ),cn generated by Algorithm (12) converges to an
mentable in parallel. Due to the limited space, the reader iglement of this set (under a suitable weak qualification con-
referred to [14] for further details. dition). Note that this algorithm has two interesting featu
First, several operations (e.g. the loop §ncan be imple-
Translation property ~Proximity operators have many in- mented in a parallel manner. Second, it is error-toleratit wi
teresting properties [10]. In particular, |&t be defined by  respect to the computation of the proximity operators.

(4) and lety > 0. Letu = (u);<;<p € RY, andv =
(6); <i<p € RP. Then, for evenp — (p)1<i<p € RP 4. APPLICATION TO IMAGE REGISTRATION

andg = (¢")1<i<p € R, 4.1. Problem formulation
) @) ) () The objective of image registration is to determine spatial
PTOX, (-t 40) (B> T) = (P uhq v )(1§i§P) transformations that maximize a similarity metric between
where two images resulting from two different acquisitions. Lie¢t

two original images be represented by data veciprs R”
(Vi e {1,...,P}) (W, q¢?) = proxvd(fo(i)+u(i),G(i)+v(i)). a_ndIz € RP. For everyj € {1,2}, let F; be an image map-
ping operator such that

3. PRIMAL-DUAL ALGORITHM Fj: RP xRNi 5 RP: (I, 25) = Fi(I}, 25) (13)

Now that we know how to compute the proximity operatorswhere F;(I;, z;) is the mapped image, and € RY/ is a

of KL and JK divergences, various parallel proximal split- vector of mapping parameters [21, 22].

ting methods ([15, 16, 17, 18, 19, 20]) can be employed tdVhen a Kullback metric is adopted, the image registration
solve Problem 1.1 when, for evesye {1,...,S}, R be- criterion to be minimized w.r.tr = [z, z;]T reads

longs tol'g(R%+). We propose here to make use of a primal-
dual proximal algorithm whose main advantage, for large-si D(Fl(flv 21), Fa(Ia, ZQ))'

problems, is the absence of any matrix inversion. More pretq determine the optimal parameter vectar RY with N =
cisely, the considered M+LFBF (Monotone+Lipschitz For- v, N7, one can proceed by supposing tha(resp Fh)
ward Backward Forward) method [19] takes the followingjs gifferentiable w.r.t. its second argument and by perform

form: ing a first-order Taylor expansion around an initial estienat
Initialization z1(resp zy) as follows:(Vj € {1,2})
to’o € Rp,tl’o € RP, t270 S RKI R ,tSJrl_’O (S RKS, B OF: B B
zo € R?P Fy(1j, z;) ~F;(1;, zj) + ajj_(fja zj)(z — %)  (14)
J

1/2
— 2 2 S 2
| 5= (”A” HIBI®+ 2y I ) » e €l0.1/(B+1)] Whereg—g(lj,zj) is a Jacobian matrix. With the lineariza-

For . =0, 11’ e tion expressed in (14)the image registration problem can
Tn € [, (1 - E)Zﬁ] 5T s g be reformulated under the form of Problem 1.1, whdre-
Tn=an =4 ton+ B bt Loy Titorin) S8 (L, z) 0}, B = [0 2 (I, 2) |, u = Fy(I1,51) —
tO,n = tO,n + PYnA-(Lna tl,n = tl,n + p)/ann OF IF i

— (7 n %([1,21)21,andv:FQ(IQ,ZQ)ffiQ(]é,zQ)EQ. The addi-
(rO,na Tl,n) (t07n7 tl,n) {921 A K Oz2 X

o -1 -1 tional regularization term&R o T )1 < s< s allow the incorpo-

TnPTOX, 1D ( -+v)(7n 0,m Tn, 17") + €o,n . . —

~ I ’ ~ ration of prior knowledge about the sought parameter vector
to,n = To,n + ’Yn:’fll'n; jl,n =Tin+t Yn BTy N T

tons1 = ton — tomn +toms tingr =tin —fin +tin 42 Experiments
Fors=1,...,8 o . _ _ o _
n We conducted experiments for disparity estimation under il

ts+1,71 == t/f—&-l,n + "YnTsxn N
ierl,n =tst1n — TnProX,—1p (7;1ts+1,n) +esn
ts+1,n =Ts+1,n + ’Ynz—‘s/x\n B
tst1nt1 = Estin — lstin T lstim
Tp = Tp — (A ron + B 11, + Zsszl TS r511,0) Fi(Iy,21) = vec [(Iiil_z
| Tn1 = Tp — Ty + Tn.

lumination variation, using a stereoscopic pair of gralesca
images/; and/; with sizeP; x P, (P = P, P). The related
image mapping operators are given by

Ylaiz)’h)

)1 <ip < P1:| (15)
1 <ip < Py

. . . . (12) Fy(Iz, 22) = vec {(zéil’iZ)IQ(il’iQ))l <1< Pl} (16)
In this algorithm, (v,,),>0 is a sequence of step-sizes, and 1<iy < Py
P K K
eon € (R7)? €1, € R .. es,, € RRS correspond to 1in our experiments, the linearization is performed 3 times @fining

some possible additive summable errors in the computatiote initial estimate from a previous one).



alela ke

a) Rightimage c) True disparity &JYAE=0.8287Err=3.36 g)MAE=0.8348Err=3.44 i)MAE=0.8385Err=3.62
MS — SSIM=0.9857 MS — SSIM= 0.9856 MS — SSIM= 0.9854

g

b) Leftimage d) True illumination fMAE=0.0271 h)MAE=0.0275

i

))MAE=0.0278

Fig. 1. Results for “Cloth” stereo pair: a)-b) stereo images, c)-d) groundsridkLFBF algorithm: e)-f) JK divergence, g)-h) KL divergence
and i)-j) Euclidean distance. Paramet&l(&1 )min, (21)max) = (15,55), ((22)min, (22)max) = (0,0.58), (k1, k2) = (45000, 157).

where 102 (resp. I{"*?)) is the intensity value in the ~ We now illustrate the practical performance of our method
right (resp. left) view at pixeliy,is), Z§i1’i2) denotes the ©ON th'e “Cloth” stereo pair doyvnloa'ded.from MiddIeBu'ry
disparity at (i1, ), and Zém,m) is the associated illumi- website? The results are prowdgd in Fig. 1._ The quallt_y
nation variation coefficient. The parameter vectors are her®f € results was evaluated using three different metrics
(i1,i2) based on the ground truth: the MAE (Mean Absolute Error)
= vee [(21 )1915’3171929’2] and  z evaluated between the computed méps);jc(12; and the
vec {(zéil7i2))1§i1§P1,1§i2§P2} "It can be observed that ground truth(;) ¢ {1 2, the percentage of bad matching pix-
elsB= LY Y (el =)y 5 ) and the

11=1 10=1
OF MS-SSIM (multi-scale structure similarity index) [24]. &h

S (I, 21) = — Diag [ (V1"

(i1,i2)
1

,iz))

021 1250 JK divergence leads to better results than the KL divergence
gzz (I, ) = Diag |:(12(11,z2))1 e PI} (17) which itself is better than the standard Euclidean distance
2 1 <ig < Py

5. CONCLUSION

Existing approaches for optimizing convex criteria inunty
the KL divergence are often restricted to problems where the
minimization is performed w.r.t. one of the arguments of the
divergence, or they are based on an alternating minimizatio
process which requires specific assumptions to be valid. In
this work, we have developed a novel proximal method that
Cr={l{,2]" €R*"| (21)min < 21 < (21)max, allows us to address more general forms of optimizationrob
(22)min < 22 < (22)max}_ (18) Iemg. .Few results exist conqerning the expres;ions of the
proximity operators of two-variable convex functions. The
A second constraint is employed to enforce the smoothness gkpressions we have derived for KL and JK divergences en-
the estimated fields: rich the list of functions for which such proximity operagor
Co = {[z],2]]T € R?P | TV(z) < r1, ||V32||?2 < ro} can be easily computed. In addition t(_) its erxib!Iity, thepr
(19) posed. qpproaph leads to parallel prQX|maI algquthms that c
be efficiently implemented on multicore architectures. An
application to image registration has been provided in this
work so as to demonstrate the good performance of the pro-
posed proximal algorithm. Further applications of this new
approach will be investigated in our future work.

whereV(!) is the gradient operator w.r.t. the first spatial co-
ordinate. It is useful to incorporate prior information abo
the solution so as to convert the original matching problem t
a well-posed one. Similarly to [23], a first constraint sehis
troduced that takes into account the range of possible salu
for the disparity and the illumination variation:

whereTV is the discrete total variation semi-norf, ||¢, is
the /5 norm, andV is the spatial gradient operator. Conse-
quently, we have novw$ = 2 in Problem 1.1, wherd?; and
R5 reduce to indicator functions of convex sef3, = Ip,
andTs is a block diagonal matrix with diagonal terms set to
gradient operators. 2http:/ivision.middlebury.edu/stereo/
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