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ABSTRACT

Convex optimization problems involving information mea-
sures have been extensively investigated in source and chan-
nel coding. These measures can also be successfully used in
inverse problems encountered in signal and image process-
ing. The related optimization problems are often challenging
due to their large size. In this paper, we derive closed-form
expressions of the proximity operators of Kullback-Leibler
and Jeffreys-Kullback divergences. Building upon these re-
sults, we develop an efficient primal-dual proximal approach.
This allows us to address a wide range of convex optimiza-
tion problems whose objective function expression includes
one of these divergences. An image registration application
serves as an example for illustrating the good performance of
the proposed method.

Index Terms— Divergences, inverse problems, convex
optimization, proximity operator, parallel algorithms.

1. INTRODUCTION

Kullback-Leibler (KL) and Jeffreys-Kullback (JK) diver-
gences are often used as discrete measures in signal pro-
cessing problems. They serve as dissimilarity functions in
many information theoretic models (e.g. in source and chan-
nel coding), data recovery tasks (e.g. image restoration and
reconstruction), machine learning (pattern recognition and
clustering),.... Their popularity stems from their intimate
connections with information theory concepts such as the
entropy and the mutual information.
The KL divergence is known to play a prominent role in the
computation of channel capacity and rate-distortion func-
tions. One can address these problems with the celebrated
alternating minimization algorithm proposed by Blahut and
Arimoto [1, 2]. However, other approaches based on geomet-
ric programming [3] may provide more efficient numerical
solutions.
The generalized KL divergence is also known as the I-
divergence. It plays an important role in inverse problems
for recovering the signal of interest in the presence of Poisson
noise. In such a case, the I-divergence is usually employed
as a data fidelity term. For instance, an alternating projection

technique was proposed in [4], where both the data fidelity
term and the regularization term are based on the KL di-
vergence. The problem was formulated in a similar manner
in [5], whereas in [6, 7, 8, 9] more general forms of the
regularization functions are considered. In particular, the
developments in [7, 8, 9] are grounded on proximal splitting
methods. These proximal tools were recently shown to offer
both efficient and flexible solutions to a wide class of possi-
bly nonsmooth convex minimization problems (see [10] and
references therein). Note that, in all of the aforementioned
works, one of the two variables of the KL divergence is fixed.
As the KL divergence is a Bregman distance, optimization
problems involving this function can also be addressed by us-
ing the alternating minimization approach proposed in [11].
However, the required optimization steps may be difficult
to implement and the convergence of the algorithm is only
guaranteed under restrictive conditions.
Moreover, a Kullback-proximal algorithm generalizing the
EM algorithm was investigated in [12]. The KL divergence is
then used as a metric for the maximization of a log-likelihood
function, rather than being one of the terms of the objective
function.
In this paper, we consider the following generic form of the
optimization problem:

Problem 1.1

minimize
x∈R

N
D(Ax+ u,Bx+ v) +

S∑

s=1

Rs(Tsx) (1)

whereD is the KL or JK divergence defined overRP × R
P ,

u andv are two vectors inRP . In addition, for everys ∈
{1, . . . , S},Rs : R

Ks →]−∞,+∞] is a convex function and
Ts a matrix inRKs×N .

In applications to inverse problems,Rs with s ∈ {1, . . . , S}
may be some regularization function serving to enforce the
smoothness of the sought solution or to model some addi-
tional prior information, e.g. the sparsity of(Tsx).
Note that a special case of interest in information theory is
whenu = v = 0, N = 2P , A = [IP 0], andB = [0 IP ],



whereIP denotes theP×P identity matrix. By decomposing
the vectorx asx = [p⊤q⊤]⊤, where(p, q) ∈ (RP )2, and by
setting(∀s ∈ {1, . . . , S}) Ts = [Us Vs], whereUs andVs
are matrices inRKs×P , (1) simplifies to

minimize
p∈R

P , q∈R
P
D(p, q) +

S∑

s=1

Rs(Usp+ Vsq). (2)

The fact that the variablesp andq usually correspond to prob-
ability masses can then be imposed by choosingS ≥ 2, U1 =
V2 = IP andV1 = U2 = 0, and by settingR1 andR2 to the
indicator function of the unit simplex:

C =
{
(π(1), . . . , π(P ))⊤ ∈ [0,+∞[

P ∣∣
P∑

i=1

π(i) = 1
}
. (3)

The outline of the paper is as follows. In Section 2, we
derive expressions of the proximity operators of KL and JK
divergences. These proximity operators constitute the build-
ing blocks of the primal-dual algorithm which is proposed in
Section 3. In Section 4, an image registration problem is for-
mulated under the form of Problem 1.1. Simulation results
show the validity of the proposed method for the joint estima-
tion of depth information and illumination variation.

2. PROXIMITY OPERATORS OF KULLBACK
DIVERGENCES

2.1. Convex analysis background

Definitions LetH be a real Hilbert space endowed with the
norm‖ · ‖. In the following,Γ0(H) denotes the class of con-
vex functions defined onH, which are lower-semicontinuous,
proper (i.e. with a nonempty domain), and which take their
values in]−∞,+∞]. Letf ∈ Γ0(H). For everyx ∈ H, there
exists a unique minimizer of the functionf + 1

2‖ ·−x‖
2. This

minimizer is called the proximity operator off at x and is
denoted byproxfx. The proximity operator has played a key
role in recent developments in convex optimization, since it
provides a natural extension of the notion of projection [10].
Indeed, ifC is a nonempty closed convex subset ofH, and
ιC is the indicator function ofC (equal to0 on C and+∞
otherwise), thenproxιC reduces to the projectionPC ontoC.

Separability In this paper, we are mainly interested in Kull-
back divergences. One of their properties is that they are sep-
arable, i.e.

(
∀p = (p(i))1≤i≤P ∈ R

P
)(
∀q = (q(i))1≤i≤P ∈

R
P
)

D(p, q) =

P∑

i=1

d(p(i), q(i)) (4)

whered is a scalar divergence measure belonging toΓ0(R ×
R). Hence, the proximity operator of the divergenceD, calcu-
lated at points̄p = (p̄(i))1≤i≤P ∈ R

P andq̄ = (q̄(i))1≤i≤P ∈
R

P , reads

proxD(p̄, q̄) =
(
proxd(p̄

(i), q̄(i))
)
1≤i≤P

. (5)

We shall now look more closely at the form ofproxd for KL
and JK divergences.

2.2. Proximity operators

Kullback-Leibler divergence. In this case, functiond is
defined as

d : (υ, ξ) 7→





υ ln
(

υ
ξ

)
+ ξ − υ if (υ, ξ) ∈ ]0,+∞[

2

ξ if υ = 0 andξ ∈ [0,+∞[

+∞ otherwise.
(6)

Proposition 2.1 The proximity operator ofγd with γ > 0 is
given by:(∀(υ, ξ) ∈ R

2), proxγd(υ, ξ) =

{(
υ + γ ln ζ̂, ξ + γ(ζ̂−1 − 1)

)
if exp(υ/γ) > 1− γ−1ξ

(0, 0) otherwise
(7)

where, in the first case,̂ζ is the unique minimizer on
] exp(−υ/γ),+∞[ of the functionψ given by:

(∀ζ ∈ ]0,+∞[)

ψ(ζ) =
(ζ2
2
−1

)
ln ζ+

1

2

(
γ−1υ−

1

2
)ζ2+(1−γ−1ξ)ζ.

(8)

Jeffreys-Kullback divergence The corresponding function
d is the symmetrized form of the one in (6):

d : (υ, ξ) 7→





(υ − ξ)
(
ln υ − ln ξ) if (υ, ξ) ∈ ]0,+∞[

2

0 if υ = ξ = 0

+∞ otherwise.
(9)

Proposition 2.2 The proximity operator ofγd with γ > 0 is:
(∀(υ, ξ) ∈ R

2), proxγd(υ, ξ) =





(
υ + γ

(
ln ζ̂ + ζ̂ − 1), ξ − γ

(
ln ζ̂ − ζ̂−1 + 1)

)

if W (e1−γ−1υ)W (e1−γ−1ξ) < 1

(0, 0) otherwise

(10)

where, in the first case,̂ζ is the unique minimizer on
]W (e1−γ−1υ),+∞[ of the functionψ defined as

(∀ζ ∈ ]0,+∞[) ψ(ζ) =
(ζ2
2

+ ζ − 1
)
ln ζ +

ζ3

3
+

1

2

(
γ−1υ −

3

2

)
ζ2 − γ−1ξζ.

(11)

andW is the Lambert W function [13].



Due to some strictly convex properties of the above functions
ψ, the existence of̂ζ is guaranteed, and it can be computed by
standard one-dimensional search techniques which are imple-
mentable in parallel. Due to the limited space, the reader is
referred to [14] for further details.

Translation property Proximity operators have many in-
teresting properties [10]. In particular, letD be defined by
(4) and letγ > 0. Let u = (u(i))1≤i≤P ∈ R

P , andv =
(v(i))1≤i≤P ∈ R

P . Then, for everyp = (p(i))1≤i≤P ∈ R
P

andq = (q(i))1≤i≤P ∈ R
P ,

proxγD(·+u,·+v)(p, q) =
(
p(i) − u(i), q(i) − v(i)

)
(1≤i≤P )

where

(∀i ∈ {1, . . . , P}) (p(i), q(i)) = proxγd(p
(i)+u(i), q(i)+v(i)).

3. PRIMAL-DUAL ALGORITHM

Now that we know how to compute the proximity operators
of KL and JK divergences, various parallel proximal split-
ting methods ([15, 16, 17, 18, 19, 20]) can be employed to
solve Problem 1.1 when, for everys ∈ {1, . . . , S}, Rs be-
longs toΓ0(R

Ks). We propose here to make use of a primal-
dual proximal algorithm whose main advantage, for large-size
problems, is the absence of any matrix inversion. More pre-
cisely, the considered M+LFBF (Monotone+Lipschitz For-
ward Backward Forward) method [19] takes the following
form:

Initialization
t0,0 ∈ R

P , t1,0 ∈ R
P , t2,0 ∈ R

K1 , . . . , tS+1,0 ∈ R
KS ,

x0 ∈ R
2P

β =
(
‖A‖2 + ‖B‖2 +

∑S
s=1 ‖Ts‖

2
)1/2

, ε ∈ ]0, 1/(β + 1)[

For n = 0, 1, . . .

γn ∈ [ε, (1− ε)/β]

x̂n = xn − γn(A
⊤t0,n +B⊤t1,n +

∑S
s=1 T

⊤
s ts+1,n)

t̂0,n = t0,n + γnAxn, t̂1,n = t1,n + γnBxn
(r0,n, r1,n) = (t̂0,n, t̂1,n)

−γnproxγ−1
n D(·+u,·+v)(γ

−1
n t̂0,n, γ

−1
n t̂1,n) + e0,n

t̃0,n = r0,n + γnAx̂n, t̃1,n = r1,n + γnBx̂n
t0,n+1 = t0,n − t̂0,n + t̃0,n, t1,n+1 = t1,n − t̂1,n + t̃1,n
For s = 1, . . . , S

t̂s+1,n = ts+1,n + γnTsxn
rs+1,n = t̂s+1,n − γnproxγ−1

n Rs
(γ−1

n t̂s+1,n) + es,n
t̃s+1,n = rs+1,n + γnTsx̂n
ts+1,n+1 = ts+1,n − t̂s+1,n + t̃s+1,n

x̃n = x̂n − γn(A
⊤r0,n +B⊤r1,n +

∑S
s=1 T

⊤
s rs+1,n)

xn+1 = xn − x̂n + x̃n.
(12)

In this algorithm,(γn)n≥0 is a sequence of step-sizes, and
e0,n ∈ (RP )2, e1,n ∈ R

K1 , . . . , eS,n ∈ R
KS correspond to

some possible additive summable errors in the computation

of the proximity operators.
If the set of solutions to Problem 1.1 is nonempty, then any se-
quence(xn)n∈N generated by Algorithm (12) converges to an
element of this set (under a suitable weak qualification con-
dition). Note that this algorithm has two interesting features.
First, several operations (e.g. the loop ons) can be imple-
mented in a parallel manner. Second, it is error-tolerant with
respect to the computation of the proximity operators.

4. APPLICATION TO IMAGE REGISTRATION

4.1. Problem formulation
The objective of image registration is to determine spatial
transformations that maximize a similarity metric between
two images resulting from two different acquisitions. Let the
two original images be represented by data vectorsI1 ∈ R

P

andI2 ∈ R
P . For everyj ∈ {1, 2}, letFj be an image map-

ping operator such that

Fj : R
P × R

Nj → R
P : (Ij , zj) 7→ Fj(Ij , zj) (13)

whereFj(Ij , zj) is the mapped image, andzj ∈ R
Nj is a

vector of mapping parameters [21, 22].
When a Kullback metric is adopted, the image registration

criterion to be minimized w.r.t.x =
[
z⊤1 , z

⊤
2

]⊤
reads

D
(
F1(I1, z1), F2(I2, z2)

)
.

To determine the optimal parameter vectorx ∈ R
N withN =

N1 + N2, one can proceed by supposing thatF1(resp. F2)
is differentiable w.r.t. its second argument and by perform-
ing a first-order Taylor expansion around an initial estimate
z̄1(resp. z̄2) as follows:(∀j ∈ {1, 2})

Fj(Ij , zj) ≃Fj(Ij , z̄j) +
∂Fj

∂zj
(Ij , z̄j)(zj − z̄j) (14)

where ∂Fj

∂zj
(Ij , z̄j) is a Jacobian matrix. With the lineariza-

tion expressed in (14),1 the image registration problem can
be reformulated under the form of Problem 1.1, whereA =[
∂F1

∂z1
(I1, z̄1) 0

]
, B =

[
0

∂F2

∂z2
(I2, z̄2)

]
, u = F1(I1, z̄1) −

∂F1

∂z1
(I1, z̄1)z̄1, andv = F2(I2, z̄2)−

∂F2

∂z2
(I2, z̄2)z̄2. The addi-

tional regularization terms(Rs ◦Ts)1≤s≤S allow the incorpo-
ration of prior knowledge about the sought parameter vector
x.
4.2. Experiments

We conducted experiments for disparity estimation under il-
lumination variation, using a stereoscopic pair of grayscale
imagesI1 andI2 with sizeP1 × P2 (P = P1P2). The related
image mapping operators are given by

F1(I1, z1) = vec
[
(I

(i1−z
(i1,i2)
1 ,i2)

1 )1 ≤ i1 ≤ P1
1 ≤ i2 ≤ P2

]
(15)

F2(I2, z2) = vec
[
(z

(i1,i2)
2 I

(i1,i2)
2 )1 ≤ i1 ≤ P1

1 ≤ i2 ≤ P2

]
(16)

1In our experiments, the linearization is performed 3 times (by refining
the initial estimate from a previous one).



a) Right image c) True disparity e)MAE=0.8287,Err= 3.36 g)MAE=0.8348,Err= 3.44 i)MAE=0.8385,Err= 3.62

MS− SSIM=0.9857 MS− SSIM= 0.9856 MS− SSIM= 0.9854

b) Left image d) True illumination f)MAE=0.0271 h)MAE=0.0275 j)MAE=0.0278

Fig. 1. Results for “Cloth” stereo pair: a)-b) stereo images, c)-d) ground truths, M+LFBF algorithm: e)-f) JK divergence, g)-h) KL divergence
and i)-j) Euclidean distance. Parameters:((z1)min, (z1)max) = (15, 55), ((z2)min, (z2)max) = (0, 0.58), (κ1, κ2) = (45000, 157).

where I(i1,i2)1 (resp. I(i1,i2)2 ) is the intensity value in the

right (resp. left) view at pixel(i1, i2), z
(i1,i2)
1 denotes the

disparity at (i1, i2), and z(i1,i2)2 is the associated illumi-
nation variation coefficient. The parameter vectors are here

z1 = vec
[
(z

(i1,i2)
1 )1≤i1≤P1,1≤i2≤P2

]
and z2 =

vec
[
(z

(i1,i2)
2 )1≤i1≤P1,1≤i2≤P2

]
. It can be observed that

∂F1

∂z1
(I1, z̄1) = −Diag

[
(∇(1)I

(i1−z
(i1,i2)
1 ,i2)

1 )1 ≤ i1 ≤ P1
1 ≤ i2 ≤ P2

]

∂F2

∂z2
(I2, z̄2) = Diag

[
(I

(i1,i2)
2 )1 ≤ i1 ≤ P1

1 ≤ i2 ≤ P2

]
(17)

where∇(1) is the gradient operator w.r.t. the first spatial co-
ordinate. It is useful to incorporate prior information about
the solution so as to convert the original matching problem to
a well-posed one. Similarly to [23], a first constraint set isin-
troduced that takes into account the range of possible values
for the disparity and the illumination variation:

C1 =
{
[z⊤1 , z

⊤
2 ]⊤ ∈ R

2P | (z1)min ≤ z1 ≤ (z1)max,

(z2)min ≤ z2 ≤ (z2)max

}
. (18)

A second constraint is employed to enforce the smoothness of
the estimated fields:

C2 = {[z⊤1 , z
⊤
2 ]⊤ ∈ R

2P | TV(z1) ≤ κ1, ‖∇z2‖
2
ℓ2 ≤ κ2}

(19)
whereTV is the discrete total variation semi-norm,‖ · ‖ℓ2 is
the ℓ2 norm, and∇ is the spatial gradient operator. Conse-
quently, we have nowS = 2 in Problem 1.1, whereR1 and
R2 reduce to indicator functions of convex sets,T1 = I2P ,
andT2 is a block diagonal matrix with diagonal terms set to
gradient operators.

We now illustrate the practical performance of our method
on the “Cloth” stereo pair downloaded from MiddleBury
website.2 The results are provided in Fig. 1. The quality
of the results was evaluated using three different metrics
based on the ground truth: the MAE (Mean Absolute Error)
evaluated between the computed maps(zj)j∈{1,2} and the
ground truth(z̃j)j∈{1,2}, the percentage of bad matching pix-

elsB = 1
P

∑P1

i1=1

∑P2

i2=1 1(|z
(i1,i2)
j − z̃

(i1,i2)
j )| > 2), and the

MS-SSIM (multi-scale structure similarity index) [24]. The
JK divergence leads to better results than the KL divergence
which itself is better than the standard Euclidean distance.

5. CONCLUSION

Existing approaches for optimizing convex criteria involving
the KL divergence are often restricted to problems where the
minimization is performed w.r.t. one of the arguments of the
divergence, or they are based on an alternating minimization
process which requires specific assumptions to be valid. In
this work, we have developed a novel proximal method that
allows us to address more general forms of optimization prob-
lems. Few results exist concerning the expressions of the
proximity operators of two-variable convex functions. The
expressions we have derived for KL and JK divergences en-
rich the list of functions for which such proximity operators
can be easily computed. In addition to its flexibility, the pro-
posed approach leads to parallel proximal algorithms that can
be efficiently implemented on multicore architectures. An
application to image registration has been provided in this
work so as to demonstrate the good performance of the pro-
posed proximal algorithm. Further applications of this new
approach will be investigated in our future work.

2http://vision.middlebury.edu/stereo/



6. REFERENCES

[1] R. E. Blahut, “Computation of channel capacity and
rate-distortion functions,”IEEE Trans. Inform. Theory,
vol. 18, no. 4, pp. 460–473, Jul. 1972.

[2] S. Arimoto, “An algorithm for computing the capacity
of arbitrary discrete memoryless channels,”IEEE Trans.
Inform. Theory, vol. 18, no. 1, pp. 14–20, Jan. 1972.

[3] M. Chiang and S. Boyd, “Geometric programming duals
of channel capacity and rate distortion,”IEEE Trans.
Inform. Theory, vol. 50, no. 2, pp. 245 – 258, Feb. 2004.

[4] C. L. Byrne, “Iterative image reconstruction algorithms
based on cross-entropy minimization,”IEEE Trans. Im-
age Process., vol. 2, no. 1, pp. 96 –103, Jan. 1993.

[5] W. Richardson, “Bayesian-based iterative method of im-
age restoration,”J. Opt. Soc. Am., vol. 62, no. 1, pp.
55–59, Jan. 1972.

[6] J.A. Fessler, “Hybrid Poisson/polynomial objective
functions for tomographic image reconstruction from
transmission scans,”IEEE Trans. Image Process., vol.
4, no. 10, pp. 1439 –1450, Oct. 1995.
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