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INTRODUCTION

Pelagic sharks, which are among the largest preda-
tors in the ocean, play an important ecological role in
open-sea ecosystems through predation effects on
community structure (Estrada et al. 2003, Heithaus et
al. 2008, Ferretti et al. 2010). Large pelagic sharks
are sometimes the only consumers of a range of
meso-predators (Heithaus et al. 2008) such as small

elasmobranchs (Wetherbee & Cortés 2004) or some
marine mammals. Most shark populations are inten-
sively exploited by large-scale pelagic fisheries
(Baum et al. 2003, Campana et al. 2008), leading to
marked and rapid declines of the less resilient spe-
cies, such as carcharhinids. Worldwide, 700 000 to
850 000 t of sharks are caught annually as target
 species or bycatch, and landings increase at an
annual rate of ca. 2% (Camhi et al. 2009, Lucifora et
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ABSTRACT: In the Indian Ocean, the blue shark Prionace glauca and the silky shark Carcha rhinus
falciformis represent the 2 main shark bycatch species in pelagic longline and purse seine fisheries,
respectively. With the increasing market demand for fins, catches may increase in the future, with
potential effects on ecosystem trophic functioning through top-down cascading effects. Knowledge
of the species’ trophic ecology is therefore crucial but is limited by the lack of data from the Indian
Ocean. Stable isotope analysis was therefore performed on muscle tissues (δ15N and δ13C) of these 2
shark species from the western Indian Ocean. Our study showed that body length, season, and zone
effects were relatively small for the 2 species. However, significant δ13C differences between the 2
species suggest niche partitioning, with silky sharks having a more inshore foraging habitat than
blue sharks. Finally, lower muscle δ15N values were observed in juvenile silky sharks caught by
purse seiners around fish aggregating devices (FADs) compared to juveniles caught by longliners.
One hypothesis is that FADs could act as an ecological trap for juvenile silky sharks, leading to a po-
sition at lowest trophic level for these individuals. However, different foraging habitats could also
explain the observed patterns between juveniles. Although preliminary, our results provide a basis
for the implementation of species-specific protection and management strategies.
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al. 2011). This value is an underestimation (Clarke et
al. 2006) because of non-reported and illegal catches
of pelagic sharks for their fins, for which there is a
high demand in Asian markets. Such a removal of
large predators could initiate trophic cascades (Heit -
haus et al. 2008). The loss of top-down forcing could
have unanticipated impacts such as modifying bio-
geochemical cycles or favoring invasive species
(Estes et al. 2011). Knowledge of the trophic ecology
of sharks, which is limited by the lack of data in
most regions of the world oceans (Matich et al. 2011),
is therefore crucial for their conservation but also to
preserve pelagic ecosystem functioning. The blue
shark Prionace glauca and the silky shark Carcha -
rhinus falciformis are 2 of the most intensively
exploited pelagic sharks in the world (Bonfil 2008,
Stevens 2010).

Stable isotope analysis has been increasingly
applied to a variety of organisms and has proven
particularly useful in the study of animal trophic
ecology, trophic interactions, habitat use, and
movements of mobile organisms (Cherel et al.
2007, Hobson 2007). Depending on the tissues
studied, the non-lethal biopsy punch technique is
particularly useful when studying endangered spe-
cies. The approach is based on the fact that stable
isotope ratios of carbon (13C/12C) and nitrogen
(15N/14N) in predator tissues reflect those of their
prey in a predictable manner (DeNiro & Epstein
1978, Peterson & Fry 1987). While carbon isotope
ratios are fairly constant from prey to consumers
(Peterson & Fry 1987, Hobson & Welch 1992), δ15N
values usually increase by 2 to 4‰ (DeNiro &
Epstein 1978, Post 2002). Thus, δ15N measurements
mostly serve as indicators of trophic level (Rau et
al. 1983, Vanderklift & Ponsard 2003), while δ13C
values are used to identify sources of primary pro-
duction in the trophic network. In particular, δ13C
values can serve to define a consumer foraging
habitat, e.g. inshore versus offshore, or pelagic ver-
sus benthic, with inshore and benthic habitats
being enriched in 13C when compared to offshore
or pelagic habitats (Cherel et al. 2007, Hobson
2007). Stable isotope analysis can therefore provide
qualitative information on both resource and habi-
tat, 2 components commonly utilized to define eco-
logical niche space. The concept of isotopic niche
has indeed emerged as a key tool for ecologists to
study ecological niche at a given time, through
ontogeny, or intra- and inter-individual degree of
specialization in individuals and populations (New-
some et al. 2007). However, prey size and trophic
level generally increase with increasing predatory

body length (e.g. Jennings et al. 2002). In addition,
baseline isotopic variations (variations of the stable
isotope values at the base of the food web; see Gra-
ham et al. 2010) can be conserved through several
trophic levels (e.g. Ménard et al. 2007). These spa-
tial differences together with differences in body
length should, then, be taken into account when
comparing isotopic signatures of different species
or populations.

In sharks, stable isotope ratios of carbon and nitro-
gen have already been used to investigate feeding
habits, movements (Fisk et al. 2002, Estrada et al.
2003, Kerr et al. 2006), and trophic levels (Rau et al.
1983, McMeans et al. 2009). Diet−tissue discrimination
factors (i.e. the difference between the isotopic com-
position of an animal’s tissue and its diet) have been
shown to be lower than those reported for teleost fish,
i.e. close to 2.3‰ and 0.9‰ for δ15N and δ13C, respec-
tively, in large sharks such as sand tiger and lemon
sharks (Hussey et al. 2010a,b). However, to date, only
few studies have used stable isotopes as a tool to in-
vestigate the foraging ecology of Prionace glauca and
Carcharhinus falciformis, and these have provided
limited data (Rau et al. 1983, Estrada et al. 2003, Mac-
Neil et al. 2005, Revill et al. 2009). In the western In-
dian Ocean, P. glauca and C. falciformis constitute the
main shark bycatch for industrial pelagic longline and
purse seine fisheries, respectively. In addition, both
species are intensively exploited by several artisanal
fisheries (Sri Lanka, Yemen, and Maldives). However,
the reported catches of these artisanal  fisheries de-
creased from 36 290 t in 2000 to 16 350 t in 2009 (www.
fao. org/ fishery/ statistics/ global-capture-production/
query/), demonstrating the recent decline of the In-
dian populations. Despite the threat to these sharks,
the trophic ecology and the foraging habitats of these
2 species are poorly known in this  region. In this con-
text, our goal was to examine  interspecific, spatial,
and size differences in stable isotope values of muscle
tissues of these 2 top predators in the western Indian
Ocean and thus to define their isotopic niches.

MATERIALS AND METHODS

Shark species

The blue shark Prionace glauca is an oceanic spe-
cies found worldwide in temperate and tropical
waters. It is the most abundant pelagic shark
(Nakano & Stevens 2008). Temporal and geographic
patterns of size and sexual dimorphism have been
described for this species. Reported full sexual matu-
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rity is between 144 and 184 cm fork length (FL), cor-
responding to ages of 4 to 6 yr old (Stevens 1975,
Pratt 1979, Aires-da-Silva 1996). Gravid females in
the Indian Ocean have been observed between 2° N
and 6° S. Longevity is estimated at 20 to 26 yr, and
maximum size is around 308 cm FL (Nakano 1994).
The silky shark Carcharhinus falciformis is an
oceanic warm water species also found over conti-
nental shelf areas (Compagno 2001). Individuals
spend most of their time in the surface layer (or in the
upper 100 m). Newborns with some early juveniles
could have demersal habits. Maximum age is esti-
mated to be >20 yr, and maximum size >280 cm FL
(Compagno 1984, Bonfil et al. 2005).

Sample collection

The study was carried out around Madagascar in
the southwestern Indian Ocean. Blue and silky sharks
were caught in 2009 and 2010 during the northeast
(NE) and southwest (SW) monsoons (Table 1). The
oceanic circulation in the western Indian Ocean is
strongly related to the wind monsoon regime (Schott
& McCreary 2001). The NE monsoon extends from
December to March corresponding to boreal winter,
and the SW monsoon from June to September corre-
sponding to boreal summer. The inter-monsoon May
and October were included in the data for the SW
monsoon, and April and November in the data for the
NE monsoon, according to the dominant direction of
the wind regime (Tomczak & Godfrey 1994). Individ-
uals of Carcharhinus falciformis and Prionace glauca
were collected from both research and commercial
pelagic longline fishing operations targeting sword-
fish at night. Sampling was performed west of Mada-
gascar in the Mozambique Channel from 11° 00’ S to

13° 54’ S, and from 43° 10’ E to 49° 04’ E, and along
the east coast of Madagascar from 15° 34’ S to 27° 31’
S and from 45° 54’ E to 53° 51’ E (Fig. 1). West of
Madagascar, 17 additional samples were collected in
2010 from silky sharks caught by purse seiners
around fish aggregating devices (FADs) during the
NE monsoon to detect a possible gear effect (longline
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Species Group Year n Body length (m) Latitude (°S) δ13C (‰) δ15N (‰) C:N
Zone Min Max Min Max

Blue shark
Madagascar west NE monsoon 2008−09 10 165 260 12.55 11.80 −17.6 ± 0.6 12.7 ± 0.9 2.41 ± 0.16
Madagascar west SW monsoon 2009 8 181 304 13.63 11.61 −17.7 ± 0.6 12.8 ± 0.7 2.47 ± 0.12
Madagascar east NE monsoon 2009−10 55 130 252 27.45 15.57 −17.8 ± 0.5 12.1 ± 0.6 2.46 ± 0.09
Madagascar east SW monsoon 2009 48 110 242 27.20 20.13 −17.8 ± 0.5 12.3 ± 0.7 2.40 ± 0.12

Silky shark
Madagascar West NE monsoon 2009−10 19 64 197 12.80 11.00 −16.4 ± 0.5 12.4 ± 0.5 2.66 ± 0.08
Madagascar West SW monsoon 2009 23 76 168 13.95 12.10 −16.7 ± 0.3 11.3 ± 0.5 2.65 ± 0.06
Madagascar East NE monsoon 2009−10 18 68 148 27.53 23.57 −16.3 ± 0.2 12.2 ± 0.4 2.66 ± 0.05
Madagascar East SW monsoon 2009 22 81 144 27.67 20.00 −16.4 ± 0.3 11.8 ± 0.6 2.68 ± 0.09

Table 1. Prionace glauca and Carcharhinus falciformis. Sample characteristics with mean ± SD of δ13C and δ15N values and 
C:N ratios of blue and silky sharks. Shark body length was measured as fork length (cm)

Fig. 1. Locations where muscle tissue was sampled
from blue sharks Prionace glauca (circles) and silky sharks
Carcharhinus falciformis (triangles) east and west of 

Madagascar
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versus purse seine individuals aggregated around
FADs) on stable isotope values.

Onboard, all shark individuals caught by longline
set were measured in FL to the nearest 0.5 cm. To
allow comparisons with other studies, relationships
between total length (TL) and FL were used as fol-
lows: TL = 1.1436 × FL + 10.1367 for blue sharks and
TL = 1.2060 × FL + 1.5174 for silky sharks (Ariz et al.
2007). White muscle samples were collected from the
dorsal region in front of the first dorsal fin from
freshly caught sharks, and were immediately frozen
at −20°C until further processing. Isotopic analysis
was performed on 203 specimens (n = 121 for blue
sharks and n = 82 for silky sharks) of various body
lengths collected during these cruises (Table 1).

Sample preparation and analysis

Muscle samples were freeze-dried and ground into
a homogeneous powder. Lipids were removed using
4 ml of cyclohexane on powder aliquots of about 0.1 g
(Kojadinovic et al. 2008). As the C:N ratio in soft tis-
sues is positively related to their lipid content (Post et
al. 2007), the extent of lipid extraction was checked
through the C:N mass ratio of the samples. Lipid-ex-
tracted samples were dried at 50°C before processing,
then 300 to 400 µg of homogenized powder were
packed into 8 × 5 mm tin containers. Isotopic ratios
were determined by a continuous flow mass spec-
trometer coupled online to an elemental analyzer.
Replicate measurements of internal laboratory stan-
dards indicated measurement errors less than 0.15‰
for δ13C and 0.20‰ for δ15N. Triplicate measurements
performed on some samples confirmed that analytical
reproducibility was very good (0.2‰ maximum varia-
tion). Isotopic ratios are expressed in the conventional
δ notation as parts per thousand (‰) deviations from
the international standards: atmospheric nitrogen
(N2) for δ15N and Vienna Pee Dee Belemnite for δ13C:

δX = (Rsample/Rstandard − 1) × 1000 (1)

where X is 15N or 13C, and R is the corresponding
ratio 15N/14N or 13C/12C.

Statistical analyses

Shark samples were grouped by species, zone, year,
and season. Analyses were first conducted for each
species. Different statistical models on the δ15N and
δ13C data allowed us to test factors of interest (i.e.
zone, season, body length), taking into account the

unbalanced sampling scheme. The year factor was in-
vestigated for blue sharks only, as data on silky sharks
were too unbalanced. In addition, robust regressions
were used to test the body length effect. Then we
combined data of both species and fitted univariate
regression trees to explain the variation of δ15N using
several explanatory variables (season, zone, body
length, species). This method partitions the dataset
into mutually exclusive groups by growing a tree (re-
peated binary splitting of the data). All data are repre-
sented by a single node at the top of the tree. The tree
is then built by repeatedly splitting the data, and each
split is defined by a simple rule based on a single ex-
planatory variable. Splits are chosen to maximize the
homogeneity of the resulting 2 nodes. Each final
group is characterized by mean values of δ15N or δ13C.

RESULTS

FL ranged from 110 to 304 cm for blue sharks (mean
± SD = 189 ± 3 cm) and from 64 to 197 cm (mean ± SD
= 111 ± 27 cm) for silky sharks (Fig. 2). δ13C values
ranged from −18.7 to −15.8‰ for blue sharks and
from −18.0 to −15.7‰ for silky sharks. The 2 shark
species were significantly segregated by their carbon
isotopic signatures (means ± SD of −17.8 ± 0.5‰ ver-
sus −16.5 ± 0.4‰ for blue and silky sharks, respec-
tively, p < 0.001; Fig. 3). The δ15N values ranged from
10.9 to 14.4‰ for blue sharks and from 10.5 to 13.2‰
for silky sharks, and differed significantly (12.3 ±
0.7‰ versus 11.9 ± 0.7‰ between blue and silky
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Fig. 2. Prionace glauca and Carcharhinus falciformis. Distri-
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sharks, respectively, p < 0.01). The year effect on δ13C
and δ15N data of blue sharks collected east of Mada-
gascar during the NE season was not significant (p >
0.05). δ15N and δ13C data of both species were conse-
quently grouped by season (NE and SW monsoons)
and by zone (west and east of Madagascar), indepen-
dent of the sampling year (Table 1, Fig. 3)

Blue shark

The body length effect was significant for both δ13C
(p < 0.002, R2 = 0.08) and δ15N (p < 0.001, R2 = 0.1) val-
ues (Fig. 4). However, both estimated slopes were low,
0.0069 (SE = 0.0018) for δ15N and 0.0044 (SE = 0.0014)
for δ13C, indicating small increases of isotopic values
as size increased (Fig. 4). The linear predicted isotopic
differences between small (150 cm) and large (300 cm)
blue sharks were approximately 1‰ for δ15N and
0.7‰ for δ13C. Season and zone were never selected
as additional explanatory variables once shark size
was included in the models. However, for the δ15N
model, the p value (p = 0.075) of the zone effect was
close to 5%, showing a systematically slightly higher
value (around 0.6‰) west of Madagascar (Fig. 3).

Silky shark

Size was never significant (robust linear regressions,
p > 0.05 for both δ13C and δ15N data) for the silky
shark. The more parsimonious linear model for δ15N
selected the interaction between season and zone as
the only significant covariate (p < 0.05, R2 = 0.37). The
difference between NE and SW monsoons was about
1‰ (12.4 versus 11.3‰, respectively) west of Mada-
gascar, and less than 0.5‰ (12.2 versus 11.8‰, re-
spectively) east of Madagascar (Fig. 3). For δ13C data,
both season and zone were significant factors, but the
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model did not select their interaction as a significant
variable (p > 0.05, R2 = 0.15). West of Madagascar, δ13C
predicted values were always lower by 0.2‰ com-
pared to the east coast, independent of the season.
The same difference was ob served between NE and
SW monsoons, independent of the sampling zone.

West of Madagascar, 17 additional samples were
collected in 2010 from silky sharks caught by purse
seiners on FADs during the NE monsoon. We there-
fore tested a gear effect between individuals caught
by pelagic longline (n = 19) and aggregated individ-
uals on FADs caught by purse seine (n = 17) in that
zone and for that season. A significant difference in
δ15N values was observed between silky sharks
caught by longliners and purse seiners west of Mada-
gascar (medians of 12.5 and 10.3‰, respectively; i.e.
a 2.1‰ difference between the 2 medians). The gear
effect was highly significant for δ15N (p < 0.0001),
with higher δ15N values for individuals caught by
pelagic longline (Fig. 5) compared to aggregated
individuals on FADs, and not significant for δ13C (p =
0.10, data not shown). As size ranges differed
between longline individuals (median = 109 cm FL)
and purse seine individuals (median = 64 cm FL), we
also compared δ15N values for the same size class
(<90 cm), and found that a significant 2.0‰ nitrogen
difference remained between the 2 fishing gears.

Global analyses of both species

Fig. 6 displays both regression trees fitted to δ15N
and δ13C, respectively. For δ15N, 6 groups were

selected by the model. Size was the most important
variable explaining the different splitting, followed
by season and zone. Three groups clustered individ-
uals of the same species (Carcharhinus falciformis or
Prionace glauca). The 3 extra groups combined indi-
viduals from both species, but each group was domi-
nated either by C. falciformis or by P. glauca (4, 2 and
11 misclassified individuals of 25, 32 and 91 individ-
uals, respectively; Fig. 6). Therefore, species and size
were mainly surrogate covariates for species in the
regression tree based on the δ15N values. The regres-
sion tree fitted to the δ13C data fully segregated the 2
species. Three groups were selected, 1 grouping all
silky sharks and the 2 others grouping 2 size classes
of blue sharks.

DISCUSSION

Our results showed that body length, season, and
zone effects were relatively small for both blue and
silky sharks. Stable isotope signatures enabled us
to identify differences in trophic ecology and forag-
ing habitats of the two species, but additional in -
formation would be needed to provide information
on the underlying ecological processes that could
determine these patterns. Here, we examine some
hypotheses supported by our results, taking into
account the sampling scheme.

Size effect

The body length effect was significant for both
δ13C and δ15N values for blue sharks only, although
the relation was weak. In marine ecosystems, preda-
tor−prey relationships are often related to body
length (Scharf et al. 2000, Ménard et al. 2007, Costa
2009). Large blue sharks can predate both small and
large prey items, while small blue sharks most likely
feed on small prey only. Mouth-gape size limitation is
usually the main cause supporting this hypothesis
(Tricas 1979, Scharf et al. 2000). The increase in δ15N
and δ13C values for a doubling of the blue shark body
length is not equivalent to 1 trophic level change.
Predicted rates between small and large blue sharks
are below recent diet−tissue discrimination factors
estimated for lipid-extracted muscle of sharks (2.3‰
and 0.9‰ for δ15N and δ13C, respectively; Hussey et
al. 2010a). Large blue sharks, which can feed on a
large prey size spectrum, most likely have a larger
dietary niche breadth than small blue sharks (Costa
2009), although Markaida & Sosa-Nishizaki (2010)
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reported no clear difference in diet among various
sizes of blue sharks in Baja California (total length
ranging from 64 to 240 cm), which supports the small
increase in both δ13C and δ15N values with size in our
study. Conversely, isotopic patterns did not provide
evidence of any dietary change with increasing silky
shark body length. However, these results need to be
confirmed as (1) we sampled a very low number of
adult silky sharks in this study, and (2) stomach con-
tent analyses have not yet been carried out to inves-
tigate blue and silky sharks in the western Indian
Ocean.

Gear effect for silky sharks

A 2.0‰ δ15N difference was observed between
silky shark individuals of the same size class
(<90 cm) caught by 2 different fishing gears (purse
seiners versus longliners). These 2 fishing gears
catch sharks in different pelagic trophic habitats.
Indeed, FAD-associated catches of purse seiners
generate bycatch of juvenile silky sharks trapped in
the very upper surface waters (Filmalter et al. 2011).
Conversely, longliners targeting large pelagic fish
capture incidentally ‘free’ silky shark individuals, at
depths up to 100 m. Two hypotheses can therefore

support our results. First, the lower δ15N values for
aggregated juvenile silky sharks caught by purse
seiners on FADs could reflect a lower trophic level
due to possible detrimental effects of FADs on food
quality, according to the ecological trap hypothesis
(Marsac et al. 2000, Hallier & Gaertner 2008). Alter-
natively, variation in the δ15N values of these sharks
may result from different foraging habitats, with silky
sharks caught by longliners foraging in other water
masses or in deeper water, for example. Prey from
deep waters (100 to 200 m) has indeed been pro-
posed to have higher δ15N values than similar prey in
surface waters (Graham et al. 2006). Higher δ15N val-
ues for silky sharks caught by longliners would then
reflect foraging on prey at a similar trophic level but
at greater depths compared to juveniles of the silky
shark aggregated at the sea surface around FADs.
Nevertheless, both trophic level and nitrogen iso-
topic variations at the base of the food web could act
at the same time.

Niche partitioning between the two species

δ13C values track productivity at relatively small
scales within oceanic basins, with higher values in
productive nearshore regions, such as upwelling
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zones, compared to less productive offshore regions
(see Graham et al. 2010). δ13C values of consumers
have therefore been previously used to differentiate
between inshore (13C enriched) versus offshore (13C
depleted) carbon sources (Cherel & Hobson 2007).
Muscle δ13C values of blue and silky sharks were
very well discriminated by the regression tree
(Fig. 6), with significantly higher δ13C values for silky
sharks compared to blue sharks regardless of season
or zone (average difference of 1.3‰), which suggests
that these species were exploiting different sources
of dietary carbon. Using carbon isotopic values as a
proxy for inshore versus offshore foraging habitat,
lower δ13C values of blue sharks would correspond to
foraging in more oceanic regions, while silky sharks
would feed more inshore. The blue shark is a typical
pelagic species (Compagno 1984, Casey 1985,
Brooks et al. 2005) and mostly feeds in offshore
waters on teleost fishes and cephalopods (Vaske-
Júnior et al. 2009), even if some seasonal inshore
migrations and subsequent feeding have been
observed (Markaida & Sosa-Nishizaki 2010).
Although essentially pelagic, the silky shark, in con-
trast to the blue shark, is not restricted to the open
ocean (Compagno 1984, Branstetter 1987, Joung et
al. 2008); its range also includes shallow waters in
inshore areas and waters near the edges of continen-
tal shelves and over deepwater reefs (Bonfil et al.
1993). In our study, silky sharks were captured off-
shore. However, these highly mobile predators have
the potential to forage at a great distance from sites
where they spend considerable amounts of time
(Matich et al. 2011), and their carbon isotope values
indeed suggest that they forage at least in part in
inshore waters with 13C enriched values.

Interestingly, the carbon isotope difference we
found between blue and silky sharks was also
observed in other studies but in different oceans,
with silky sharks having higher δ13C values than blue
sharks. Blue sharks in the Atlantic Ocean near the
coast of Brazil had δ13C values of −17.4 ± 0.5‰
(Bugoni et al. 2010) and at Cape Cod and Martha’s
Vineyard (USA) they had values of −16.9 ± 0.1‰ and
−17.4 ± 0.2‰ (Estrada et al. 2003, MacNeil et al.
2005). In the Pacific Ocean, in oceanic waters off
eastern Australia, mean δ13C values of blue sharks
were −17.2 ± 0.3‰ (Revill et al. 2009), while our
mean δ13C value was about −17.8 ± 0.5‰ in the west-
ern Indian Ocean. For the silky shark, 2 δ13C values
are available in the Pacific Ocean: −15.8‰ (Rau et al.
1983) and our mean value of −16.4‰. The same pat-
tern of higher δ13C values for silky sharks compared
to blue sharks seems to be conserved through

oceans, reinforcing the idea that the 2 species have
different foraging habitats.

Trophic level difference between blue and silky
sharks

Stable isotopes of nitrogen provide an important
tool to examine relative trophic position (Vanderklift
& Ponsard 2003). In the present study, δ15N values
were slightly higher for blue sharks than for silky
sharks west of Madagascar (12.5 ± 0.7‰ versus 11.9
± 0.5‰). The 2 species occupied the same trophic
level because the δ15N difference is less than the
2.3‰ required for detecting 1 trophic level differ-
ence in sharks (Hussey et al. 2010a). This tiny differ-
ence is mainly explained by body length. A regres-
sion tree on δ15N values evidenced that species and
size were surrogate factors explaining the splitting at
6 nodes (Fig. 6). Silky sharks sampled in this study
were smaller than the blue sharks sampled (Fig. 2).
Once the body length effect is removed for blue
sharks, δ15N values of both species become very close
(around 11.8‰ for a FL of 120 cm). Preferences in
prey size and composition could differ between the 2
species, but silky and blue sharks are clearly in the
same top predator category.

To summarize, the most important result of our
study is the consistent significant δ13C difference be-
tween the 2 species due to different foraging habitats
(niche partitioning, with silky sharks having a more
inshore foraging habitat than blue sharks, i.e. δ13C
values were highest for silky sharks). This result pro-
vides the basis for developing future satellite tagging
programs in order to validate movement and foraging
strategies of the species, which is critical for shark
protection and management. Secondly, lower muscle
δ15N values were observed in juvenile silky sharks
caught by purse seiners around FADs compared to
individuals caught by longliners. Networks of FADs
deployed by the purse seiners could, then, act as an
ecological trap for juveniles, with the result that FAD
individuals are at lower trophic levels compared to
free ones. A caveat of our study is the lack of baseline
isotopic data for this region. Stomach content
analyses and particulate organic matter (POM) analy-
ses in the southwestern Indian Ocean, together with
extra analyses on larger specimens of silky sharks,
are needed to confirm or reject our hypotheses.
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